Some results of conformal Ricci solitons on $N(\kappa)$-paracontact manifolds

Tarak Mandal

Abstract. In the present paper, we have deduced conformal Ricci solitons on $N(\kappa)$-paracontact metric manifolds and obtained a relation between λ and p. We have also studied second order parallel tensor, projective curvature tensor, concircular curvature tensor on an $N(\kappa)$-paracontact metric manifold admitting conformal Ricci solitons. Also we have proved that, there does not exist conformal Ricci solitons on $N(\kappa)$-paracontact metric manifolds.

Key words: $N(\kappa)$-paracontact manifolds; Ricci soliton; conformal Ricci soliton; second order parallel tensor; projective curvature tensor; concircular curvature tensor.

1 Introduction

In 1985, Paracontact geometry was introduced by Kaneyuki and Williams in the paper [11]. The dimension of a paracontact metric manifold is any positive integer whereas the dimension of contact metric manifold is always odd. In 2010, Montano, Erken and Murathan were introduced a class of paracontact metric manifolds for which the characteristic vector field ξ belongs to the (κ, μ)-nullity distribution, where κ, μ are real constants. This type of new manifolds are known as (κ, μ)-paracontact metric manifolds. If $\mu = 0$, then we call the manifolds as $N(\kappa)$-paracontact metric manifolds. The paracontact metric manifold has also been studied by several authors such as De and Mondal [5], Mandal and Mandal [14], Zamkovoy [18], Zamkovoy and Tzanov [19]. In 1926, Levy introduced the notion of second order parallel tensors. Later many authors such as Chandra, Hui and Shaikh [3], Mondal and De [13], Sharma {[16], [17]} have studied second order parallel tensors on several manifolds.

The notion of Ricci soliton was introduced by Hamilton [10] which is the generalization of Einstein metric and is defined by

$$ (L_X g)(Y, Z) + 2S(Y, Z) + 2\lambda g(Y, Z) = 0, $$
where \(L_X \) denotes the Lie-derivatives of Riemannian metric \(g \) along the vector field \(X \), \(\lambda \) is a constant, \(S \) the Ricci tensor of type \((0,2)\) and \(Y, Z \) are arbitrary vector fields on the manifold. Here \(X \) is called the potential vector field. A Ricci soliton is called shrinking or steady or expanding according as \(\lambda \) is negative or zero or positive. A Ricci soliton is the limit of the solutions of Ricci flow equation given by

\[
\frac{\partial g}{\partial t} = -2S.
\]

Ricci soliton on different kind of manifolds has been studied in the papers [2], [4], [5], [15] by several authors.

Conformal Ricci flow equation was introduced by A. E. Fisher [9] in the year 2005 which is a variation of the classical Ricci flow equation and the equation is given by

\[
\frac{\partial g}{\partial t} + 2(S + \frac{g}{n}) = -pg
\]

and \(r = -1 \), where \(p \) is a time dependent non-dynamical scalar field, \(r \) is the scalar curvature of the manifold and \(n \) is the dimension of the manifold.

In 2015, the notion of conformal Ricci soliton was introduced by N. Basu and A. Bhattacharyya [1] which is the generalization of the Ricci soliton and the equation is given by

\[
L_X g + 2S = [2\lambda - (p + \frac{2}{n})]g.
\]

The above equation also satisfies the conformal Ricci flow equation. Conformal Ricci soliton has been studied in the paper [7], [8].

In this paper we would like to study some properties of conformal Ricci solitons on an \(N(\kappa) \)-paracontact metric manifold.

