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Abstract. In this paper it will be extend the study of symmetries and
conservation laws from Classical Mechanics to the first-order classical
field theories, both for the Lagrangian and Hamiltonian k-symplectic for-
malisms. More exactly, we will obtain new kinds of conservation laws for
k-symplectic Hamiltonian systems and k-symplectic Lagrangian systems,
without the help of a Noether type theorem, only using symmetries and
pseudosymmetries.
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1 Introduction

The k-Symplectic Geometry provides the simplest geometric framework for describing
certain class of first-order classical field theories. Using this description we analyze
different kinds of symmetries for the Hamiltonian and Lagrangian formalisms of these
field theories, including the study of conservation laws associated to them and stating
Noether’s Theorem ([42]) and more that we will generalize the study of symmetries
and conservation laws from classical (symplectic, k = 1) formalism ([1], [2]) to the
k-symplectic formalism (introduced by Ch. Günther, [19]) for obtain new kinds of
conservation laws for k-symplectic Hamiltonian and Lagrangian systems. A similar
study for the case of higher order tangent bundles geometry was done by the author
in [33], [34], [37], [36]. The higher order Hamiltonians was introduced by R. Miron
([28], [29], [30], [31]).

The k-symplectic formalism is the generalization to the field theories of the stan-
dard symplectic formalism in Mechanics, which is the geometric framework for de-
scribing autonomous dynamical systems ([1], [2]). Like in the classical case, the
k-symplectic formalism allow us to study toghether the Lagrangian and the Hamilto-
nian formalisms for field theories (using the Legendre transformation or the k-tangent
structure ([22], [23], [24], [35], [42])). So, many results obtained by M. Crampin ([9],
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[10], [11]), J. Grifone ([17], [18]), J. Klein ([21]), M. de Leon ([22], [23], [24]), R. Miron
and M. Anastasiei ([27], [28], [29], [30], [31]), E. Noether ([38]), for the symplectic
formalism was already extend or can be extend to the k-symplectic case.

This paper is devoted to studying symmetries, conservation laws and relationship
between this in the framework of k-symplectic geometry, more exactly we extend the
study of symmetries and conservation laws from Classical Mechanics to the first-order
classical field theories, both for the Lagrangian and Hamiltonian formalisms, using
Günther’s k-symplectic description, and considering only the regular case. We will
find new kinds of conservation laws, nonclassical, without the help of a Noether’s
type theorem, using only a result who gives a relationship between symmetries, pseu-
dosymmetries and conservation laws (G.L. Jones ([20]), M. Crâşmăreanu ([12])).

The study of symmetries and conservation laws for k-symplectic Hamiltonian sys-
tems is, like in the classical case, a topic of great interest and was developped recently
by M. Salgado, N. Roman-Roy, S. Vilarino in [42] and L. Bua, I. Bucătaru, M. Sal-
gado in [7]. More that, in the paper [43] J.C. Marrero, N. Roman-Roy, M. Salgado,
S. Vilarino begin the study of symmetries and conservation laws for k-cosymplectic
Hamiltonian systems, like an extension to field theories of the standard cosymplectic
formalism for nonautonomous mechanics ([24], [25]). In [42] the Noether’s theorem,
obtained for a k-symplectic Hamiltonian system, associates conservation laws to so-
called Cartan symmetries. However, these kinds of symmetries do not exhaust the
set of symmetries. As is known, in mechanics and physics there are symmetries which
are not of Cartan type, and which generate conserved quantities, i.e. conservation
laws (see [26], [40], [41] for some examples).

So, by generalization from symplectic geometry to k-symplectic geometry, we will
obtain new kinds of conservation laws for k-symplectic Hamiltonian systems, without
the help of a Noether type theorem and without the use of a variational principle,
using only symmetries and pseudosymmetries associated to the k-vector fileds X =

(X1, . . . , Xk) which are solutions of the equation
k∑

A=1

iXAωA = dH. The main result

is a generalization from the classical case (k = 1) of a results of G.L. Jones ([20]) and
M. Crâşmăreanu ([12]). Applications for Lagrangian and Hamiltonian k-symplectic
formalisms are also presented ([35], [37]).

