Normalization of the generalized KX— Mittag-Leffler
function and ratio to its sequence of partial sums

H. Rehman, M. Darus and J. Salah

Abstract. In this article we introduce an operator L;"%(5,0)(f)(z) asso-
ciated with generalized K— Mittag-Leffler function in the unit disk U=
{z: |2| < 1}. Further the ratio of normalized KX— Mittag-Leffer function

e.5.5(2) to its sequence of partial sums Q(}'% 5 5)m(2) are calculated.
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1 Introduction

The (M-L) function was introduced by the Swedish Mathematician Mittag-Leffler
[13, 14]. This function may be a classical function dealing with problems in Complex
Analysis and so it is important for obtaining solutions of fractional differential and
integral equations which are associated e.g., with the kinetic equation, random walks,
Levy flights and super diffusive transport problems. Moreover, from its exponential
behavior, the deviations of physical phenomena could also be described by physical
laws through Mittag-Leffler functions. Many authors have studied on (M-L) functions
for its properties, generalization, applications and extension, such as [12], [11], and
[15].

2 Preliminaries and definitions

The one-parameter (M-L) function E,(z) : () € C see [13] and [14],

(2.1) Eo(2) := 2::0 NCESVI Eoa(2),

and its two-parameters extension F, g(z) was studied by Wiman [10],

(2.2) Fopz) =S — 2 (a>0),
g nz:;) I'(an + B)
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where o, 8 € C,R(a) > 0 and R(8) >0

Further, in 1971, Prabhakar [8] proposed another general form of (M-L) function
E () as:
a,pB

(2.3) E) 4(2) =) F(a”)”z"

for which o, 8,7 € C, R(c) > 0, R(S) > 0 and R(7y) > 0. where (7)y, is the Pochham-
mar symbol:

_F(v—&—n): 1, n=20
O =10 {7(7 FDe(y 1)
Note that

(t)n =t(t+1)n-1, ne€N
and

(t)n > 1", neN

Srivastava and Tomovski [5] proved that the function E,, ;5(2) defined by 2.3 is an
entire function in the complex z-plane.

Another useful generalization of the Mittag-Leffler function called as K—Mittag-
Leffler function E} , 5(2), introduced in [3] as:

2.4 E) "
(2:4) ke, B kaan—i—ﬂ

where (), is the k—Pochhammer symbol defined as:
(2.5) Mgk =7y +E)(y+2k)...(y+ (n-1)k)  (y€CkeR,neN).

The following extension is due to A. K. Shukla and J. C. Prajapati [17],

(2.6) BT Z - an)+ T

" y+r—1
Remark 2.1. In case ¢ € N then (v)nq = ¢?" [[7_, (q)

Further extension of —Mittag-LefHler function GE,Z:; 5(2) took place which was
studied by K. S Gehlot [2] as for ¢ € (0,1) UN,

2. EPS nak g,
(27) GEilapz ZFkan+ﬂ i

where (7)nq,k is defined as (2.5) and the generalized pochhammer symbol is defined
in [1] under condition if g € N.

I'(y +nq)

(2.8) (’Y)nq = T(7) )
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Due to the high interest of researchers in (M-L) functions another parameter § € C
was inserted by Salim [18] which has the generalized form of: EJ"(8,0)(2):

Nt (’Y)nq,k n
(2.9) EiapsD) =2 trtant B16).%
k.a,B,5\% T;)Fk(oerﬂ)((S)nz

the imposition on parameters are a, 8,7 € C,R(a) > 0, R(8) > 0, k € R, § is
non-negative real number and ng is a positive integer.

Let M represents the class of the normalized functions of the form:
(2.10) flz) =2+ Z anz"
n=2

which are analytic in the open unit disk
U={ze€C:|z] < 1}.

Since the Mittag-Leffler function in (2.1) does not belong to the class M therefore,
for (M-L) functions to be the member of class M, Srivastava and his co-authors [16]
have considered some normalization on the E, g as:

Eop(2) = T(B)2Eap(2)

(2.11) _Z+§: LB w
I(

where
(z,a,8€ C;R(a) >0) (B#0,—-1,-2,...).

