Abstract. The aim of the paper is to construct projectable Bott linear connections in the lifted foliation on the transverse bundle of a foliation, using linear and nonlinear transverse connections. Considering a connection adapted to a Hamiltonian foliation, one lift it on the transverse bundle and one prove that the lifted foliation is a Riemannian one (as proved by one of authors, the last property is fulfilled automatically if the Hamiltonian is 2–homogeneous). The results extend similar ones of Miernowski and Mozgawa.

M.S.C. 2010: 53C12, 53C60.
Key words: Foliated vector bundles; normal bundle of a foliation; lifted foliation; transverse connection; transverse Hamiltonian.

1 Preliminaries

Let us consider M an $(n + m)$-dimensional manifold which will be assumed to be connected and orientable.

A codimension n foliation \mathcal{F} on M is defined by a foliated cocycle $\{U_i, \varphi_i, f_{i,j}\}$ such that:

(i) $\{U_i\}$, $i \in I$ is an open covering of M;

(ii) For every $i \in I$, $\varphi_i : U_i \to T$ are submersions, where T is an m-dimensional manifold, called transversal manifold;

(iii) The maps $f_{i,j} : \varphi_i(U_i \cap U_j) \to \varphi_j(U_i \cap U_j)$ satisfy

\begin{equation}
\varphi_j = f_{i,j} \circ \varphi_i
\end{equation}

for every $(i, j) \in I \times I$ such that $U_i \cap U_j \neq \emptyset$.

Every fiber of φ_i is called a plaque of the foliation. Condition (1.1) says that, on the intersection $U_i \cap U_j$ the plaques defined respectively by φ_i and φ_j coincides. The
manifold M is decomposed into a family of disjoint immersed connected submanifolds of dimension m; each of these submanifolds is called a leaf of \mathcal{F}.

We say that \mathcal{F} is transversely orientable if on T can be given an orientation which is preserved by all $f_{i,j}$. By $T\mathcal{F}$ we denote the tangent bundle to \mathcal{F} and $\Gamma(\mathcal{F})$ is the space of its global sections i.e. vector fields tangent to \mathcal{F}.

In this paper a system of local coordinates adapted to the foliation \mathcal{F} means coordinates (x^u, x^v) $u = 1, \ldots, m$, $\bar{u} = 1, \ldots, n$ on an open subset \bar{U} on which the foliation is trivial and defined by the equations $dx^v = 0$, $\bar{u} = 1, \ldots, n$.

We notice that the total spaces of the conormal bundle $Q^*\mathcal{F}$ of \mathcal{F} carries a natural foliation $\tilde{\mathcal{F}}$ of codimension 2 such that the leaves of $\tilde{\mathcal{F}}$ are covering spaces of the leaves of \mathcal{F}, and it is called the natural lift of \mathcal{F} to its conormal bundle $Q^*\mathcal{F}$.

If we denote by $\{dx^u\}$, $\bar{u} = 1, \ldots, n$ the corresponding local coframe on $Q^*\mathcal{F}$ then we can induce a chart $(x^u, p_\bar{u}, x^v)$ on $Q^*\mathcal{F}$ where $p_\bar{u}dx^u \in \Gamma(Q^*\mathcal{F})$, and the system of equations $x^\bar{u} = \text{const.}$, $p_\bar{u} = \text{const.}$ defines the foliation $\tilde{\mathcal{F}}$.

Let $Q\tilde{\mathcal{F}} = T(Q^*\mathcal{F})/T\mathcal{F}$ be the normal bundle of the foliated manifold $(Q^*\mathcal{F}, \tilde{\mathcal{F}})$. The vectors $\left\{ \frac{\partial}{\partial x^u}, \frac{\partial}{\partial p_\bar{u}} \right\}$, $\bar{u} = 1, \ldots, n$ form a natural frame of $Q\tilde{\mathcal{F}}$ at the point $(x^u, p_\bar{u}, x^v) \in Q^*\mathcal{F}$. The canonical projection $\pi: Q^*\mathcal{F} \to M$ given by $\pi(x^u, p_\bar{u}, x^v) = (x^u, x^v)$ induces another projection $\pi_*: T(Q^*\mathcal{F}) \to TM$ which maps the tangent vectors to $\tilde{\mathcal{F}}$ in the vectors tangent to \mathcal{F}. Thus π_* induces a mapping $\tilde{\pi}_*: Q\tilde{\mathcal{F}} \to Q\mathcal{F}$ and denote by $V(Q^*\mathcal{F}) = \ker \tilde{\pi}_*$ which is a vertical bundle spanned by the vectors $\left\{ \frac{\partial}{\partial p_\bar{u}} \right\}$, $\bar{u} = 1, \ldots, n$.