In the second section are presented the notions used in the next sections and the
classical results who will be generalized in the last section. In the third section it
will be present, shortly, the geometric elements of k-symplectic formalism who need
to explain and to obtain the results from the last section. Two very interesting
examples of k-symplectic Lagrangian and Hamiltonian systems are presented ([35],
[37]). In section four we enounce and prove the main generalized result and, finally,
we present some applications for k-symplectic Lagrangian and Hamiltonian systems.

All manifolds are real, paracompact, connected and C∞. All maps are C∞. Sum
over crossed repeated indices is understood. The Lagrangian and Hamiltonian func-
tions are regular.
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2 Classical results

Let M be a smooth, n-dimensional manifold, C∞(M) the ring of real-valued smooth
functions, X (M) the Lie algebra of vector fields and Ap(M) the C∞(M)-module of
p-differential forms, 1 ≤ p ≤ n. For X ∈ X (M) with local expression X = Xi(x) ∂

∂xi

we consider the system of ordinary differential equations which give the flow {Φt}t of
X, locally,

(2.1) ẋi(t) =
dxi

dt
(t) = Xi(x1(t), . . . , xn(t)), i = 1, . . . , n.

A dynamical system is a couple (M,X), where M is a smooth manifold and X ∈
X (M). A dynamical system is denoted by the flow of X, {Φt}t or by the system of
differential equations (2.1).

A function f ∈ C∞(M) is called conservation law for dynamical system (M, X) if
f is constant along the every integral curves of X (solutions of 2.1), that is

(2.2) LXf = 0,

where LXf means the Lie derivative of f with respect to X.
If Z ∈ X (M) is fixed, then Y ∈ X (M) is called Z-pseudosymmetry for (M, X) if

there exists f ∈ C∞(M) such that LXY = fZ. A X-pseudosymmetry for X is called
pseudosymmetry for (M, X). Y ∈ X (M) is called symmetry for (M,X) if LXY = 0.

Example 2.1 ([16], [13]) The system from the theory of static SU(2)-monopoles is:

(2.3)
dx1

dt
= x2x3,

dx2

dt
= x3x1,

dx3

dt
= x1x2.

The vector field X = x2x3 ∂
∂x1 +x3x1 ∂

∂x2 +x1x2 ∂
∂x3 is homogeneous of order two, that

is [Y,X] = X, where Y =
3∑

i=1

xi ∂
∂xi . Equivalently, LXY = X, and this means that Y

is a X-pseudosymmetry for (2.3) (or pseudosymmetry for X).
Let us recall that ω ∈ Ap(M) is called invariant form for (M,X) if LXω = 0.

If (M, ω) is a symplectic manifold then the dynamical system (M, X) is said to be
a dynamical Hamiltonian system (or, shortly, Hamiltonian system) if there exists a
function H ∈ C∞(M) (called the Hamiltonian) such that

(2.4) iXω = −dH,

where iX denotes the interior product with respect to X.
It is known that the symplectic form ω is an invariant 2-form for (M, X) and the

Hamiltonian H is a conservation law for (M,X).
A Cartan symmetry for Lagrangian L is a vector field X ∈ X (TM) characterized

by LXωL = 0 and LXH = 0, where ωL = dθL is the Cartan 2-form associated to
the regular Lagrangian L, θL = J∗(dL), J∗ being the adjoint of the natural tangent
structure J on TM and H = EL = ∂L

∂yi y
i − L is the en energy of L. It is known that

([11]) that any Cartan symmetry for Lagrangian L is a symmetry for the canonical
semispray S of L ([27]), that is LSX = 0. For each Cartan symmetry X for (M,L)
we have dLXθL = 0, which implies that LXθL is a closed 1-form. If LXθL is a exact
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1-form, then we say that X is exact Cartan symmetry for (M, L). Obviously, the
canonical semispray of L is an exact Cartan symmetry for Lagrangian L ([11], [27]).

