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Abstract

We give necessary and sufficient conditions ensuring the triviality of a Lie
groupoid Ω. These conditions involve the restricted holonomy morphisms of
flat connections on Ω, Lie-integrability and appropriate differential equations
on the Lie algebroid LΩ. We also introduce the correcting components of flat
connections of Lie groupoids, whose existence is equivalent to the triviality of
the groupoid.
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0 Introduction and preliminaries

In the theory of Lie groupoids one has often to decide whether a Lie groupoid is iso-
morphic to a trivial one. The main object of the present paper is the proof of a theorem
stating certain criteria for the triviality of Lie groupoids. Holonomy, Lie-integrability
and differential equations on Lie algebroids are combined in the formulation of these
criteria.

The paper is structured as follows: In Section 1 we define differential equations
with total differential on Lie algebroids , which generalize those with total (logarith-
mic) differential and values in Lie algebras. In Section 2 we study the restricted
holonomy morphisms of flat connections on Lie groupoids, which are the analogs of
the monodromy homorphisms of flat principal bundles. Based on the results of the
previous Sections, we prove in Section 3 the main theorem of the paper, which contains
triviality criteria for Lie groupoids. We also introduce the correcting components of
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flat connections of groupoids, a notion whose local version is useful to the study of
locally trivial Lie algebroids.

Throughout the present text, all the manifolds are assumed to be smooth (C∞),
Hausdorff, paracompact and finite-dimensional.

An exposition of the geometrical theory of Lie groupoids and algebroids can be
found, for example, in [5]. Here we only fix the terminology and the basic notations
used throughout.

A groupoid will be denoted as a pair of the form (Ω, B), where Ω is the total space
and B the base. We shall use the symbol αΩ (resp. βΩ) for the source-projection
(resp. the target-projection) of (Ω, B) and the symbol x̃ for the unity corresponding
to x ∈ B. If no danger of confusion arises, we shall simply write Ω, α and β, instead
of (Ω, B), αΩ and βΩ respectively. The morphism of groupoids (βΩ, αΩ) : Ω → B ×B
over B will be called the anchor of (Ω, B).

The αΩ-fiber (resp. the βΩ-fiber) of Ω over x is the set Ωx := α−1
Ω (x), x ∈ B,

(resp. the set Ωx := β−1
Ω (x)). We also set Ωy

x := Ωx ∩Ωy, for every x, y ∈ B. The left
(resp. right) translation by ξ ∈ Ω is represented by Lξ (resp. Rξ).

We shall use the symbol L for the Lie functor. Hence, to a differentiable groupoid
(Ω, B) corresponds the Lie algebroid LΩ, whereas a morphism ϕ of differentiable
groupoids produces the morphism Lϕ between the corresponding Lie algebroids. The
anchor of the Lie algebroid LΩ will be denoted by qΩ.

We enumerate some differentiable or Lie groupoids which we need in the present
paper:

a) The trivial groupoid B×G×B, where B is a manifold and G a Lie group. The
cartesian product B × B and the Lie groups are special cases of trivial groupoids.

b) The fundamental groupoid ℘ (B) of the manifold B.
c) The inner subgroupoid GΩ :=

⋃
x∈B Ωx

x of the Lie groupoid (Ω, B).
d) The αΩ-fiber product

Ω ×α Ω := {(ξ, η) ∈ Ω × Ω : αΩ(ξ) = αΩ(η)}.

1 Differential equations on Lie algebroids

We introduce appropriate differential equations with total differential on Lie alge-
broids. For more details, we refer the reader to [7].

Let (A,M) be a Lie groupoid and p : M → M ′ a surjective submersion with
connected fibers. Then the quotient groupoid of A by the submersion p is the pair
(A/p,M), with

A/p := { ξ ∈ A : (p ◦ αA) (ξ) = (p ◦ βA) (ξ)}.

The quotient groupoid A/p is a differentiable subgroupoid of A, thus the Lie algebroid
L (A/p) exists and is a Lie subalgebroid of L (A).

Remark 1.1. A Lie groupoid (Ω, B) is the quotient groupoid of itself by the 1-fibered
submersion p : B → {pt}. However, an arbitrary quotient groupoid is not, in general,
a Lie groupoid.
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We define an appropriate total differential for morphisms of Lie groupoids, gener-
alizing the ordinary total (logarithmic) differential for Lie group valued differentiable
maps

D : C∞ (M,G) −→ Λ1 (M,TeG) : f 7→ f∗aG,

where aG is the Maurer-Cartan 1-form of the Lie group G. As a matter of fact, a
morphism of differentiable groupoids φ : Ω1 → Ω2 ×α Ω2 induces the morphism of
Lie algebroids Lφ : LΩ1 → TαΩ2 := Ker(TαΩ2) ⊆ TΩ2, which, composed with the
standard morphism of Lie algebroids