The normalized Mittag-Leffler function E, s contains some well-known functions for
particular values belonging to real numbers of «, § and z € U.

o Fy1 = zcosh(\/z),
o By = /zsinh(y/z),
o Ey3 =2[cosh(y/z) — 1],

o Glsinh(vZ) - V7]
E274 = \/2 .

Definition 2.2. For a function f € M given by (2.1) and g € M given by

g(z) =2+ Z bn2", we define the Hadamard product (or convolution) of f and g by

n=2

(2.12) (f*g)(z):z—i—ianbnz”, (an, >0,z €U).
n=2
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Salah and Darus [15] generalization of Mittag-Leffler functions defined by Srivas-
tava and Tomovski [5] is given by,

(’Yi)q{‘ n
(G)amn!

1 i Qin 1Y

7

(2.13) mFlH(2) ="
n=01i=
Remark 2.3. Note that if m =1 then ,,F)’{(2) = T'(8)E]'§(2)

Definition 2.4. (Taylor Series). The Taylor series of a function f(z) about z = a
is

(2.14) F2) = f@) + Pz —a)+ o = 3 W gy,

n:

n=0

Remark 2.5. The equality between f(z) and its Taylor series is only valid if the series
converges.

1
Remark 2.6. We choose a geometric series f(z) = 1= 1422422+, = Z 2",

n=0

exists and is

1
which is Taylor series about z = 0. Note that the function f(z) = 1
-z

infinitely differentiable everywhere except at z = 1 while the series exists in the unit
disc |z| < 1 and hence analytic.

Now we introduce a function ¢(z) = % =z+224+22+.. = Z 2" e M of
-z
n=0
the form
(2.15) P(z) =2+ 2"
n=2

which is analytic in the open unit disk U= {z € C: |z| < 1}.

Definition 2.7. The generalized Libera integral operator J. for a function f(z) be-
longing to the class A, we define the generalized Libera integral operator J. [20]
by

(2.16) Jc(f)zc+1/oztc‘1f(t)dt:z— 3 <C+1)akzk, (c>0)

z¢ n+1
k=n-+1 +

(2.17) Jl(f)zz/ozf(t)dt =z i <ni1> ay, 2~

k=n+1

The operator J., when ¢ = {1,2, 3, ...} was introduced by Bernardi [19]. In particular,
the operator J;, was studied earlier by Libera [20] and Livingston [21].

Subsequent to our studies of [4] and [16] we impose some normalization over the
most generalized Mittag-Leffler function E}'d ; 5(2) which is defined in 2.9.
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3 Main Results

Theorem 3.1. If f(2) belongs to M such that z € U then M class of function f(2)
and convolution of the generalized K— Mittag-Leffler function GEk .8, 5(2) is

V.9 2) = 2 S (’Y)nq,krk(a+/@)r(5+1)a o
(3.1) Lo ss(f)(z) = ‘*‘222 (3)arDk(an + BTG +n) ™%

if the following conditions hold
1. a,8,y€ C,R(a) >0, R(B) >0 and R(v) >0, k€ R and g € (0,1) UN.
2. f(z) is analytic in the open unit disk, U= {z: |z| < 1}.

3. R(OZZ),R(ﬂZ),R(’YZ),R((SZ) > max{O,R(qi) — 1} and q € (0,1) UN,R(qi) >
0,7 # 0.

4. (V)ng,k s generalized pochhammer symbol as defined in (2.5).

Proof. The Generalized Mittag-Leffler function [18]

oo

Y,4q _ (’Y)nq,k n
Ekaﬁé( ) Z)—Fk(oerﬂ)(é)nZ )

where a, 8,7 € C,R(a) > 0, R(8) > 0, k € R, § is non-negative real number, ng is a
positive integer and ¢ € (0,1) UN.

o0

" _ T(v+k) (V)a,k (V)ng.k n
62 BLss) = T0)k(3) * Tha + AT+ 2 Th(an £ )"

The above equation can also be written as

Tk(a + B)T(5) o (7) = (Vngalk(a+ BTG +1)
B8 <(E’“va»f*5)‘r ) Y O THan ¥ BTG )

n=2

Now we define the function Q,’% 5 5(2) by

Fk(a +ﬂ)r(5) ((E’y,q (7)k

(3.4) res(2) = o foanBi) — Pk(@)

Then equation (3.4) implies

, nkaB) (6+1) n+1

(35) e —z+z quk:oerﬂ) G
(n—1)q.klk(a + B)T(5 + 1)

(36) Qa0 —”Z o T PTG o ST
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Let f(2) € M. Denote L% 5 5(f)(2) : M — M the operator is defined by

(3.7) Lyd 5.s(0)(2) = QL4 5.5(2) * f(2),

where the symbol (*) stands for Hadamard product (or convolution).