In the classical case (k = 1), we know that Cartan symmetries induce and are
induced by constants of motions (conservation laws), and these results are known as
Noether Theorem and its converse ([38], [11], [39], [20], [12]).

Theorem 2.1. (Noether Theorem) If X is an exact Cartan symmetry with LXθL =
df , then

PX = J(X)L− f

is a conservation law for the Euler-Lagrange equations associated to the regular La-
grangian L.
Conversely, if F is a conservation law for the Euler-Lagrange equations assocaited to
the regular Lagrangian L, then the vector field X uniquely defined by

iXωL = −dF

is an exact Cartan symmetry.

The next theorem which gives the association between pseudosymmetries and
conservation laws is due to M . Crâşmăreanu ([12]) and G.L. Jones ([20]). Next,
using this result, we will find new kinds of conservation laws, nonclassical, without
the help of Noether’s type theorem.

Theorem 2.2. Let X ∈ X (M) be a fixed vector field and ω ∈ Ap(M) be a invariant
p-form for X. If Y ∈ X (M) is symmetry for X and S1, . . ., Sp−1 ∈ X (M) are (p−1)
Y -pseudosymmetry for X, then

(2.5) Φ = ω(X, S1, . . . , Sp−1)

or, locally,
Φ = Si1

1 · · ·Sip−1
p−1 Y ipωi1...ip−1ip

is a conservation laws for (M, X).
Particularly, if Y , S1, . . ., Sp−1 are symmetries for X then Φ given by (2.5) is

conservation laws for (M,X).

Now, we can apply this result to the dynamical Hamiltonian systems.

Proposition 2.3. Let be (M,XH) a Hamiltonian system on the symplectic manifold
(M, ω), with the local coordinates (xi, pi). If Y ∈ X (M) is a symmetry for XH and
Z ∈ X (M) is a Y -pseudosymmetry for XH , then

(2.6) Φ = ω(Y, Z)

is a conservation law for the Hamiltonian system (M,XH).
Particularly, if Y and Z are symmetries for XH then Φ from ( 2.6) is a conser-

vation law for (M,XH).

If Y = Y k ∂
∂xk + Ỹk

∂
∂pk

and Z = Zk ∂
∂xk + Z̃k

∂
∂pk

then (2.6) becomes

(2.7) Φ =
(

Y k Ỹk

) (
0 −1
1 0

)(
Zk

Z̃k

)
= ỸkZk − Y kZ̃k.
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Corollary 2.4. If Y ∈ X (M) is a XH-pseudosymmetry for XH , then

(2.8) Φ = ω(XH , Y ) = −LY H

or

(2.9) Φ =
∂H

∂xk
Y k +

∂H

∂pk
Ỹk

is a conservation law for (M,XH).

Now, if we consider the Hamiltonian system (TM, SL) on the symplectic manifold
(TM, ωL), where SL is the canonical semispray and ωL the Cartan 2-form associated
to a regular Lagrangian L on TM (for more details see [27], [36]), then we have:

Corollary 2.5. If Y = Y k ∂
∂xk + Ỹ k ∂

∂yk ∈ X (TM) is a SL-pseudosymmetry for SL ,
then

Φ = ωL(SL, Y ) = −LY EL

or
Φ =

∂EL

∂xk
Y k +

∂EL

∂yk
Ỹ k

is a conservation law for (TM,SL).

An immediately consequence of this last result is the following ([12], [36]):

Corollary 2.6. If the canonical semispray SL associated to the regular Lagrangian L
is 2-positive homogeneous with respect to velocity (SL is a spray) and gij is the metric
tensor of L, then Φ = gijy

iỸ j is a conservation law for (TM, SL).

Taking into account that the canonical semispray SL associated to the regular
Lagrangian L is a spray if and only if [SL, C] = SL, that is LSL

C = SL, we have that
the Liouville (canonical) vector field C = yi ∂

∂yi is a pseudosymmetry for SL , and
using the last corollary we obtain that Φ = gijy

iyj is a conservation law for (TM,SL).
So we obtained the conservation of the kinetic energy E(L) = 1

2gijy
iyj of the metric

gij .