< : TαΩ2 −→ LΩ2 : u 7→ TξR
−1
ξ (u) ; u ∈ TξΩ2,α(ξ),

yields the morphism of Lie algebroids

∆φ := < ◦ Lφ : LΩ1 −→ LΩ2

and the desired (right) total differential

∆ : Mor (Ω1,Ω2 ×α Ω2) −→ Mor (LΩ1, LΩ2) : φ 7→ ∆φ,

where the symbol Mor (Ω1, Ω2 ×α Ω2) (resp. Mor (LΩ1, LΩ2)) is the set of morphisms
between the groupoids Ω1 and Ω2 ×α Ω2 (resp. the Lie algebroids LΩ1 and LΩ2).

Now we fix two Lie groupoids (A,M), (Ω, B), and a submersion p′ : M → M ′

with connected fibers. We also suppose that an imbedding i : M ′ → B exists. The
mapping i induces the natural diffeomorphism i′ : M ′ → i(M ′) and we set q := i ◦ p′,
p := i′ ◦ p′.

Definition 1.2. If (ω, ν) : (L(A/p),M) → (LΩ, B) is a morphism of directed vector
bundles (see [9]), then an equation of the form

(1) ∆x = ω

is called a differential equation with total differential ∆ and coefficient ω. A (global)
solution of (1) is a morphism of differentiable groupoids

(ψ, f) : (A/p, M) −→ (Ω ×α Ω, Ω) ,

which satisfies the following conditions:

αΩ ◦ f = q, βΩ ◦ f = ν,(2)
∆ψ = ω.

The definition of local solutions (over an open U ⊆ M) is similar; it suffices to
replace Ω by ΩU

U := α−1
Ω (U) ∩ β−1

Ω (U).
The equations with total differential ∆ generalize the corresponding equations

with logarithmic differential D; the latter equations arise if A = M × M , p is the
1-fibered submersion and Ω is a Lie group (see [7, Proposition 3.4]).

In the present paper, we shall use only equations of the form ∆x = γ, where
γ : TB → LΩ is a connection of the Lie groupoid (Ω, B).
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2 Restricted holonomy morphisms

Let γ be a flat connection on the Lie groupoid Ω. Then, working as in [5, Theorem
III.7.3], we can prove the following

Proposition 2.1. Let c : [0, 1] 7→ B be a differentiable curve in the manifold B. Then,
for every ξ ∈ Ωc(0)

c(0), there exists a unique curve ĉξ of Ω, satisfying the conditions

ĉξ(0) = ξ,

ĉξ(t) ∈ Ωc(t)
c(0),(3)

TR−1
ĉξ(t)

(
dĉξ

dt

∣∣∣∣∣
t

)
= (γ ◦ ċ)(t),(4)

for every t ∈ [0, 1].

Definition 2.2. The curve ĉξ is called the lifting of c with initial condition ξ.

On the other hand, if we set βc(0) := β|Ωc(0), the connection γ induces the mapping

(5) γ̄ ≡ γ̄c(0) : β∗
c(0)(TB) −→ T (Ωc(0)) : (η, v) 7→ TRη(γ(v)),

which is flat infinitesimal connection on the principal vertex bundle Ωc(0). Equality
(4) implies that

dĉ
c̃(0)

dt

∣∣∣∣∣
t

= γ̄(ĉ
c̃(0)

(t), ċ(t)) ∈ Im(γ̄),

for every t ∈ [0, 1]; hence, ĉ
c̃(0)

is the horizontal lifting of the curve c, with re-

spect to the infinitesimal connection γ̄ and initial condition c̃(0). If c is a loop, then
ĉ
c̃(0)

(1) = hγ̄([c]), where hγ̄ is the monodromy homomorphism of the flat principal
bundle (Ωc(0), γ̄) (see [2], [6]). Therefore we define the mapping

µγ : G(℘(B)) −→ GΩ : [c] 7→ ĉx̃(1), c(0) = x.

It is directly proved that µγ is morphism of differentiable groupoids.

Definition 2.3. The mapping µγ is called the restricted holonomy morphism of the
flat connection γ.