Lemma 1.1. Let $o: M \to Q^*\mathcal{F}$ be the zero section of the conormal bundle $Q^*\mathcal{F}$. Then the set $o(M)$ is saturated on $Q^*\mathcal{F}$ with leaves of the foliation $\tilde{\mathcal{F}}$.

2 Foliated vector bundles

Given a foliated manifold (M, \mathcal{F}), we say that a vector bundle $p: E \to M$ of rank $E = k$ is a foliated vector bundle if there is a foliated vector bundle atlas on E (i.e. the transition matrices are basic functions as components). There is a foliation \mathcal{F}_E on E such that the canonical projection π is a foliated map that induces a local diffeomorphism on leaves. For example, the transverse bundles, as well as the vertical transverse bundles are foliated vector bundles. The projection p of the slashed bundle $p: \tilde{E} \to M$ is a foliated map.

A foliated vector bundle map $F: E' \to E$ over the foliated map $f: M' \to M$ is defined in a similar way, asking that F be covered by foliated vector bundle maps in a foliated vector bundle atlas on E, M, E' and M' (i.e. the local matrices are basic functions as components). Analogous one can consider the definition of a foliated vector subbundle etc.

For a foliated vector bundle $p: E \to M$, considering the slashed bundle $p: \tilde{E} \to M$, where $\tilde{E} = E - \{\text{zero section}\}$, the differential map $p_* : T\tilde{E} \to TM$ induces a foliated vector bundle map $\tilde{p}_*: Q\mathcal{F}_{\tilde{E}} \to Q\mathcal{F}$ that is surjection on fibers. We denote by $V(Q\mathcal{F}_{\tilde{E}}) = \ker \tilde{p}_*$; it is a foliated vector subbundle of $Q\mathcal{F}_{\tilde{E}}$ (over the base \tilde{E}), we call it as the foliated vertical bundle of E, and we denote by $I : V(Q\mathcal{F}_{\tilde{E}}) \to Q\mathcal{F}_{\tilde{E}}$ the foliated inclusion. A transverse non-linear connection on E is a foliated subbundle
\(H(QF_E) \subset QF_E \) such that

\[
(2.1) \quad QF_E = V(QF_E) \oplus H(QF_E).
\]

As in the non-foliated case, a transverse non-linear connection is equivalently defined by \(H(QF_E) = \ker \tilde{C} \), where \(\tilde{C} \) is a left splitting of the inclusion \(I : V(QF_E) \to QF_E \), i.e. a foliated epimorphism \(\tilde{C} : QF_E \to V(QF_E) \) such that \(\tilde{C} \circ I = 1_{V(QF_E)} \).

Using local coordinates
- \((x^u, x^a), u = 1, \ldots, m, \bar{u} = 1, \ldots, n \) on \(M \),
- \((x^u, x^a, y^a), u = 1, \ldots, m, \bar{u} = 1, \ldots, n, \bar{a} = 1, \ldots, k \) on \(E \),
- \((x^u, \bar{x}^a, \bar{x}^a, \bar{y}^a, \bar{X}^a, \bar{Y}^a), u = 1, \ldots, m, \bar{u} = 1, \ldots, n, \bar{a} = 1, \ldots, k \) on \(QF_E \),

then some coordinates \((x^u, \bar{x}^a, \bar{y}^a, \bar{Y}^a), u = 1, \ldots, m, \bar{u} = 1, \ldots, n, \bar{a} = 1, \ldots, k \) follow on \(V(QF_E) \) and the foliated epimorphism \(\tilde{C} \) has the local form

\[
(2.2) \quad (x^u, x^a, \bar{y}^a, \bar{X}^a, \bar{Y}^a) \xrightarrow{\tilde{C}} (x^u, x^a, \bar{y}^a, N^a_\bar{a}(x^u, \bar{y}^a)X^\bar{a} + \bar{Y}^a).
\]

Notice that the local correspondences

\[
(x^u, \bar{y}^a, \bar{X}^a, \bar{Y}^a) \xrightarrow{\tilde{C}} (x^u, \bar{y}^a, N^a_\bar{a}(x^u, \bar{y}^a)X^\bar{a} + \bar{Y}^a)
\]

are non-linear connections on the transverse model; we call them as the local projected (non-linear) connections.