Example 2.2 ([12], [13]) Let the 2-dimensional isotropic harmonic oscillator

(2.10)
q̈1 + ω2q1 = 0
q̈2 + ω2q2 = 0

a toy model for many methods to finding conservation laws. The Lagrangian is

(2.11) L =
1
2

[(
q̇1

)2
+

(
q̇2

)2
]
− ω2

2

[(
q1

)2
+

(
q2

)2
]

and then applying the conservation of energy we have two conservation laws
Φ1 =

(
q̇1

)2 + ω2
(
q1

)2, Φ2 =
(
q̇2

)2 + ω2
(
q2

)2.
A straightforward computation give that the complet lift of X = q2 ∂

∂q1 − q1 ∂
∂q2 is

an exact Cartan symmetry with f = 0 and then the associated classical Noetherian
conservation law is

Φ3 = PX = J(X)L = Xi ∂L

∂q̇i
= q2q̇1 − q1q̇2 .
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But we can obtain a nonclassical conservation law with symmetries taking into
account that the canonical spray of L is

S = q̇1 ∂

∂q1
+ q̇2 ∂

∂q2
− ω2q1 ∂

∂q̇1
− ω2q2 ∂

∂q̇2

and another computation gives that

Y = q̇2 ∂

∂q1
+ q̇1 ∂

∂q2
− ω2q2 ∂

∂q̇1
− ω2q1 ∂

∂q̇2

is a symmetry for S. Also, because S is total 1-homogeneous, that means that S is
1-homogeneous with respect to all variables (q, q̇), it result that

Z = q1 ∂

∂q1
+ q2 ∂

∂q2
+ q̇1 ∂

∂q̇1
+ q̇2 ∂

∂q̇2

is a symmetry for S. Next, we have LY H = 0, LZH = 2H and then Φ = ωL(S, Y ) =
0, Φ = ωL(S,Z) = 2H, that means that we not have new conservation law applying
Theorem 2.2. But Φ4 = ωL(Y, Z) = q̇1q̇2 +ω2q1q2 is a new conservation law given by
Theorem 2.2 or by their corollaries.

We remark that Φ4 is a nonclassical conservation law, obtained by symmetries,
and Φ4 represent the energy of a new Lagrangian of (2.10), L̃ = q̇1q̇2−ω2q1q2 ([45]).

3 Geometric framework of Günther
k-symplectic formalism

In this section we present, shortly, the basic geometric elements of Günther k-symplectic
formalism ([19]) necessarly for obtain and explain the results from the next section.

3.1 The tangent bundle of k1-velocities of a manifold M

An almost tangent structure J on a 2n-dimensional manifold M is tensor field of
type (1, 1) of constant rank n such that J2 = 0. The manifold M is then called an
almost tangent manifold. Almost tangent structures were introduced by Clark and
Bruckheimer [8] and Eliopoulos [15] around 1960 and have been studied by many
authors (see [5, 9, 10, 17, 18, 21]).

The canonical model of these structures is the tangent bundle τM : TM → M of
an arbitrary manifold M . The canonical tangent structure J on TM is locally given
by

(3.1) J =
∂

∂vi
⊗ dxi

with respect the bundle coordinates on TM . This tensor J can be regarded as the
vertical lift of the identity tensor on M to TM ([32]).

The almost k-tangent structures were introduced as generalization of the almost
tangent structures ([22, 23]).
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Definition 3.1. An almost k-tangent structure J on a manifold M of dimension
n + kn is a family (J1, . . . , Jk) of tensor fields of type (1, 1) such that

(3.2) JA ◦ JB = JB ◦ JA = 0, rank JA = n, ImJA ∩ (⊕B 6=AIm JB) = 0,

for 1 ≤ A,B ≤ k. In this case the manifold M is then called an almost k-tangent
manifold.