Now applying Hadamard product and using the equations (2.10), (3.6) and (3.7)
we obtain the desired result. ([

g=k=p=5d=1 and a =0 in equation (3.1). Let

Corollary 3.2. If we put v =
3.1) be satisfied, then we get the following results,

the condition of Theorem (
L}(ljn(f)(z) =z+ Z anz" = f(2)
n=2

Corollary 3.3. Ifwesety=2,g=k==6=1 and a =0 in equation (3.1). Let
the condition of Theorem (3.1) be satisfied, then the reduced form is |

L aathE) =2+ Y () an” = 3 L) + 2 ()

n=2

Corollary 3.4. If we set out the values of y=q=k=0=1, and d = a =0 in
equation (3.1). Let the condition of Theorem (3.1) be satisfied, then the reduced form
s,

Lt}n,o(f)(z) =z+ Z napz" = z2f'(2)
n=2

Corollary 3.5. If we keep vy =q=k==1,0 =2 and o = 0 in equation (3.1).
Let the condition of Theorem (3.1) be satisfied, then the reduced form is ,

LM () =24 S (e = 2 / T fat.
n=2 0

n—+1 z

Corollary 3.6. Note that corollary (3.5) is Bernardi type of integral [19]. Particu-
larly, the operator Jy defined in (2.7), was studied earlier by Libera [20] and Livingston

[21].

Theorem 3.7. If f(2) belongs to M such that z € U then M class of function ¢(z)
and convolution of the generalized K— Mittag-Leffler function GEZ:gﬂ,é(z) i

o0

(3.8) L (N =2+

n=2

(DngsThla +ATE+1) ,
(MasTk(on + BTG )"

if the following conditions hold
1. a,8,y€ C,R(a) >0, R(B) >0 and R(v) >0, k€ R and g € (0,1) UN.
2. f(z) is analytic in the open unit disk, U= {z : |z| < 1}.

3. R(c;), R(B:), R(7:), R(6;) > maz{0,R(q;) — 1} and q € (0,1) UN,R(gq;) >
0,v #0.
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4. (V)ng.k s generalized pochhammer symbol as defined in (2.5).
Proof. The generalized Mittag-Leffler function [18]

B # n
Ra.p,5(2 Zpk (an+ B)(d)n

where a, 8,7 € C,R(«a) > 0, R(8) > 0, k € R, § is non-negative real number, nq is a
positive integer and ¢ € (0,1) UN.

) E'Y.,q _ (7)]@ nq k n
(3 9) k,a,B,é(z) Fk‘(ﬁ) + (a +6 z+ Z Fk’ om—i—ﬁ ) T A R
The above equation can also be written as

Tk(a + 5)(9) ( ( ) 2\ (Vg aTh(a+ B)T(5 + 1)
3.10) —————2 | (B! 2 2"
G100 \Brass) = 2 (3), Tk + BT + )

Now we define the function ngﬁ(z) by

(311) ) = T B0 (g ) - L,

Then equation (3.11) implies

v,4,0 _ (Vngslk(a+ BTG +1)
(312 bl HZ (ealk(an + BTG + 1)
Let ¢(z) = (1 i z) € M. Denote L% 5 5(¢)(2) : M —> M the operator is defined
by
(3.13) L38 55(9)(2) = Qat(2) * 6(2),

where the symbol (*) stands for Hadamard product (or convolution).

Now applying Hadamard product and using the equations (2.10), (3.12) and (3.13)
we obtained the desired result. (]

Ik
Remark 3.1. Note that, Zg%(z) = (,y()i)zE,Z o 5.5(2)s (z € ).