We say that a transverse non-linear connection is
- 1–homogeneous, if the local functions \((x^u, \bar{y}^a) \to N^a_\bar{a}(x^u, \bar{y}^a)\) are 1–homogeneous in the second group of variables, i.e.

\[
N^a_\bar{a}(x^u, \lambda \bar{y}^a) = \lambda N^a_\bar{a}(x^u, \bar{y}^a), \quad (\forall) \lambda > 0;
\]

- linear, if the local functions \((x^u, \bar{y}^a) \to N^a_\bar{a}(x^u, \bar{y}^a)\) are linear in the second group of variables, i.e.

\[
N^a_\bar{a}(x^u, \bar{y}^a) = \Gamma^a_{\bar{a} \bar{b}}(x^u)\bar{y}^\bar{b}.
\]

Considering a transverse non-linear connection, the local Berwald connections associated with the local projected non-linear connections glue together to a transverse linear connection on the foliated vector bundle \(V(QF_E) \), that we call as the transverse Berwald connection associated with the given transverse non-linear connection.

Using local coordinates as above, if a transverse non-linear connection that the left splitting \(\tilde{C} \) has the local form \((2.2)\), has its transverse Berwald linear connection \(\nabla \) given by

\[
(x^u, x^a, \bar{y}^a, Y^a, \bar{X}^a, \bar{Z}^a, W^a) \xrightarrow{\nabla} (x^u, x^a, \bar{y}^a, Y^a, \bar{Z}^a, \partial N^a_\bar{a}(x^u, \bar{y}^a)X^\bar{a}Y^\bar{a} + W^a).
\]

Let us denote by \(\Pi : T\tilde{E} \to QF_E \) the canonical projection on the normal bundle of \(F_E \); it induces also a vector bundle isomorphism \(\tilde{\Pi} : V(T\tilde{E}) \to V(QF_E) \), that corresponds canonically to the identity map of \(p^*_E E \). A non-linear connection \(\tilde{C} : \)
$T\tilde{E} \rightarrow V(T\tilde{E})$ is projectable if there is a foliated map $\tilde{C} : Q\mathcal{F}_E \rightarrow V(Q\mathcal{F}_E)$ such that the following diagram is commutative.

$$
\begin{align*}
T\tilde{E} & \xrightarrow{C} VT\tilde{E} \\
\Pi \downarrow & \downarrow \Pi \\
Q\mathcal{F}_E & \xrightarrow{\tilde{C}} V(Q\mathcal{F}_E)
\end{align*}
$$

(2.3)

It is easy to see that \tilde{C} is unique and it is a left splitting of the inclusion $\tilde{I} : V(Q\mathcal{F}_E) \rightarrow T\tilde{E}$, thus a transverse non-linear connection on \tilde{E}.

We say that a non-linear connection $C : T\tilde{E} \rightarrow V(T\tilde{E})$ is of Bott type if $X^b \in \Gamma(T\mathcal{F}_E)$, $(\forall)X \in \Gamma(T\mathcal{F})$, where X^b is the horizontal lift and $T\mathcal{F}$ is the tangent bundle to the leaves of \mathcal{F}.

Proposition 2.1. If \tilde{C} is a transverse non-linear connection, then there is a unique Bott type nonlinear connection that is projectable on \tilde{C}.

We say that a Bott type nonlinear connection on $Q\mathcal{F}$ or on $Q^*\mathcal{F}$ is a projectable Bott nonlinear connection if it obtained as in the above Proposition 2.1.

Let us use some local coordinates (x^u, x^a, y^a) on a foliated vector bundle E. If the transverse non-linear connection $\tilde{C} : Q\mathcal{F}_E \rightarrow V(Q\mathcal{F}_E)$ has the local form $(x^u, x^a, y^a, X^a, Y^a) \xrightarrow{\tilde{C}} (x^u, x^a, y^a, X^a\tilde{N}_a^b(x^u, y^b) + Y^a)$, then its Bott connection has the local form

$$
(x^u, x^a, y^a, X^a, Y^a) \xrightarrow{C} (x^u, x^a, y^a, X^a\tilde{N}_a^b(x^u, y^b) + Y^a).
$$

(2.4)

This is also the general form of a Bott non-linear connection. A simple characterization of a Bott connection is as follows.