The canonical model of these structures is the k-tangent vector bundle T 1
k M =

J1
0 (Rk,M) of an arbitrary manifold M , that is the vector bundle with total space the

manifold of 1-jets of maps with source at 0 ∈ Rk and with projection map τ : T 1
k M →

M , τ(j1
0σ) = σ(0). This bundle is also known as the tangent bundle of k1-velocities

of M [32].
The manifold T 1

k M can be canonically identified with the Whitney sum of k copies
of TM , that is

T 1
k M ≡ TM ⊕ · · · ⊕ TM,
j1
0σ ≡ (j1

0σ1 = v1, . . . , j
1
0σk = vk)

where σA = σ(0, . . . , t, . . . , 0) with t ∈ R at position A and vA = (σA)∗(0)( d
dt 0

).
If (xi) are local coordinates on U ⊆ M then the induced local coordinates (xi, vi

A),
1 ≤ i ≤ n, 1 ≤ A ≤ k, on τ−1(U) ≡ T 1

k U are given by

xi(j1
0σ) = xi(σ(0)), vi

A(j1
0σ) =

d

dt
(xi ◦ σA)|t=0 = vA(xi) .

Definition 3.2. For a vector Xx at M we define its vertical A-lift (Xx)A as the
vector on T 1

k M given by

(Xx)A(j1
0σ) =

d

dt
((v1)x, . . . , (vA−1)x, (vA)x+tXx, (vA+1)x . . . , (vk)x)|t=0 ∈ Tj1

0σ(T 1
k M)

for all points j1
0σ ≡ ((v1)x, . . . , (vk)x)) ∈ T 1

k M .

In local coordinates we have (Xx)A =
n∑

i=1

ai ∂

∂vi
A

, for a vector Xx = ai ∂/∂xi. The

canonical vertical vector fields CA
B on T 1

k M are defined by CA
B (x,X1, X2, . . . , Xk) =

(XB)A and are locally given by CA
B = vi

B
∂

∂vi
A

.

The canonical k-tangent structure (J1, . . . , Jk) on T 1
k M is defined by JA(Zj1

0σ) =
(τ∗(Zj1

0σ))A, for all vectors Zj1
0σ ∈ Tj1

0σ(T 1
k M). In local coordinates we have

(3.3) JA =
∂

∂vi
A

⊗ dxi

The tensors JA can be regarded as the (0, . . . , 1A, . . . , 0)-lift of the identity tensor on
M to T 1

k M defined in [32].

3.2 The cotangent bundle of k1-covelocities of M and (T 1
k )∗M

Almost cotangent structures were introduced by Bruckheimer [6]. An almost cotan-
gent structure on a 2m-dimensional manifold M consists of a pair (ω, V ) where ω is
a symplectic form and V is a distribution such that

(i) ωcV×V = 0, (ii) kerω = {0}
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The canonical model of this structure is the cotangent bundle τ∗M : T ∗M → M of
an arbitrary manifold M , where ω is the canonical symplectic form ω0 = −dθ0 on
T ∗M and V is the vertical distribution. The Liouville form θ0 in T ∗M is defined by
θ0(α)(X̃α) = α((τ∗M )∗(α)(X̃α)), for all vectors X̃α ∈ Tα(T ∗M) . In local coordinates
(xi, pi) on T ∗M

(3.4) θ0 = pidxi, ω0 = dxi ∧ dpi, V = 〈 ∂

∂p1
, . . . ,

∂

∂pk
〉.

Definition 3.3. ([3, 4]) A k-symplectic structure on a manifold M of dimension
N = n + kn is a family (ωA, V ; 1 ≤ A ≤ k), where each ωA is a closed 2-form and V
is an nk-dimensional distribution on M such that

(i) ωAcV×V
= 0, (ii) ∩k

A=1 kerωA = {0}.

In this case (M,ωA, V ) is called a k-symplectic manifold.

