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Abstract. In this paper we continue the study of drift less control affine
systems (distributional systems) considering a system with no constant
rank of distribution and with positive homogeneous cost of Randers type.
We will use the Pontryagin Maximum Principle in order to find the general
solution. We have to remark that the optimal solutions of the control
system are the geodesics in the framework of sub-Riemannian geometry.
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1 Introduction

The paper continues the study of drift less control affine systems (distributional sys-
tems) started by the author in [3], [5], [6], considering a system with no constant rank
of distribution. It is well known that the optimal solution of a control system (see [1])
is provided by Pontryagin’s Maximum Principle: that is the curve c(t) = (x(t), u(t))
is an optimal trajectory if there exists a lifting of x(t) to the dual space (x(t), p(t))
satisfying the Hamilton’s equations. We have to remark that the optimal solutions of
our distributional system are the geodesics in the so-called sub-Riemannian geometry
(see [2]). We are in the case of strong bracket generating distribution (i.e. the vector
fields of the distribution and the first iterated Lie brackets generate the entire tangent
space) with no constant rank. The well-known Chow’s theorem guarantees that the
system is controllable, that is the system can be brought from any state x1 to other
state x2.

2 Control systems

Let M be a smooth n-dimensional manifold. We consider the control system

dxi

dt
= f i(x, u),
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where x ∈ M and the control u takes values in an open subset Ω of Rm. Let x0 and x1

be two points of M . An optimal control problem consists of finding the trajectories
of our control system which connects x0 and x1 and minimizing the cost

min
∫ T

0

L(x(t), u(t))dt, x(0) = x0, x(T ) = x1,

where L is the Lagrangian or running cost.
Necessary conditions for a trajectory to be an extreme are given by Pontryagin’s
maximum principle. The Hamiltonian reads as

H(x, p, u) = 〈p, f(x, u)〉 − L(x, u), p ∈ T ∗M,

while the maximization condition with respect to the control variables u, namely

H(x(t), p(t), u(t)) = max
v

H(x(t), p(t), v),

leads to

∂H

∂u
= 0.

The extreme trajectories satisfy the Hamilton equations

(2.1)
dxi

dt
=

∂H

∂pi
,

dpi

dt
= −∂H

∂xi
.

2.1 Control affine systems

In the following we consider the drift less control-affine systems (distributional sys-
tems) given by

(2.2) ẋ =
m∑

i=1

uiXi(x(t)),

where x ∈ M , X1, X2, ..., Xm are smooth vector fields on M and the control u =
(u1, u2, ..., um) takes values in an open subset Ω of Rm.
The vector fields Xi, i = 1,m, generate a distribution D ⊂ TM such that the rank
of D is not necessary constant. Let x0 and x1 be two points of M . An optimal
control problem consists of finding those trajectories of the distributional system
which connect x0 and x1, while minimizing the cost

min
u(·)

∫

I

F (u(t))dt,

where F is a Minkowski norm (positive homogeneous) on D. The Lagrangian has the
form L = 1

2F 2.
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2.1.1 Application

Let us consider in the three dimensional space R3 the drift less control affine system

(2.3) ẋ(t) = u1X1 + u2X2 + u3X3,

with

X1 =




1
0
0


 , X2 =




0
1
0


 , X3 =




0
0
x


 ,

and minimizing the cost

min
u(.)

∫
F (u(t))dt,

where F =
√

(u1)2 + (u2)2 + (u3)2 + εu1, 0 ≤ ε < 1 is the positive homogeneous cost
(Randers metric). We are looking for the solution of the above distributional system.
The distribution D is generated by the vectors X1 , X2, X3 and

rankD =
{

3 if x 6= 0
2 if x = 0

In the canonical base
(

∂
∂x , ∂

∂y , ∂
∂z

)
of R3 we have

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = x

∂

∂z
,

and the Lie brackets are given by

[X1, X2] = 0, [X1, X3] =
∂

∂z
= X4 /∈ D, [X2, X3] = 0.

It results that the distribution is nonholonomic, but is strong bracket generating,
because the vector fields {X1, X2, X3, X4 = [X1, X3]} generate the entire space R3.
From (2.3) we obtain

dx

dt
= u1 not= s1,

dy

dt
= u2 not= s2,

dz

dt
= u3x

not= s3.

The cost function can be written in the form (x 6= 0)

F =
√

(u1)2 + (u2)2 + (u3)2 + εu1 =

√
(s1)2 + (s2)2 +

(s3)2

x2
+ εs1

=
√

gijsisj +
3∑

i=1

bisi,

(Einstein’s summation) where b1 = ε, b2 = 0, b3 = 0 and

gij =




1 0 0
0 1 0
0 0 1/x2


 .
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The Lagrangian has the form L = 1
2F 2 and using [4] we obtain the Hamiltonian

(2.4) H =
1
2

(√
g̃ijpipj − b̃ipi

)
,

where

g̃ij =
1

1− b2
gij +

1
(1− b2)2

bibj , b̃i =
1

1− b2
bi, b =

√
gijbibj ,

and gij is the inverse of the matrix gij . In these conditions we obtain that

b2 = ε2, b̃1 =
ε

1− ε2
, b̃2 = 0, b̃2 = 0,

gij =




1 0 0
0 1 0
0 0 x2


 ,

and it results

g̃ij =




1
(1−ε2)2

0 0
0 1

1−ε2 0
0 0 x2

1−ε2


 .

From (2.4) we obtain

(2.5) H =
1
2

(√
p2
1

(1− ε2)2
+

p2
2

1− ε2
+

p2
3x

2

1− ε2
− εp1

1− ε2

)2

,

or, in the equivalent form

H =

(
1 + ε2

)
p2
1

2 (1− ε2)2
+

p2
2 + p2

3x
2

2 (1− ε2)
− εp1

1− ε2

√
p2
1

(1− ε2)2
+

p2
2 + p2

3x
2

1− ε2
.