Proposition 2.2. A projectable non-linear connection is a Bott connection iff $T\mathcal{F}_E \subset H(T\tilde{E})$.

In the case when \tilde{C} comes from a transverse linear connection on E, denoted by $\tilde{\nabla}$, then the Bott type (non-linear) connection C comes from a linear connection ∇ on E and conditions on ∇ reads:

- if $s(Y)$ is a locally transverse vector field to \mathcal{F}_E and A is a local foliated section in $\Gamma(E)$, then $\nabla_{s(Y)}A$ is a local foliated section in $\Gamma(E)$ (projectability condition) and
- if X is tangent to \mathcal{F}_E and $A \in \Gamma(E)$ is foliated, then $\nabla_X A = 0$ (Bott condition).

If $E = Q\mathcal{F}$ and $\Pi_0 : TM \rightarrow Q\mathcal{F}$ is the canonical projection, then the Bott condition becomes the classical one:

- if X is tangent to \mathcal{F} and $A = \Pi_0(Y) \in \Gamma(Q(\mathcal{F}))$, then $\nabla_X \Pi_0(Y) = \Pi_0[X, Y]$.

Using formula (2.4) in the case of a linear connection, we obtain that the following statement is true.

Proposition 2.3. If $\tilde{\nabla} : \Gamma(Q\mathcal{F}_E) \rightarrow \Gamma(Q^*\mathcal{F}_E \otimes Q\mathcal{F}_E)$ is a transverse linear connection on a foliated bundle E, then there is a unique Bott connection $\nabla : \Gamma(Q\mathcal{F}_E) \rightarrow \Gamma(T^*\tilde{E} \otimes Q\mathcal{F}_E)$ that locally projects on $\tilde{\nabla}$.

In particular if $E = Q^*F$, we say that a Bott connection on $Q\tilde{F}$ is a projectable Bott connection if it obtained as in Proposition 2.3.

The link between the Bott condition for a non-linear connection and a linear connection is given by the Berwald linear connection.

Proposition 2.4. If C is a Bott non-linear connection on a foliated vector bundle, then its Berwald linear connection is a Bott linear connection.

We can use in the proof that the Berwald linear connection ∇ of C has the property that $\nabla_X A = v [X^h, A]$, for any $X \in \mathcal{X}(M)$ and $A \in \Gamma(V(TE))$, where the projector v and the lift h are according to C.

Notice that, in general, the converse of Proposition 2.4 does not hold.

3 Foliations and connections

In this section we consider a connection adapted to a Hamilton foliation and we show also that the lifted foliation of a Hamilton foliation in the conormal bundle is a Riemannian foliation. Using [5], it follows that any Cartan foliation coming from a transverse Finsler metric is a Riemannian foliation.

We say that a foliation \mathcal{F} is a transverse Hamiltonian one if there is a basic function $H : Q^*\mathcal{F} \to \mathbb{R}$ that has a non-degenerate vertical Hessian h, called a transverse Hamiltonian. For every $X \in \mathcal{X}(T(Q^*\mathcal{F}))$ we have $\Pi(X) = \tilde{X} \in \Gamma(Q\tilde{F})$, where $\Pi : T(Q^*\mathcal{F}) \to Q\tilde{F}$ is the canonical projection.

The inverse h^{-1} of Hessian h induces a vector bundle isomorphism $J_h : \pi^*_0 Q^*\tilde{F} \to \pi^*_0 Q\tilde{F} \cong V(Q^*\mathcal{F}) = V(Q\tilde{F})$, called the musical isomorphism. We can consider now the vector bundle map $J : \Gamma(Q\tilde{F}) \to \Gamma(V(Q^*\mathcal{F})) \subset \Gamma(Q\tilde{F})$, $J(X) = J_0(\tilde{\pi}_*(X))$, where $\tilde{\pi}_* : Q\tilde{F} \to Q\mathcal{F}$ is the canonical transverse projection. It is easy to see that $J \circ J = 0$ and $\text{Im } J = V(Q^*\mathcal{F})$, thus J is a vector bundle epimorphism. A transverse non-linear connection can be given by an almost product endomorphism P in the fibers of $Q\tilde{F}$ (i.e. $P^2 = 1_{Q\tilde{F}}$) such that the vectors in the fibers of $V(Q^*\mathcal{F})$ are exactly the eigenvectors corresponding to the eigenvalue -1 of P. The link between P and the transverse map $C : Q\tilde{F} \to V(Q^*\mathcal{F})$ is $C = \frac{1}{2} (1_{Q\tilde{F}} - P)$. We denote by \tilde{L} the transverse Lie derivation.

