A criterion for dispersive dynamical systems on a topological manifold

Constantin Bota

Abstract

In this paper we show that Auslander-Bhatia's-theorem [2], relative to a dynamical system on a metric space, can be extended to dynamical systems defined on topological manifolds.

M.S.C. 2000: 37C55, 54H20. Key words: dispersive dynamical system, periodic orbit.

1 Preliminaries

Let X be a topological manifold over \mathbb{R}^n , and let \mathcal{A} be the atlas which gives the manifold structure, dim(X) = n,

$$\mathcal{A} = \{h_a(\chi_a, U_a)\}_{a \in J},\$$

where $U_a \subset X$, and $\chi_a : U_a \to \chi_a(U_a) \subset \mathbb{R}^n$ are homeomorphisms for all $a \in J$.

Definition 1.1. [2] A continuous dynamical system on a topological manifold X is defined by a triplet (X, R, Φ) , where Φ is a transformation $\Phi : X \times R \to X$ satisfying the following properties:

i)
$$\Phi(x,0) = x$$
, $(\forall) \ x \in X$

 $ii) \ \Phi(\Phi(x,t),s) = \Phi(x,t+s) \ (\forall) \ x \in X, \ (\forall) \ t,s \in R;$

iii) Φ is continuous.

In the following we use the notation: $\Phi(x,t) \equiv xt$. The properties (i-ii) can be respectively rewritten:

i') x0 = x, $(\forall) x \in X$;

ii') $xt(s) = x(t+s) \quad (\forall) \ x \in X, \quad (\forall) \ t, s \in R.$

We note that the property of continuity iii) is equivalent to

iii') If (x_n) and (t_n) are sequences in X, respectively in R, such that $x_n \to x, t_n \to t$, then $x_n t_n \to xt$.

In concordance with the above notation, if $M \subset X$ and $A \subset R$ we will write

$$MA=\{xt|x\in M,\ t\in A\}.$$

In the sequel we recall the definitions of some notions involved in our approach. The trajectory of the dynamical system through the point $x \in X$ (the orbit through x) is

Differential Geometry - Dynamical Systems, Vol.7, 2005, pp. 11-14.

[©] Balkan Society of Geometers, Geometry Balkan Press 2005.

the set $\gamma(x) \stackrel{not}{=} xR = \{xt | t \in R\}$. The set $\gamma^+(x) = xR^+$, respectively $\gamma^-(x) = xR^-$, is called the positive semi-trajectory, respectively the negative semi-trajectory through x. A subset $M \subset X$ with the property that $xR \subset M$, $(\forall) x \in M$, is called *invariant* set.

The trajectory through $x \in X$ with the property that there exists some $\tau \in R$ such that $x(t + \tau) = xt$ for any $t \in R$, is called *periodic trajectory of period* τ .

A point $x \in X$ such that xt = x for any $t \in R$ is called *rest point* or *equilibrium* point.

For any fixed $x \in X$, the application $\Phi_x : R \to X$ defined by $\Phi_x(t) = xt$ is called the motion of x.

$\mathbf{2}$ Omega limit prolongation and prolongational limit set

Definition 2.1. $y \in X$ is a positive (negative) limit point of some $x \in X$ if there exists a sequence $(t_n), t_n \to \infty(-\infty)$, such that $xt_n \to y$. The ω -limit set of a point $x \in X$ is denoted by $\omega(x) = \{ y \in X | (\exists) \ (t_n) \subset R^+, \ t_n \to \infty \text{ and } xt_n \to y \}.$

Definition 2.2 [2] The positive prolongation limit set of a point x, respectively the negative prolongation limit set is the set defined by $D^+(x) = \{y \in X | (\exists) (x_n) \subset X \text{ and } (t_n) \subset R^+, \text{ such that } x_n \to x \text{ and } x_n t_n \to y\}$ $D^-(x) = \{y \in X | (\exists) (x_n) \subset X \text{ and } (t_n) \subset R^-, \text{ such that } x_n \to x \text{ and } x_n t_n \to y\}$

Definition 2.3 [2] The positive prolongational limit set, and the negative prolongational limit set of any $x \in X$ are the sets defined respectively by: $J^+(x) = \{y \in X | (\exists) (x_n) \subset X \text{ and } (t_n) \subset R, \text{ such that } x_n \to x, y_n \to \infty \text{ and } (t_n) \subset R \}$ $x_n t_n \to y$ $J^{-}(x) = \{y \in X | (\exists) (x_n) \subset X \text{ and } (t_n) \subset R, \text{ such that } x_n \to x, y_n \to -\infty \text{ and } (t_n) \subset X \}$ $x_n t_n \to y$.

From these definitions it follows imediately:

Proposition 2.4. $\overline{\gamma^+(x)} \subset D^+(x)$ and $D^+(x) = \gamma^+(x) \cup J^+(x)$.

3 Dispersive dynamical systems

Definition 3.1 [2] A dynamical system (X, R, Φ) is called *dispersive* if for any $x, y \in X$ there exist two neighborhoods U_x and U_y and a constant T > 0 such that $\Phi_t(U_x) \cap U_y = \emptyset$ for all $t \in R$, $|t| \ge T$.