Since in the next section we shall use the restricted holonomy morphisms of trivial
Lie groupoids, we prove some preparatory results about them. First observe that a
flat connection on the (trivial) groupoid B × G × B is a mapping of the form

(6) γ : TB −→ TB ⊕ (B × TeG) : v 7→ v ⊕ (x, ax(v)),

where v ∈ TxB and a ∈ Λ1(B, TeG). Since the connection γ is flat, the differential
form a is Maurer-Cartan ([5, Example III.2.3]) and the differential equation
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Df = a; f ∈ C∞(B,G),

is integrable ([4, Chapter 1]). The lifting of this differential equation on the α-
fibers B̂x ≡ ℘(B)x, x ∈ B, of the fundamental groupoid ℘(B), which are (mutually
diffeomorphic) universal covering spaces of the manifold B, leads to the following
differential equations with unitary initial conditions

DF = π∗
xa; F ([cx]) = e,

where [cx] is the homotopy class of the constant loop at x and πx : B̂x → B are
the corresponding covering maps. The latter equations are globally solvable (ibid,
Section 1.6) and, by using their solutions Fa,x : B̂x → G , we define the differentiable
mapping

(7) Fa : ℘(B) −→ B × G × B : [c] 7→ (πx([c]), Fa,x([c]), x), [c] ∈ B̂x.

Proposition 2.4. The restricted holonomy morphism of the flat connection (6) of
the trivial groupoid B × G × B is given by the equality

(8) µγ = Fa

∣∣ G (℘ (B)) .

Proof. We consider a smooth loop c of the manifold B and set x := c(0) = c(1). The
lifting ĉx̃ is a curve of the form ĉx̃(t) = (c1(t), c2(t), c3(t)), t ∈ [0, 1], where c1 and c3

(resp. c2) are smooth curves of the manifold B (resp. of the Lie group G). We shall
determine the values ci(1), i = 1, 2, 3.

In fact, relation (3) implies that c3(1) = c(0) = x and c1(1) = (β ◦ ĉx̃)(1) = c(1) =
x. On the other hand, equality (4) and the condition ĉx̃(0) = x̃ lead to the differential
equation

Dc2 = c∗a; c2(0) = e,

from which we get c2(1) = Fα,x([c]).
Therefore, the definition of µγ and (7) imply that

µγ([c]) = ĉx̃(1) = (x, Fa,x([c]), x) = (Fa

∣∣ G (℘ (B)))([c]),

which completes the proof. 2

Since the α-fibers of the groupoid ℘ (B) are connected and simply connected, the
Lie theory of differentiable groupoids ([5, Proposition III.6.4 and Theorem III.6.5])
ensures the existence of a unique Lie-integral of the composition γ ◦q℘(B), that is, of a
morphism of Lie groupoids (often called the holonomy morphism of the flat connection
γ) hγ ≡ h : ℘ (B) → Ω, such that Lh = γ ◦ q℘(B).
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Proposition 2.5. The mapping Fa coincides to the holonomy morphism of the flat
connection (6).

Proof. Since Fa

∣∣ B̂x = (πx, Fa,x, σx), where σx is the constant mapping B̂x → {x},
we see that

LFa

∣∣ Tx̃B̂x = (Tx̃πx, Tx̃Fa,x, σ̄x),

where x̃ is the unity of the groupoid ℘ (B) at x and σ̄x the (constant) mapping
Tx̃B̂x → {x}. The above equality allows to compute the morphism of Lie algebroids
LFα. Indeed, taking into account the equalities

Tx̃πx = Tx̃(β℘(B)

∣∣ B̂x) = q℘(B)
∣∣ Tx̃B̂x,

Tx̃Fa,x = TR−1
e ◦ Tx̃Fa,x = DFa,x = π∗

xa,

and the isomorphism of vector bundles TB⊕(B×TeG) ∼= TB⊕(TeG×B), we obtain
the relation

LFa(v) = q℘(B)(v) ⊕ (x, ax(q℘(B)(v))); v ∈ L(℘ (B))|x := Tx̃B̂x,

which leads directly to the result. 2

Corollary 2.6. If γ is a connection on the trivial groupoid B × G × B, then µγ is
the restriction of hγ to the inner subgroupoid G (℘ (B)).

3 Triviality criteria for Lie groupoids

We state the following criterion for the triviality of flat principal bundles ([10, Theo-
rem A]) needed in the sequel.

Proposition 3.1. Let P ≡ (P,G,B, π) be a principal bundle, which is equipped with
a flat connection (form) ω. The bundle P is trivial if, and only if, the monodromy
homomorphism hω : π1(B, b) → G of (P, ω), where b ∈ B fixed, extends to a smooth
mapping ĥ : B̂b = α−1

℘(B)(b) → G, such that

ĥ ([x̂] · [c]) = ĥ([x̂]) · hω([c]),

for every [x̂] ∈ B̂b and [c] ∈ π1(B, b).

We are now in a position to prove the main result of the present paper.

Theorem 3.2. For every Lie groupoid (Ω, B) the following conditions are equivalent:
(i) Ω is a trivial groupoid.
(ii) The restricted holonomy morphism µγ of any flat connection γ on Ω extends

to a differentiable mapping H : ℘ (B) → GΩ satisfying conditions

αGΩ ◦ H = α℘(B),(9)
H(ξ · η) = H(ξ) · µγ(η),(10)



108 A. Nikolopoulos

for every (ξ, η) ∈ ℘ (B) × G(℘ (B)) with α℘(B)(ξ) = β℘(B)(η).
(iii) Ω can be equipped with a Lie-integrable connection.
(iv) There exists a flat connection γ̂ on Ω, so that the differential equation ∆x = γ̂

has a global solution.