The paper is organized as follows: After introduction, we give some preliminaries in the Section 2. Also we give an example of \(N(\kappa) \)-paracontact metric manifold in the Section 3. In Section 4, we have studied the conformal Ricci solitons on \(N(\kappa) \)-paracontact metric manifolds. In Section 5, we have derived second order parallel tensor and conformal Ricci tensor. In Section 6, we devoted to study projectively semi-symmetric \(N(\kappa) \)-paracontact metric manifolds admitting conformal Ricci solitons. In Section 7, we deduced some results of \(N(\kappa) \)-paracontact metric manifolds admitting conformal Ricci solitons and satisfy \(C(\xi,X).S(Y,Z) = 0 \). In the last Section, we have proved that, there does not exist a conformal Ricci soliton in an \(N(\kappa) \)-paracontact manifold.

2 Preliminaries

A smooth \((2n+1), (n>1)\), dimensional manifold \(M \) is said to be an almost paracontact manifold if it admits a \((1,1)\)-tensor field \(\phi \), a vector field \(\xi \) and a 1-form \(\eta \) satisfying the conditions [5]

\[
\phi^2 X = X - \eta(X)\xi, \quad \phi(\xi) = 0, \quad \eta(\phi X) = 0, \quad \eta(\xi) = 1
\]

and on each fibre of \(D = ker(\eta) \), the tensor field \(\phi \) induces an almost paracomplex structure, i.e., the eigen distribution \(D^\phi_+ \) and \(D^\phi_- \) of \(\phi \) corresponding to the respective eigenvalue 1 and \(-1\) have the same dimension \(n \).
Some results of conformal Ricci solitons on $N(\kappa)$-paracontact manifolds

An almost paracontact manifold M is said to be an almost paraconcact metric manifold if there is a pseudo-Riemannian metric g such that

$$g(\phi X, \phi Y) = -g(X, Y) + \eta(X)\eta(Y),$$

for all $X, Y \in \chi(M)$ and (ϕ, ξ, η, g) is said to be an almost paracontact metric structure. Here the signature of g is necessarily $(n+1, n)$.

An almost paracontact structure is said to be a paracontact structure if $\Phi(X, Y) = d\eta(X, Y)$, the fundamental 2-form is defined by $\Phi(X, Y) = g(X, \phi Y)$. An almost paracontact structure is called normal if the $(1, 2)$-torsion tensor $N_\phi = [\phi, \phi] - 2d\eta \otimes \xi = 0$, where $[\phi, \phi](X, Y) = \phi^2[X, Y] + [\phi X, \phi Y] - \phi[\phi X, Y] - \phi[X, \phi Y]$.

For a paracontact metric manifold, we define a symmetric $(1, 1)$-tensor field $h = \frac{1}{2} L_\xi \phi$, where L_ξ stands for the Lie derivative in the direction ξ, satisfying the following conditions:

$$\phi h + h \phi = 0, \quad h \xi = 0, \quad tr(h) = tr(\phi h) = 0,$$

(2.1)

$$\nabla_X \xi = -\phi X + \phi h X,$$

for all $X \in \chi(M)$, where ∇ is the Levi-Civita connection of the pseudo-Riemannian manifold.

A paracontact metric manifold is said to be a paracontact (κ, μ)-manifold if the curvature tensor R satisfies

$$R(X, Y)\xi = \kappa(\eta(Y)X - \eta(X)Y) + \mu(\eta(Y)hX - \eta(X)hY),$$

for all $X, Y \in \chi(M)$ and κ, μ are real constants. If $\mu = 0$, then the paracontact (κ, μ)-manifold reduces to an $N(\kappa)$-paracontact manifold. Thus for an $N(\kappa)$-paracontact manifold, we get

(2.2)$$R(X, Y)\xi = \kappa(\eta(Y)X - \eta(X)Y),$$

for all vector fields $X, Y \in \chi(M)$ and κ is a real constant.