Proposition 3.1. Let $H : Q^*\mathcal{F} \to \mathbb{R}$ be a transverse Hamiltonian, X and J_0 be a transverse vector field for \tilde{F} and the musical isomorphism, respectively. Then $P = -L_X J : \Gamma(Q\tilde{F}) \to \Gamma(Q\tilde{F})$ is an almost product endomorphism giving a transverse non-linear connection.

Let now $\nabla^v : \Gamma(V(Q^*\mathcal{F})) \to \Gamma\left(Q^*\tilde{F} \otimes V(Q^*\mathcal{F})\right)$ be a transverse linear connection, that we call a transverse vertical connection.

In the sequel we will use the basis $\left\{ \frac{\partial}{\partial x^a}, \frac{\partial}{\partial p_a} \right\}$, called adapted, as well as its dual $\{dx^a, dp_a = dp_a + N_{aw} dx^w\}$, accordingly to the decomposition (2.1). Using this coframe we can define the local connection forms by

$$\nabla^v \frac{\partial}{\partial p_a} = \omega^v_a \otimes \frac{\partial}{\partial p_a},$$

(3.1)
where

\begin{equation}
\omega^\alpha_a = \Gamma^\alpha_{\gamma a} dx^\gamma + \Gamma^\alpha_\delta dp_\delta = \left(\Gamma^\alpha_\gamma - \Gamma^\alpha_\delta N_\delta \right) dx^\gamma + \Gamma^\alpha_\delta dp_\delta = H^\alpha_\gamma dx^\gamma + \Gamma^\alpha_\delta dp_\delta.
\end{equation}

But \(V(Q^*F) \) and \(H(Q^*F) \) are dual vector bundles, thus the linear connection \(\nabla^v \) on \(V(Q^*F) \) give rise to a dual linear connection \(\nabla^h \) on \(H(Q^*F) \). Thus we can construct a linear connection \(\nabla \) in \(Q\tilde{F} \)

\begin{equation}
\nabla_X Y = \nabla_X^v (v(Y)) + \nabla_X^h (h(Y)),
\end{equation}

where \(Y \in \Gamma(Q\tilde{F}) \), \(X \in \Gamma(T(Q^*F)) \) and \(v : Q\tilde{F} \to V(Q^*F) \) and \(h : Q\tilde{F} \to H(Q^*F) \) are the vertical and horizontal projector respectively from decomposition (2.1). In particular we have

\begin{equation}
\nabla \frac{\delta}{\delta x^a} = -\omega^a_\delta \odot \frac{\delta}{\delta x^a},
\end{equation}

where \(\omega^a_\delta \) is given in (3.2).

Let us remark that we can consider a transverse linear connection \(\nabla^h : \Gamma (H(Q^*F)) \to \Gamma \left(Q^*\tilde{F} \otimes H(Q^*F) \right) \), that we call a transverse horizontal connection and then associate a dual transverse linear connection \(\nabla^v \), that is a vertical connection. The constructions of \(\nabla^h \) from \(\nabla^v \) and of \(\nabla^v \) from \(\nabla^h \) are mutually inverse, giving rise to a same transverse linear connection \(\nabla \).

If \(\varphi \in \Gamma \left(Q^*\tilde{F} \otimes Q\tilde{F} \right) \) is an 1–form with values in \(Q\tilde{F} \) locally given by

\begin{equation}
\varphi = \varphi^a \odot \frac{\delta}{\delta x^a} + \varphi_\delta \odot \frac{\partial}{\partial p_\delta},
\end{equation}

then following [1], [2], we can define an exterior differential \(D\varphi \) putting

\begin{equation}
D\varphi = (d\varphi^a + \varphi^\delta \wedge \omega^a_\delta) \odot \frac{\delta}{\delta x^a} + (d\varphi_\delta - \varphi^a \wedge \omega^a_\delta) \odot \frac{\partial}{\partial p_\delta}.
\end{equation}

A straightforward calculus show that the above formula is well-defined.