Corollary 3.8. If we set the values of y=q=k=0=0 =1 and a =1 in equation
(3.8). Let the condition of Theorem (3.7) be satisfied, then the reduced form is ,

=1
1,1 N 3
L1,1,1,1(¢)(Z) =z+ E ﬁz —e* -1
n=2 "

Corollary 3.9. If we keep vy =q=k=0=1,0 =2 and o = 0 in equation (3.8).
Let the condition of Theorem (3.7) be satisfied, then the reduced form is ,

=, 2 n 2log(1 — z
i 1a@)(e) =24 Y (e = 202y
=2
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Corollary 3.10. Ifwe put y =k ==1and ¢g=0, § = a =0 in equation (3.8).
Let the condition of Theorem (3.7) be satisfied, then the reduced form is ,

1,0
Lig10(9)(2) = 2+ Z

Corollary 3.11. Ifweputy=k=q= =1 and, § = a =0 in equation (3.8). Let
the condition of Theorem (3.7) be satisfied, then the reduced form is

.- -2
Lﬁka@u>=z+§:mﬂzz_wglég

Motivated by the work of Bansal and Prajapat [7] and also following the results
of Raducanu [6], we investigate the ratio of K—Mittaq-Leffler function Qk ap.5(%)
defined by (3.5) to its sequence of partial sums

(QUe ps)o(z) =2
m

(Qud g5)m(2) =2+ Z P,2"tt meN,
n=1

where

fn= (V)gxTk(an + B)L(6 +n)’ (o, 8,6 > 0).

The lower bounds we obtained on ratio like
Rl Qs | [ @QULsan() | o[ Qdss®) | o [ QL) m(2)
( Zg B, a)m( ) ’ Qk,a,B,é( z) ’ ( Z:i,,e,(s)/Tn(z) 7 (Q;:zfﬁ,é)m(z)

4 Ratio of normalized — Mittag-Lefller function

In order to verify our results we require the following Lemma.

Lemma 4.1. Let o > 1, v > 1, and 6 > 1. Then the function Q) a/”( z) salisfies
the two inequalities enlzsted below;

B2+ 52 +260 — By +B+6+1

sy pipe-py 0 SV

(4.1) ‘ vaps(Z )’ <

(B2 + 32 — By +4B5 + 38 — v+ 35 +2)
526+ 52+ 55 — by |
Proof. By using hypothesis that, I'(an + 8) < Tk(an + 8) and so we can write,
(NngtTE(B)L(6 +1) (VngkTE(B)I(6 + 1)
(Mgrlk(an+ B0 +n) = (Vgrlk(n+ B+ n)
~ ()a(0)
)(B)n(6)n

zelU

(42 |Qss0e)| <

<

(4.3) n €N,

(y



The generalized K—M — L function and ratio to its sequence of partial sums 87

therefore, for z € U picking equation (3.5) using (4.3) and a note followed by equation
(2.3) we have,

(4.4)
QL ps()] = |2+ ni (O )(q Z?kk(zljz(f)ﬂ)( 6(; i)n) o
-1+ P (1:1()571;1%—1
<1+ % i B+ i)vjll();:l)” !
si+ % ( ﬂé(f;i)t(fjvli 2)

LA By + BT+
= B25 + B2+ B6 — By

and hence the inequality in (4.1) is proved.

Using the derivative of equation (3.5) and once more the triangle inequality, for
z € U, we obtain

1+Z n+1 (DngkCRBTO +1)

’Q”Y »q
RIS )g.kTk(an + B)T'(0 + n)

n=1
oo 00

nq krk ) (’7 + 1) (’V)nq,krk(ﬂ)r(’y + 1)
(4.5) = Z )a, ka (an+ B)T(6 +n) + Z (V) gxTk(an + BT +n)

n=1

For 3>1,9 > 1 and v > 1 we obtain

n()L(B)B) _ n(3)n(6)
DL+ BB~ 1(B)u(6)

_ n(’YJFl)n 1
n( Dna(y+n—1)
B(B"i'l)n 2(/8+n_1)(5+1)n 2(5+7’I,—1)
(7 + D
0 < BT a6+ D