In an $N(\kappa)$-paracontact manifold of dimension $(2n + 1)(n>1)$, the following relations hold for $\kappa \neq -1$ [5]:

$$h^2 = (\kappa + 1)\phi^2,$$

(2.3)$$R(\xi, X)Y = \kappa(g(X, Y)\xi - \eta(Y)X),$$

$$S(X, Y) = 2(1 - n)g(X, Y) + 2(n - 1)g(hX, Y) + \{2(n - 1) + 2n\kappa\}\eta(X)\eta(Y),$$

(2.4)$$QX = 2(1 - n)X + 2(n - 1)hX + \{2(n - 1) + 2n\kappa\}\eta(X)\xi,$$

$$S(X, \xi) = 2n\kappa\eta(X),$$

(2.5)$$QX = 2(1 - n)X + 2(n - 1)hX + \{2(n - 1) + 2n\kappa\}\eta(X)\xi,$$

$$S(X, \xi) = 2n\kappa\eta(X),$$

(2.6)$$\nabla_X \phi Y = -g(X - hX, Y)\xi + \eta(Y)(X - hX),$$

for all $X, Y \in \chi(M)$.
structure on M for any vector fields g.

Let us define the metric tensor M which are linearly independent at each point of M.

(2.7) \[(\nabla_X h)Y = -(1 + \kappa)g(X, \phi Y) + g(X, \phi h Y)\xi + \eta(Y)\phi h(hX - X),\]

(2.8) \[(\nabla_X \eta)Y = g(X, \phi Y) + g(\phi hX, Y),\]

\[(\nabla_X h)Y - (\nabla_Y h)X = -(1 + \kappa)\{2g(X, \phi Y)\xi + \eta(X)\phi Y\}
- \eta(Y)\phi X + \eta(X)\phi h Y - \eta(Y)\phi h X,\]

for all vector fields $X, Y \in \chi(M)$ and Q is the Ricci operator defined by $g(QX, Y) = S(X, Y)$.

Before ending the present section, we recall a result

Lemma 2.1. [19] Let M be a paracontact metric manifold of dimension $(2n + 1)$, $(n > 1)$ which satisfies $R(X, Y)\xi = 0$ for all $X, Y \in \chi(M)$, then M is locally isometric to a product of a flat $(n + 1)$-dimensional manifold and an n-dimensional manifold of negative constant curvature equal to -4.

3 Example of $N(\kappa)$-paracontact metric manifold

Let us consider the manifold $M = \{x, y, z \in \mathbb{R}^3 : z \neq 0\}$ of dimension 3, where $\{x, y, z\}$ are standard co-ordinates in \mathbb{R}^3. We choose the vector fields

\[e_1 = \frac{\partial}{\partial x}, \quad e_2 = \frac{\partial}{\partial y} - 2x \frac{\partial}{\partial z}, \quad e_3 = \frac{\partial}{\partial z},\]

which are linearly independent at each point of M, we get

\[[e_1, e_2] = -2e_3, \quad [e_1, e_3] = 0, \quad [e_2, e_3] = 0.\]

Let us define the metric tensor g as $g(e_1, e_1) = 1$, $g(e_2, e_2) = -1$, $g(e_3, e_3) = 1$ and $g(e_i, e_j) = 0$ for $i \neq j$. The 1-form η is defined by $\eta(X) = g(X, e_3)$, for any X on M.

Let ϕ be the $(1, 1)$-tensor field defined by

\[\phi(e_1) = e_2, \quad \phi(e_2) = e_3, \quad \phi(e_3) = 0.\]

Then we find that

\[\eta(e_3) = 1, \quad \phi^2 X = X - \eta(X)e_3, \quad d\eta(X, Y) = g(X, \phi Y),\]

\[g(\phi X, \phi Y) = -g(X, Y) + \eta(X)\eta(Y),\]

for any vector fields X, Y on M. Hence (ϕ, e_3, η, g) defines a paracontact metric structure on M.

Let ∇ be the Levi-Civita connection on M, using Koszul’s formula, we obtain

\[\nabla_{e_i} e_2 = -e_3, \quad \nabla_{e_2} e_1 = e_3, \quad \nabla_{e_1} e_3 = -e_2,\]

\[\nabla_{e_i} e_3 = -e_i, \quad \nabla_{e_3} e_2 = -e_1, \quad \nabla_{e_3} e_1 = -e_2\]

and the remaining $\nabla_{e_i} e_j = 0$ for $i, j = 1, 2, 3$.