The bundle \(Q^*\tilde{F} \otimes Q\tilde{F} \) admits a natural section \(\eta \) given by

\begin{equation}
\eta = dx^a \otimes \frac{\partial}{\partial x^a} + dp_\delta \otimes \frac{\partial}{\partial p_\delta} = dx^a \otimes \frac{\delta}{\delta x^a} + \delta p_\delta \otimes \frac{\partial}{\partial p_\delta}.
\end{equation}

It is clear that the form \(\eta \) is well-defined.

The form \(\theta = D\eta \) is called the torsion form of the connection \(\nabla^h \) or its dual \(\nabla^v \).

Locally the form \(\theta \) can be expressed as follows:

\begin{equation}
D\eta = (dx^a \wedge \omega^a_\gamma) \odot \frac{\delta}{\delta x^a} + (d(p_\delta) - \delta p_\gamma \wedge \omega^a_\gamma) \odot \frac{\partial}{\partial p_\delta} = \theta^a \odot \frac{\delta}{\delta x^a} + \theta_\delta \odot \frac{\partial}{\partial p_\delta},
\end{equation}

where

\begin{equation}
\theta^a = \frac{1}{2} \left(H^a_\gamma^\delta - H^a_\delta^\gamma \right) dx^a \wedge dx^\delta - \Gamma^a_\delta dx^a \wedge \delta p_\delta,
\end{equation}
\((3.10)\quad \theta_v = -dN_v \wedge dx^\gamma - H^{\alpha}_e \delta p_\alpha \wedge dx^\delta - \frac{1}{2} \left(\Gamma^{\alpha \delta}_{\gamma e} - \Gamma^{\delta \alpha}_{\gamma e} \right) \delta p_\alpha \wedge \delta p_\delta.\)

The first term and the last one in formulas (3.9) and (3.10) respectively give two global transverse tensors that we call **horizontal torsion** and **vertical torsion** respectively.

Using formulas (3.9) and (3.10), it is easy to check that

a) the horizontal torsion vanishes if \(\theta (V, W) = 0, \) for all \((V, W) \in \Gamma (H(Q^*F))\) and

b) the vertical torsion vanishes if \(\theta (V, W) = 0, \) for all \((V, W) \in \Gamma (V(Q^*F))\).

If \(\nabla^h \) and \(\nabla^v \) are dual and a horizontal and a vertical transverse connection respectively, then, according to Proposition 2.3, they project to two projectable Bott connections \(\nabla^h \) and \(\nabla^v \) respectively.

We say that the **horizontal and vertical torsions** of \(\nabla^h \) and \(\nabla^v \) are just the horizontal and vertical torsions of \(\nabla^h \) and \(\nabla^v \) respectively.

Proposition 3.2. If \(\bar{g} \) is a non-degenerated and symmetric transverse bilinear form in the fibers of \(H(Q^*F) \) and \(\bar{N} \) is a Bott type nonlinear connection of \(Q\bar{F} \), then there is a unique projectable Bott linear connection \(\nabla^h \), in the horizontal bundle \(H(Q^*F) \), such that

1) \(\nabla^h \) has null horizontal and vertical torsions and

2) \(\bar{g} \) is parallel with respect to \(\nabla^h \), i.e. \(\nabla^h _X \bar{g} = 0, \) for all \(X \in \mathcal{X}(Q\bar{F}) \).

Proposition 3.3. If \(g \) is a non-degenerated and symmetric transverse bilinear form in the fibers of \(V(Q^*F) \) and \(N \) is a Bott type nonlinear connection of \(QF \), then there is a unique projectable Bott linear connection \(\nabla^v \), in the vertical bundle \(V(Q^*F) \), such that

1) \(\nabla^v \) has null horizontal and vertical torsions and

2) \(g \) is parallel with respect to \(\nabla^v \), i.e. \(\nabla^v _X g = 0, \) for all \(X \in \mathcal{X}(Q\bar{F}) \).

Proof. It can be easily inferred that the hypothesis above imply that all the hypothesis of Proposition 3.2 are in fact fulfilled for \(\bar{g} \); thus, using its conclusion by duality, the final conclusions of our statement follow for \(g \). \(\square \)

The Propositions 3.2 and 3.3 have special forms in the case of a regular transverse Hamiltonian \(H \) or a Cartan metric \(K^2 \).