Taking into account, inequalities (4.6), (4.7) and a note followed by equation (2.3) w
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have,
o ol a0 BT+ S (DTN + 1)
A s)| = 14 S s BTG * 2 TG+ ATG T )
= n()al) S (D)ald)
S 08,0, T 2 330
115 (v + Do 1 (7 + Vs
S 3t 3 B D0t Do T B2 (Bt Daald 4 D
1 oI~ (D) N 15~ (+D)
§1+B+BZ((6+1)(5+1)> +BZ<<5+1)<6+1)>
1,2 B+ +1)
§1+6+5<55+6+5+7+2)
un < (8204 8% — By +4B6 +38 — v +30+2)
s B3+ 3 + Bo— iy
and hence the inequality in (4.2) is proved. O

1+ u(z)
1 —u(z)

if |u(z)] < 1 and u(z) be analytic function in U. We noted in the paper of Silverman
[9, page 223, theorem.1] to set

In the sequel we involve a well-known result R < ) > 0,z € U if and only

so that, u(z) =

(Y+1) +/(—y—1)2+4(6 +1)2

Theorem 4.2. Let {a,q,k,0} > 1 and g > . Then

206+ 1)
Qud 5.5(2) B+ B2 —py—B—0—-1
(+5) R{( RPN 2 B
and
(QLd.5.6)m(2) B2 + 32 — By + 86
9 R{ QL 5502) }>626+62—57+265+6+6+1

Proof. Using equation (4.1) of Lemma (4.1) we can write

> B264 B2 +286 — By +B+0+1
D Ry By A

where

(Vng tTEB)TG + 1)

P = ) yaTk(an + BTG + )’

(a, 3,6 > 0).
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The above inequality is equivalent to

625+62+66—ﬂvip

< 1.
Bé+p+6+1

In order to prove our result inequality (4.8), we consider u(z) defined by

B+ +80—By [ (QUass)®) | B+ —By—B-6-1 (1+u®2)
Bo+B++1 | (QUL55)m(2) BS+B+0+1 (1 —u(z))

For the sake of simplicity let

B0 + B> + B3 — By

V(8,07 = B+ B+d+1

and
B+ B2 —pPy—B—6—1
BO+B+0+1

£(8,0,7) =

1+ZPZ +(B,0,7) Z P,z"
(4.10) (1+U(Z))= - =

(1 —u(z)) 1+anzn7

where the value of,

o0

$(8,6,7) ) Pn

n=1

2+2ZP 2" +(8,4,7) Z P.z"

= n=m+1

and

$(8,6,7) Y Pa
n=1

Q*QZPnfw(ﬂaévv) Z Pn
n=1

n=m-+1

u(2)] <

The inequality |u(z)| < 1 holds if and only if

(B, 6,7) Z P<2—2ZPM
n=m-+1
which is equivalent to

(4.11) Y Pu+9(B,6,7) Y, Pu<l.

n=1 n=m-+1
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To verify (4.11) it is sufficient to show that its left-hand side is bounded above by

v(B,8m 3 P
which is equivalent to

BMZ

D++/(—y—1)2+40+1)2

(5 + 1) ’
In a similar method we prove the second inequality (4.9) of our theorem. Consider
the function u(z) given by

The last inequality holds true for g > >

§# 1.

B5+ B2 +280 — By +B+6+1 {( Z’im)m(z)}_525+52—57+65
(

B6+pB+6+1 reps)(2) BS+pB+6+1
_ (1+u(2)
(1 —u(z))

Again for the sake of simplicity we put,
B2+ B2 4285 —By+B+5+1

0(8,0,7) = BS+B+6+1 :
and 875 + 6% — By + B
y
A(B,87) = Bo+p+6+1
1+ZPnz”+@(ﬁ76,7) Z P,z"
(412) (1 +U(Z)) _ n=1 n=m+1
(1 —u(2))

1+ i P,z",
n=1

where the value of,

n=m-+1
u(z) = m =
242) P2"—0(8,6,7) > Puz"
n=1 n=m-+1
and -
0(8,4,7) Z P,
Ju(z)] < =t

272213 O(8,4,7) Z P,

n=m-+1
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The inequality |u(z)| < 1 holds if and only if

(4.13) ZP+@B57 ZP<1
n=m+1
Since the left-hand side of (4.13) is bounded above by,
0(8,6,7) Y Pu,
n=m-+1

which is equivalent to

m

(4.14) A(B,6,7) > P> 0.
n=1

1 —y—=1)2+4(6+1)2
And hence the inequality (4.9) holds true for 8 > b+ + \/(2(’(; n 1§ +40+1) ;

if {a, q,k,0} > 1. |

1 5
Corollary 4.3. If we put v > 1,6 > 1 and g > +2\f

(4.8) and (4.9) holds true which is in fact the result given by Raducanu [6, page 3,
theorem.2.1].