Using the formula $R(X, Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z$, we get

Tarak Mandal
$R(e_1, e_2)e_1 = -3e_2, \quad R(e_1, e_2)e_2 = -3e_1, \quad R(e_1, e_2)e_3 = 0,$
$R(e_3, e_1)e_1 = -e_3, \quad R(e_1, e_3)e_2 = 0, \quad R(e_1, e_3)e_3 = -e_1,$
$R(e_2, e_3)e_1 = 0, \quad R(e_3, e_2)e_2 = e_3, \quad R(e_2, e_3)e_3 = -e_2.$

From the above expressions of the curvature tensor, we conclude that M is an $N(\kappa)$-paracontact metric manifold with $\kappa = -1$.

4 Conformal Ricci solitons on $N(\kappa)$-paracontact manifolds

Let M be an $N(\kappa)$-paracontact metric manifold of dimension $(2n + 1), (n > 1)$. Then the conformal Ricci soliton is given by

\[(4.1) \quad L_V g + 2S = [2\lambda - (p + \frac{2}{2n+1})]g.\]

Let V be the Reeb vector field ξ, then with the help of (2.1), we get

\[(4.2) \quad (L_\xi g)(X,Y) = 2g(\phi hX,Y).\]

Therefore, from (4.1) and (4.2), we get

\[(4.3) \quad S(X,Y) = \frac{1}{2}[2\lambda - (p + \frac{2}{2n+1})]g(X,Y) - g(\phi hX,Y).\]

Since $S(X,Y) = g(QX,Y)$, where Q is the Ricci operator, we get

\[(4.4) \quad QX = \frac{1}{2}[2\lambda - (p + \frac{2}{2n+1})]X - \phi hX.\]

Also, we get from (4.3) and (4.4)

\[(4.5) \quad S(X,\xi) = \frac{1}{2}[2\lambda - (p + \frac{2}{2n+1})]\eta(X),\]
\[(4.6) \quad S(\xi,\xi) = \frac{1}{2}[2\lambda - (p + \frac{2}{2n+1})],\]
\[(4.7) \quad Q\xi = \frac{1}{2}[2\lambda - (p + \frac{2}{2n+1})]\xi.\]

Again, putting $X = Y = e_i$ in (4.3), where $\{e_i\}$ is the orthogonal basis of the tangent space of the manifold and summing over i, we get

\[(4.8) \quad r = S(e_i, e_i) = \frac{2n+1}{2}[2\lambda - (p + \frac{2}{2n+1})] - tr(\phi h).\]

Since for conformal Ricci soliton, $r = -1$ and $tr(\phi h) = 0$, we get from (4.8)

$$\lambda = \frac{p}{2}.$$

Thus we can state
Theorem 4.1. If an $N(\kappa)$-paracontact manifold of dimension $(2n+1)$, $(n > 1)$ admits conformal Ricci soliton, then the value of the scalar λ is $\frac{p^2}{2}$.

Proposition 4.2. For an $N(\kappa)$-paracontact manifold of dimension $(2n+1)$, $(n > 1)$, the conformal Ricci soliton is given by

$$LVg + 2S + \frac{2}{2n+1}g = 0.$$

5 Second order parallel tensor and conformal Ricci solitons

Definition 5.1. [13] Let M be an $N(\kappa)$-paracontact metric manifold of dimension n with metric g. A tensor field γ of type $(0,2)$ is called parallel tensor if $\nabla \gamma = 0$, where ∇ is the operator of covariant differentiation with respect to the metric tensor g.