Let us suppose that the foliation \(\mathcal{F} \) has a regular transverse Hamiltonian \(H : Q^*\mathcal{F} \rightarrow R \); it reads that \(H \) is a basic function for \(\mathcal{F} \) and its transverse Hessian \(h \) is a transverse non-degenerated bilinear form in the fibers of \(V(Q^*F) \). The Hessian of \(H \) on \(H(Q^*F) \) is, by its definition, the inverse \(h^{-1} \) of the Hessian \(h \) on \(V(Q^*F) \).

Then, according to Proposition 3.1, \(H \) gives rise to a transverse nonlinear connection \(\bar{N} \) in \(Q^*F \).

The Propositions 3.2 and 3.3 become in this case as follows, improving [2, Theorem 3.1].

Theorem 3.4. If \(H \) is a regular transverse Hamiltonian, then there are unique projectable Bott linear connections \(\nabla^h \) and \(\nabla^v \), in the horizontal bundle \(H(Q^*F) \) and the vertical bundle \(V(Q^*F) \) respectively, such that

1) \(\nabla^v \) and \(\nabla^h \) have null horizontal and vertical torsions and
2) the Hessians of H are parallel with respect to ∇^h and ∇^v, i.e. $\nabla^h_X h^{-1} = 0$ and $\nabla^v_X h = 0$, $(\forall) X \in \mathcal{X}(Q\tilde{F})$, in the fibers of $H(Q^*F)$ and $V(Q^*F)$, respectively.

If the vertical hessian h is positively defined on Q^*F, and H is differentiable on Q^*F or on the slashed $Q^*F = Q^*F\setminus \partial(M)$, we obtain a transverse Riemannian metric for the foliation \tilde{F} on the manifold Q^*F or for the foliation \tilde{F}_* on the manifold Q^*F respectively.

Proposition 3.5. If H is differentiable on Q^*F or on the slashed Q^*F and the vertical hessian h is positively defined, then the foliated manifold (Q^*F, \tilde{F}) or (Q^*F, \tilde{F}_*) respectively is Riemannian.

According to [8], we say that H is allowed if:
1) H is continuous on Q^*F, differentiable on the slashed Q^*F, positively defined (i.e. its vertical hessian is positively defined) and $H(x, p) \geq 0 = H(x, 0)$, $(\forall) x \in M$ and $p \in Q^*_x F$;
2) H is locally projectable on a transverse Hamiltonian;
3) there is a basic function $\varphi : M \to (0, \infty)$, such that for every $x \in M$ there is $p \in Q^*_x F$ such that $H(x, p) = \varphi(x)$.

If a positively transverse Hamiltonian H is 2–homogeneous (i.e. $H(x, \lambda p) = \lambda^2 H(x, p)$, $(\forall) \lambda > 0$), then H is called a transverse Cartan form; it is also a positively admissible Hamiltonian, taking $\varphi \equiv 1$, or any positive constant.

Using the results in [8] we have that the following statement is true.

Proposition 3.6. If there is an allowed $H : Q^*F \to \mathbb{R}$ (in particular a transverse Cartan form), then the foliation F is Riemannian.

Notice that the lagrangian version of the above result was proved in [5], improving [2, Theorem 3.2]. Proposition 3.6 follows by duality from the lagrangian form only in the case when the dual lagrangian of H is also allowed; for example, in the case of a transverse Cartan form, when its dual is a Finslerian. In the general case, the dual Hamiltonian (lagrangian) of an allowed lagrangian (Hamiltonian) does not follows to be allowed; we have not yet a example to prove this statement, so we leave it as an open question.

Acknowledgement. The second author is supported by the Sectoral Operational Programme Human Resources Development (SOP HRD), financed from the European Social Fund and by the Romanian Government under the project number POSDRU/159/1.5/S/134378.

References

Authors’ addresses:

Paul Popescu
Department of Applied Mathematics, University of Craiova,
P.O. Box 1473, Postal Office 4, Craiova, Romania.
E-mail: paul_p_popescu@yahoo.com

Cristian Ida
Department of Mathematics and Informatics, Univ. Transilvania of Brașov,
Str. Iuliu Maniu 50, Brașov 500091, Romania.
E-mail: cristian.ida@unitbv.ro