Proof. (i) ⇒ (ii). If Ω is the trivial differentiable groupoid B × G × B and γ the
connection (6) on it, then the morphism µγ extends to the differentiable mapping
Fa : ℘ (B) → B × G × B, as a result of (8). Obviously, the smooth mapping

H := (α℘(B), p2 ◦ Fa, α℘(B)),

satisfies equality (9). The validity of (10) is implied by the properties of the funda-
mental solutions Fα,x (see [4, Proposition 1.6.4]).

(ii) ⇒ (i). We fix a point b ∈ B and consider the principal vertex bundle
(Ωb, Ωb

b, B, βΩ|Ωb) endowed with the flat infinitesimal connection γ̄b (see (5)). By the
comments preceding Definition 2.3, the mapping µγ |π1(B, b) coincides with the mon-
odromy homomorphism hω̄ of the principal bundle (Ωb, ω̄), where ω̄ is the connection
form which corresponds to the splitting γ̄b. Since µγ extends to the smooth mapping
H, we conclude that hω̄ extends to the smooth mapping Hb ≡ H|B̂b : B̂b → Ωb

b. Also,
equality (10) implies that

Hb([c1] · [c2]) = Hb([c1]) · hω̄([c2]), [c1] ∈ B̂b, [c2] ∈ π1(B, b).

Consequently (see Proposition 3.1) the vertex bundle Ωb is trivial, a fact implying the
triviality of the groupoid Ω.

(i) ⇒ (iii). If Ω = B × G × B, we consider the flat connection

γ0 : TB −→ TB ⊕ (B × TeG) : v 7→ v ⊕ (x, 0); v ∈ TxB,

and also the morphism of Lie groupoids

ϕ0 : B × B −→ B × G × B : (y, x) 7→ (y, e, x).

It is directly checked that L(ϕ0) = γ0; hence, the connection γ0 is Lie-integrable.
(iii) ⇒ (iv). If γ̂ := Lϕ̂ is a Lie-integrable connection , where ϕ̂ : B ×B → Ω is a

morphism of Lie groupoids, we fix a point b ∈ B and define the differentiable (partial)
mapping

l ≡ ϕ̂b : B −→ Ωb : x 7→ l(x) := ϕ̂(x, b).

The latter produces the morphism of differentiable groupoids

(l × l, l) : (B × B,B) −→ (Ω ×α Ω,Ω),

which is global solution of the differential equation ∆x = γ̂, hence condition (iv) holds
true.

(iv) ⇒ (i). Finally, we assume that the morphism of C∞-groupoids

(f, f0) : (B × B,B) −→ (Ω ×α Ω, Ω)
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is a solution of the differential equation ∆x = γ̂. Taking into account (2), we conclude
that the composition αΩ ◦ f0 is a constant mapping and, furthermore, that the com-
position βΩ ◦ f0 coincides with the base map idB of the connection γ̂. Therefore the
mapping f0 is global C∞-section of the Lie groupoid Ω, a fact implying the triviality
of the latter. 2

Corollary 3.3. Let (Ω, B) be a Lie groupoid equipped with a flat connection γ. If the
base B is simply connected, then Ω is trivial.

Proof. In this case, G(℘ (B)) coincides with the set of the unit elements of the
fundamental groupoid ℘ (B), thus the restricted holonomy morphism of every flat
connection γ of Ω is the mapping µ : G(℘ (B)) → GΩ : x̃ 7→ x̃. As a consequence, it
suffices to take the mapping

H : ℘ (B) −→ GΩ : [c] 7→ c̃(0),

and apply Theorem 3.2. 2

Definition 3.4. Let γ be a flat connection on the Lie groupoid Ω . A smooth
mapping H : ℘ (B) → GΩ, satisfying equality H|G(℘ (B)) = µγ and conditions (9),
(10), is called correcting component of the flat connection γ.

Corollary 3.5. A Lie groupoid (Ω, B) is trivial if, and only if, any flat connection
of Ω admits correcting component.

Scholium. If a Lie algebroid is only locally trivial (for example, if it is transitive),
then it is equipped with a system of local correcting components. Also, condition
(iv) of Theorem 3.2 implies the existence of a system of local differential equations
{∆x = γi| i ∈ I}, where γi are connections on trivial groupoids (compare with [1],
[3], [8] and [10], dealing with vector/principal bundles and corresponding equations
with total differential). As a conclusion, the local counterparts of the results of the
present paper can be used in the structural study of general classes of Lie algebroids.
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