Let γ be a second order symmetric tensor field on an $N(\kappa)$-paracontact manifold M of dimension $(2n+1)$, $n > 1$, that is, $\gamma(X,Y) = \gamma(Y,X)$, for all vector fields X, Y on M such that $\nabla \gamma = 0$. Then, from the Ricci identity, we have

$$\nabla^2 \gamma(X,Y;Z,W) = \nabla^2 \gamma(X,Y;W,Z).$$

From above, we obtain

$$\gamma(R(X,Y)Z,W) + \gamma(R(X,Y)W,Z) = 0,$$

for all vector fields X, Y, Z and W on M.

Substituting $X = Z = W = \xi$ in (5.1), we get

$$\gamma(R(\xi,Y)\xi,\xi) = 0.$$

From (2.3), we get

$$R(\xi,Y)\xi = \kappa(\eta(Y)\xi - Y).$$

From (5.2) and (5.3), we obtain

$$\kappa(\eta(Y)\gamma(\xi,\xi) - \gamma(Y,\xi)) = 0.$$

Let $\kappa \neq 0$, then from (5.4), we get

$$\gamma(Y,\xi) = g(Y,\xi)\gamma(\xi,\xi).$$

Taking differentiation of (5.5) covariantly, we get

$$\gamma(\nabla_X Y,\xi) + \gamma(Y,\nabla_X \xi) = g(\nabla_X Y,\xi)\gamma(\xi,\xi) + g(Y,\nabla_X \xi)\gamma(\xi,\xi) + 2g(Y,\xi)\gamma(\nabla_X \xi,\xi).$$

Again, from (5.5), we get

$$\gamma(\nabla_X Y,\xi) = g(\nabla_X Y,\xi)\gamma(\xi,\xi).$$
Using (5.7) in (5.6), we obtain
\[-\gamma(Y,\phi X) + \gamma(Y,\phi h X) = -g(Y,\phi X)\gamma(\xi,\xi) + g(Y,\phi h X)\gamma(\xi,\xi) \]
\[-2g(Y,\xi)\gamma(\phi X,\xi) + 2g(Y,\xi)\gamma(\phi h X,\xi).\]

From (5.5), we get
\[\gamma(\phi X,\xi) = \gamma(\phi h X,\xi) = 0.\]
Therefore, from (5.8), we obtain
\[\gamma(Y,\phi X) = -\gamma(\phi X,\xi) = \gamma(\phi h X,\xi) = 0.\]

Interchanging X and Y in (5.9), we get
\[\gamma(X,\phi Y) = \gamma(X,\phi h Y) = 0.\]
Subtracting (5.10) from (5.9), we get
\[\gamma(X,\phi Y) = \gamma(X,\phi h Y) = 0.\]

From (2.4) and (4.2), we obtain
\[\gamma(X,\phi Y) = \gamma(X,\phi h Y) = 0.\]
Comparing (4.1) and (5.17), we get
\[\kappa = \frac{\lambda}{2n} - \frac{p}{4n} - \frac{1}{2n(2n+1)}.\]
Thus we can state the following

Theorem 5.1. If γ is a second order parallel tensor on an $N(\kappa)$-paracontact metric manifold of dimension $(2n+1)$, $n > 1$, then γ is given by
\[\gamma(X,\phi Y) = \gamma(X,\phi h Y) = 0.\]

for all vector fields X, Y on M. Since $\nabla\{2\lambda - (p + \frac{2}{2n+1})\}g(X,Y) = 0$ for all vector fields X, Y on M, we can say that $\{L_{\xi}g(X,Y) + 2S(X,Y)\}$ is a second order parallel tensor. So,
\[\kappa = \frac{\lambda}{2n} - \frac{p}{4n} - \frac{1}{2n(2n+1)}.\]
Thus we can state the following

Proposition 5.2. If an $N(\kappa)$-paracontact metric manifold of dimension $(2n+1)$, $n > 1$, admits conformal Ricci soliton, then the value of κ is
\[\kappa = \frac{\lambda}{2n} - \frac{p}{4n} - \frac{1}{2n(2n+1)}.\]
6 Projectively semi-symmetric $N(\kappa)$-paracontact manifolds admitting conformal Ricci solitons

Definition 6.1. [6] The Weyl projective curvature tensor in an $N(\kappa)$-paracontact manifold of dimension $(2n+1)$ is defined by
\[
P(X,Y)Z = R(X,Y)Z - \frac{1}{2n}[S(Y,Z)X - S(X,Z)Y],
\]
for all $X, Y, Z \in \chi(M)$.