I have to remark that in the case x = 0 we obtain

L =
1
2
F 2 =

√
(u1)2 + (u2)2 + εu1,

with the constraint
·
z= 0. Using the Lagrange multipliers we obtain

L1 = L + λ
·
z,

and from Legendre transformation by direct computation it results

H1 =
1
2

(√
p2
1

(1− ε)2
+

p2
2

1− ε
− εp1

1− ε2

)2

,

which leads to the equality
H|x=0 = H1.



76 Liviu Popescu

Next, if we denote

Θ =
p2
1

(1− ε2)2
+

p2
2 + p2

3x
2

1− ε2
,

then the Hamilton’s equations (2.1) lead to the following differential equations

(2.6)
dx

dt
=

∂H

∂p1
=

(1 + ε2)p1

(1− ε2)2
− ε

1− ε2

√
Θ− εp2

1

(1− ε2)3
1√
Θ

,

(2.7)
dy

dt
=

∂H

∂p2
=

p2

1− ε2
− εp1p2

(1− ε2)2
1√
Θ

,

(2.8)
dz

dt
=

∂H

∂p3
=

p3x
2

1− ε2
− εp1p3x

2

(1− ε2)2
1√
Θ

,

(2.9)
dp1

dt
= −∂H

∂x
= − p2

3x

1− ε2
+

εp1p
2
3x

(1− ε2)2
1√
Θ

,

dp2

dt
= −∂H

∂y
= 0 ⇒ p2 = a = const.

dp3

dt
= −∂H

∂z
= 0 ⇒ p3 = b = const.

Without lose the generality we can consider a2 = 1 − ε2. In these conditions we
consider the following change of variables:

(2.10) x(t) =
√

1− ε2
√

r2 − 1 sinAθ(t)
b

, p1(t) =
(
1− ε2

) √
r2 − 1 cos Aθ(t).

It results Θ = r2(t) and from (2.6) we get

dx

dt
=

(1 + ε2)
√

r2 − 1 cos Aθ

1− ε2
− εr

1− ε2
− ε

(
r2 − 1

)
cos2 Aθ

r (1− ε2)
.

But
dx

dt
=
√

1− ε2

b

(
r
·
r√

r2 − 1
sinAθ +

√
r2 − 1A

.

θ cosAθ

)
,

and it results

(2.11) c1

(
r
·
r√

r2 − 1
sinAθ +

√
r2 − 1A

·
θ cosAθ

)

=
√

r2 − 1(1 + ε2) cos Aθ − εr − ε(r2 − 1) cos2 Aθ

r
,

where we have denoted c1 =

(
1− ε2

)√
1− ε2

b
. The equation (2.9) yields

dp1

dt
= −b

√
r2 − 1 sin Aθ√

1− ε2
+

εb
(
r2 − 1

)
cos Aθ sin Aθ

r
√

1− ε2
.
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But
dp1

dt
=

(
1− ε2

) (
r

.
r√

r2 − 1
cosAθ −

√
r2 − 1A

.

θ sinAθ

)
,

which leads to

(2.12) c1

(
r
·
r√

r2 − 1
cosAθ −

√
r2 − 1A

·
θ sin Aθ

)

= −
√

r2 − 1 sin Aθ +
ε
(
r2 − 1

)
cos Aθ sin Aθ

r
.

The equation (2.11) multiplied by cos Aθ, minus the equation (2.12) multiplied by
sin Aθ lead to the equation

(2.13) c1A
dθ

dt
=

(
ε cosAθ − r√

r2 − 1

) (
ε cos Aθ −

√
r2 − 1

r

)
.

Moreover, the equation (2.11) multiplied by sin Aθ, plus the equation (2.12) multiplied
by cos Aθ lead to the equation

(2.14) c1r
dr

dt
= ε

(
r2 − 1

)
sin Aθ

(
ε cosAθ − r√

r2 − 1

)
.

Using (2.10) by direct computation, the Hamiltonian become

H =
1
2

(
r − ε

√
r2 − 1 cos Aθ

)2

.

Considering the integral curves parameterized by arclength, that corresponds to fix
the level 1

2 of the Hamiltonian, we obtain

r − ε
√

r2 − 1 cos Aθ = 1,

and it result

(2.15) r =
1 + ε2 cos2 Aθ

1− ε2 cos2 Aθ
.

In these conditions, from (2.15) we obtain

(2.16) x(t) =
ε
√

1− ε2

b

sin 2Aθ

1− ε cos Aθ
.

The equation (2.13) leads to

(2.17) c1A
dθ

dt
=

(
1− ε2 cos2 Aθ

)2

2 (1 + ε2 cos2 Aθ)

The differential equation (2.7) yields

dy

dt
=

a

1− ε2
− aε

(
1− ε2

)√
r2 − 1 cos Aθ

(1− ε2)2
1
r
,
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and it results
dy

dt
=

r − ε
√

r2 − 1 cos Aθ

r
√

1− ε2
=

1
r
√

1− ε2
,

or
dy

dt
=

1√
1− ε2

1− ε2 cos2 Aθ

1 + ε2 cos2 Aθ
.

Using (2.17) we obtain

y(t) =
2(1− ε2)A

b

∫
dθ

1− ε2 cos2 Aθ
.

The equations (2.8) yields
dz

dt
=

(
r2 − 1

)
sin2 Aθ

br
,

and using (2.17) we get

z(t) =
2Aε2(1− ε2)3/2

b2

∫
sin2 2Aθ

(1− ε2 cos2 Aθ)3
dθ.
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