Theorem 4.4. Leta>1,q¢>1, k> 1, and 8 > H(v,) where

, then the inequalities in

(v+20+3)+/(—(y+25+3))2—4(0 + 1)(y — 30 — 2)

H(’y,(S): 25_’_2 ) 57&_17
Then
Qi il () B26+ % =By —286—38+y—36—2
4.15 R
(4.15) { (Qla.5.6)m(2) = B20 + B* + B0 — By
and

(@l 5.6)m(2) B26 + B2 — By + 30
(4.16) R{ Qo 5(2) },826+,82—,37+4,85+3ﬁ—7+36+2

Proof. From (4.2) and making the use of (4.5) we can write

S (826 + 2 — By + 486 + 38 — 7+ 30 + 2)
P 5+ 5+ 55— |

where

 (MngkTE(B)T(S + 1) X
= ('Y)q,krk'(an + ,B)F((S + n)’ ( , 8,6 > 0).

The above inequality is equivalent to

2 2 B o0
B0 + B* + B0 — By angl
300+ 36 +30 —7 +2 2=
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In order to prove our result inequality (4.15), define a function u(z) by

B2+ +85—py [ (Qlass)z) | B26+B%—pBy—280—38+y—30—2
360+ 38 +35 —v+2 | QL2 55)m(2) 385+ 38 +36 — 7 +2

For the sake of convenience suppose

326 + B% + 36 — By

A(B,0,7) = 386+ 3B+35—~+2
and
T(8.6.7) = B2+ B2 —By—2B6—3B+~—35—2
386 +38+30—v+2
which produces
1+ Z P, 2"+ A(B,0,7) Z P,z"
(1 + U(Z)) n=1 n=m+1
(4.17) = e )
(1 —u(z)) n
14> Pz
n=1

where the value of,

AB,67) Y Pa

n=m-+1
u(z) =
2+22P2 + A(B,6,7) Z P.z"
= n=m+1
and
AB, ) D Pa
u() = — S
2—2 Z P,z" — A(B,9,7) Z P,2"
n=1 n=m-+1
the provision |u(z)| < 1 is valid if and only if
m o)
(4.18) Zn—i—lP +A,B) Y. n+1)P, <1
n=1 n=m-+1

The left-hand side of the (4.18) is bounded above by

AB,6,7) ) (n+1)P,
n=1



The generalized K—M — L function and ratio to its sequence of partial sums 93

if
m
Y(8,6,7) Zn+1PnZO
n=1

which holds true for

(Y+25+3)++/(—(7+20+3))2 40 + 1)(y — 30 —2)_

—1.
26 + 2 ' 07

g =

The proof of (4.16) follows the same pattern. For this purpose consider the function
u(z) given by

0(8.,7) {(k‘”()} —a(g,09) = 1)

k,a,ﬁ,&);n(z) ( (2))
where,
(8.5) = 826+ B2 — By +4B5 + 38 — v+ 35 +2
380 +38—~v—36+2
and ) )
825 + B2 — By + B9
(I) =
(B:0,7) 386 +38—~—35+2
where the value of,
U(Z) _ - n=m-+1 _
24+2) Pu2" —QB,6,7) Y Pu2"
n=1 n=m-+1
and
28,67) S Py
fu(z)| < e
272213 —Q(B,4,7) Z P,
n=m-+1
The inequality |u(z)| < 1 holds if and only if
(4.19) ZP+QB<W ZP<1
n=m-+1
Since the left-hand side of (4.19) is bounded above by, Q(8, d,7) Z P,
n=m-+1

which is equivalent to

6572
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and hence the inequality (4.16) holds true for

(v+26+3)+/(—(v+20+3))2—4(0+ 1)(y — 30 — 2)
20 + 2 ’

B> 20 +2+#0

S0, the last condition completes the proof. (I

17
Corollary 4.5. If we put v > 1,6 > 1 and 8 > %

(4.15) and (4.16) holds true which is in fact the result given by Raducanu [6, page 5,
theorem.2.2].

, then the inequalities in
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