Definition 6.2. [7] An $N(\kappa)$-paracontact manifold of dimension $(2n+1)$ is said to be projectively semi-symmetric if
\[
R(\xi,X)(P(Y,Z)W) - P(R(\xi,X)Y,Z)W - P(Y,R(\xi,X)Z)W - P(Y,X)R(\xi,Z)W = 0,
\]
for all $X, Y, Z, W \in \chi(M)$.

Putting $Z = \xi$ in (6.2), we get with the help of (2.3)
\[
\kappa[g(X,Y P(\xi,W)\xi) - \eta(P(\xi,W)X - g(X,Y)P(\xi,W)
+ \eta(Y)P(X,\xi)W - \eta(X)P(Y,\xi)W + P(Y,X)W
- g(X,W)P(Y,\xi)\xi + \eta(W)P(Y,\xi)X] = 0.
\]
Using (4.3), (4.5) in (6.1), we get
\[
P(X,Y)\xi = (\kappa - \frac{A}{2n})[\eta(Y)X - \eta(X)Y],
\]
\[
P(X,\xi)Z = (\frac{A}{2n} - \kappa)[g(X,Z)\xi - \eta(Z)X] + \frac{1}{2n}g(\phi h X, Z)\xi,
\]
\[
P(X,\xi)\xi = (\frac{A}{2n} - \kappa)[\eta(X)\xi - X],
\]
\[
P(\xi,\xi)Z = 0,
\]
where $A = \frac{1}{4}[2\lambda - (p + \frac{2}{n+1})]$.

Putting $W = \xi$ in (6.3) and using (6.4), (6.5), (6.6) and (6.7), we get
\[
\frac{\kappa}{2n}g(X,\phi h Y)\xi = 0,
\]
which gives $\kappa = 0$.

Thus, with the help of lemma 2.1, we can state the following theorem

Theorem 6.1. If an $N(\kappa)$-paracontact manifold of dimension $(2n+1)$, $(n > 1)$ admits conformal Ricci soliton and is projectively semi-symmetric, then the manifold is locally isometric to a product of a flat $(n+1)$-dimensional manifold and an n-dimensional manifold of negative constant curvature equal to -4.
7 \(N(\kappa)\)-paracontact metric manifolds with conformal Ricci solitons satisfying \(C'(\xi, X).S(Y, Z) = 0\)

Definition 7.1. [6] The concircular curvature tensor of type (1, 3) on an \((2n + 1)\)-dimensional \(N(\kappa)\)-paracontact metric manifold \(M\) is defined by

\[
C(X, Y)Z = R(X, Y)Z - \frac{r}{2n(2n + 1)}[g(Y, Z)X - g(X, Z)Y],
\]

for all vector fields \(X, Y, Z \in \chi(M)\) and \(r\) is the scalar curvature of the manifold.

From (7.1), we get

\[
C(\xi, X)Y = R(\xi, X)Y - \frac{r}{2n(2n + 1)}[g(X, Y)\xi - \eta(Y)X].
\]

Using (2.3) in the above equation, we obtain

\[
(7.2) \quad C(\xi, X)Y = [\kappa - \frac{r}{2n(2n + 1)}][g(X, Y)\xi - \eta(Y)X].
\]

Let us assume that \(C(\xi, X).S(Y, Z) = 0\) holds. Then we have

\[
(7.3) \quad S(C(\xi, X)Y, Z) + S(Y, C(\xi, X)Z) = 0.
\]

From (4.3) and (7.3), we get

\[
Ag(C(\xi, X)Y, Z) - g(\phi hC(\xi, X)Y, Z) + Ag(Y, C(\xi, X)Z)
\]

\[
- g(\phi hY, C(\xi, X)Z) = 0,
\]

where \(A = \frac{1}{2}[2\lambda - (p + \frac{2}{2n+1})]\).