Theorem 3.2 $J^+(x)$ is a closed invariant set for all $x \in X$.

Proof. We show that $J^+(x)$ is closed. For a sequence $(y_k) \subset J^+(x)$ such that $y_k \to y$, it follows that $y \in J^+(x)$. Indeed, for each $k \in N^*$ there exists the sequence $(t_n^k) \subset R; t_n^k \to \infty$ and $(x_n^k) \subset X; x_n^k \to x$ with $\lim_{n \to \infty} x_n^k t_n^k = y_k$. Consider $y \in U$, where U is the geometric zone of the chart $h(U, \chi) \in \mathcal{A}$. Then

there exists an integer $n_0 \in N^*$ such that for each $k \ge n_0, y_k \in U$. For each $y_k \in U, k \ge n_0$ there exists n_k^0 such that for $n_k \in N^*, n_k \ge n_0^k$ we have that $t_{n_k}^k > k, x_{n_k}^k t_{n_k}^k \in U$, and

$$||\chi(x_{n_k}^k t_{n_k}^k) - \chi(y_k)|| < \frac{1}{k}$$

Consider now the sequences:

$$(t_k: t_k = t_{n_k}^k), \quad (x_k: x_k = x_{n_k}^k).$$

We observe that $t_k \to \infty$, $x_k \to x$, and $x_k t_k \to y$ because

$$||\chi(x_k t_k) - \chi(y)|| \le ||\chi(x_k t_k) - \chi(y_k)|| + ||\chi(y_k) - \chi(y)|| \le \frac{1}{k} + ||\chi(y_k) - \chi(y)||$$

Hence $y \in J^+(x)$.

In order to show that $J^+(x)$ is an invariant set we prove that for every $y \in J^+(x)$ we have $yR \subset J^+(x)$. For this, we take the sequences $(t_n) \subset R$ $t_n \to \infty$ and $(x_n) \subset X, x_n \to x, x_n t_n \to y \in J^+(x)$, and $\tau \in R$. We have $x_n(t_n + \tau) = (x_n t_n)\tau \to y\tau$ and this implies $y\tau \in J^+(x)$. q.e.d.

Recently we have proved [4] for a dynamical system on a topological space the following property:

Theorem 3.3 A dynamical system (X, R, Φ) is dispersive if and only if for each $x \in X$, $J^+(x) = \emptyset$.

By means of this result we extend the Auslander-Bhatia's theorem [2] which states that a continuous dynamical system on a metric space is dispersive if and only if the positive prolongation limit set and the positive semi-trajectory of each point are identically and the system does not exhibit rest points or periodic trajectories.

Theorem 3.4 The dynamical system (X, R, Φ) is dispersive if and only if for each $x \in X$ the positive prolongation limit set of x coincides with the positive semitrajectory through x, i.e. $D^+(x) = \gamma^+(x)$, and the system does not exhibit rest points or periodic trajectories.

Proof. If (X, R, Φ) is dispersive then by Theorem 3.3, $J^+(x) = \emptyset$ (\forall) $x \in X$. Using Proposition 2.4 we obtain $D^+(x) = \gamma^+(x), (\forall) \ x \in X$. If x is a rest point or $\gamma(x)$ is a periodic trajectory, then $\gamma(x) \equiv \omega(x) \subset J^+(x)$, and this contradicts $J^+(x) = \emptyset$.

Conversely, suppose that $D^+(x) = \gamma^+(x)$ and that there are no rest points or periodic orbits. We must prove that $J^+(x) = \emptyset$.

From Proposition 2.4 we have $D^+(x) = \gamma^+(x) \cup J^+(x) = \gamma^+(x)$. This implies that $J^+(x) \subset \gamma^+(x)$; By Theorem 3.2, $J^+(x)$ is a closed invariant set and if $J^+(x)$ is not empty, we have that $\gamma(x) \subset J^+(x) \subset \gamma^+(x)$, i.e. $\gamma(x) = \gamma^+(x)$. This shows that if t' < 0, then there exists $t \ge 0$ such that xt' = xt, i.e.

$$x = x(t - t').$$

Since t - t' > 0, we conclude that the trajectory $\gamma(x)$ is closed and has the period t - t', which is a contradiction. q.e.d.

References

- E. Akin, The General Topology of Dynamical Systems, American Mathematical Society, Graduate Studies in Mathematics Series, 1, 1993.
- [2] N.P. Bhatia, G.P. Szegö, Dynamical Systems: Stability Theory and Applications, Lecture Notes in Mathematics 35, Springer Verlag, 1967.
- [3] N.P.Bhatia, Criteria for dispersive flows, Mathematishe Nachrichten 32 (1960), 89–93.
- [4] C. Bota, F.Coroiu, M. Albert, A criterion for dispersive dynamical systems on a topological space, Bull. Applied & Computer Mathematics, 2004 (to appear).

Author's address:

Constantin Bota, Department of Mathematics, "Politehnica" University of Timişoara, P-ţa Regina Maria 1, 300004 Timişoara , Romania, email: cbotauvt@yahoo.com

14