Using (7.2) in (7.4), we obtain

\[
B[g(\phi hX, Z)\eta(Y) + g(X, \phi hY)\eta(Z)] = 0,
\]

where \(B = \kappa - \frac{r}{2n(2n + 1)}\), which implies \(B = 0\), i.e., \(\kappa = \frac{r}{2n(2n + 1)}\). But for a conformal Ricci soliton, we have \(r = -1\). So we get \(\kappa = -\frac{1}{2n(2n + 1)}\).

Thus we can state the following

Theorem 7.1. An \(N(\kappa)\)-paracontact metric manifold of dimension \((2n + 1)\), \(n > 1\) admitting conformal Ricci soliton and satisfy \(C(\xi, X).S(Y, Z) = 0\), then the value of \(\kappa\) is \(-\frac{1}{2n(2n + 1)}\).

8 Non-existence of conformal Ricci solitons in \(N(\kappa)\)-paracontact metric manifolds

Let \(M\) be an \(N(\kappa)\)-paracontact metric manifold of dimension \((2n + 1)\), \(n > 1\) admitting conformal Ricci soliton with potential vector as the Reeb vector field. Then from (4.3), we get

\[
S(X, Y) = \frac{1}{2} \left[2\lambda - \left(p + \frac{2}{2n + 1}\right)\right] g(X, Y) - g(\phi hX, Y).
\]
Using (2.4) in (8.1), we get
\[
\begin{align*}
[2(1-n) & - \frac{1}{2}(2\lambda - (p + \frac{2}{2n+1}))]g(X, Y) + 2(n-1)g(hX, Y) \\
+ 2(n-1) + 2\kappa \eta(X)\eta(Y) + g(\phi hX, Y) = 0.
\end{align*}
\]
(8.2)

Replacing X by ϕX in (8.2), we get
\[
\begin{align*}
[2(1-n) & - \frac{1}{2}(2\lambda - (p + \frac{2}{2n+1}))]g(\phi X, Y) + 2(n-1)g(h\phi X, Y) + g(hX, Y) = 0.
\end{align*}
\]
(8.3)

Interchanging X and Y, we get
\[
\begin{align*}
[2(1-n) & - \frac{1}{2}(2\lambda - (p + \frac{2}{2n+1}))]g(\phi Y, X) + 2(n-1)g(h\phi Y, X) + g(hY, X) = 0.
\end{align*}
\]
(8.4)

Subtracting (8.3) from (8.4), we obtain
\[
[2(1-n) - \frac{1}{2}(2\lambda - (p + \frac{2}{2n+1}))]g(\phi X, Y) = 0.
\]

This implies
\[
2(1-n) - \frac{1}{2}(2\lambda - (p + \frac{2}{2n+1})) = 0.
\]
(8.5)

Using $\lambda = \frac{p}{2}$ in (8.5) and simplifying, we get
\[
4n^2 - 2n - 3 = 0,
\]
which has no integer root. Thus our assumption is wrong.

Hence we can state the following

Theorem 8.1. There does not exist conformal Ricci soliton in an $N(\kappa)$-paracontact metric manifold M of dimension $(2n+1)$, $n > 1$, with potential vector field as the Reeb vector field.

References

Some results of conformal Ricci solitons on $N(\kappa)$-paracontact manifolds

Author’s address:

Tarak Mandal
Department of Mathematics, Jangipur College,
Murshidabad 742213, West Bengal, India.
E-mail: mathtarak@gmail.com