The canonical model of this structure is the k-cotangent bundle (T 1
k )∗M = J1(M,Rk)0

of an arbitrary manifold M , that is the vector bundle with total space the manifold
of 1-jets of maps with target at 0 ∈ Rk, and projection τ∗(j1

x,oσ) = x.
The manifold (T 1

k )∗M can be canonically identified with the Whitney sum of k
copies of T ∗M , say

(T 1
k )∗M ≡ T ∗M ⊕ · · · ⊕ T ∗M,
jx,0σ ≡ (j1

x,0σ
1, . . . , jk

x,0σ
k)

where σA = πA ◦ σ : M −→ R is the A-th component of σ.
The canonical k-symplectic structure (ω0)A, V ; 1 ≤ A ≤ k), on (T 1

k )∗M is defined
by

(ω0)A = (τ∗A)∗(ω0)
V (j1

x,0σ) = ker(τ∗)∗(j1
x,0σ)

where τ∗A = (T 1
k )∗M → T ∗M is the projection on the Ath-copy T ∗M of (T 1

k )∗M , and
ω0 is the canonical symplectic structure of T ∗M .

One can also define the 2-forms ωA by ωA = −dθA where (θ0)A = (τ∗A)∗θ0 .
If (xi) are local coordinates on U ⊆ M then the induced local coordinates (xi, pA

i ),
1 ≤ i ≤ n, 1 ≤ A ≤ k on (T 1

k )∗U = (τ∗)−1(U) are given by

xi(j1
x,0σ) = xi(x), pA

i (j1
x,0σ) = dxσA

(
∂

∂xi

∣∣∣∣
x

)
.

Then the canonical k-symplectic structure is locally given by

(3.5) (ω0)A =
n∑

i=1

dxi ∧ dpA
i , V = 〈 ∂

∂p1
i

, . . . ,
∂

∂pk
i

〉 , 1 ≤ A ≤ k ,

and (θ0)A = pA
i dxi.
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3.3 Second Order Partial Differential Equations on T 1
k M

Let M be an arbitrary manifold and τ : T 1
k M −→ M its tangent bundle of k1-

velocities.

Definition 3.4. A section X : M −→ T 1
k M of the projection τ will be called a

k-vector field on M .

Since T 1
k M can be canonically identified with the Whitney sum T 1

k M ≡ TM ⊕
· · · ⊕ TM of k copies of TM , we deduce that a k-vector field X defines a family of
vector fields X1, . . . , Xk on M . Günther in [19] introduce the following definition.

Definition 3.5. An integral section of the k-vector field X = (X1, . . . , Xk) pass-
ing through a point x ∈ M on M is a map φ : U0 ⊂ Rk → M , defined on some
neighborhood U0 of 0 ∈ Rk, such that

φ(0) = x, φ∗(t)(
∂

∂tA
) = XA(φ(t)) ∀t ∈ U, 1 ≤ A ≤ k,

or equivalently, φ satisfies

(3.6) X ◦ φ = φ(1),

where φ(1) is the first prolongation of φ defined by

φ(1) : U0 ⊂ Rk −→ T 1
k M

t −→ φ(1)(t) = j1
0φt

where φt(s) = φ(s + t) for all t, s ∈ Rk such that s + t ∈ U0.

In local coordinates,

(3.7) φ(1)(t1, . . . , tk) = (φi(t1, . . . , tk),
∂φi

∂tA
(t1, . . . , tk)), 1 ≤ A ≤ k , 1 ≤ i ≤ n .

Definition 3.6. We say that a k-vector field X = (X1, . . . , Xk) on M is integrable if
there is an integral section passing through each point of M .

Remark 3.7. If φ is an integral section of a k-vector field (X1, . . . , Xk) then each
curve on M defined by φA = φ ◦ hA, where hA : R → Rk is the natural inclusion
hA(t) = (0, . . . , t, . . . , 0), is an integral curve of the vector field XA on M , with
1 ≤ A ≤ k.

Definition 3.8. A k-vector field on T 1
k M , that is, a section ξ ≡ (ξ1, . . . , ξk) : T 1

k M →
T 1

k (T 1
k M) of the projection τT 1

k M : T 1
k (T 1

k M) → T 1
k M , is a Second Order Partial

Differential Equation (SOPDE) if and only if it is also a section of the vector bundle
T 1

k (τ) : T 1
k (T 1

k M) → T 1
k M , where T 1

k (τ) is defined by T 1
k (τ)(j1

0σ) = j1
0(τ ◦ σ).

Let (xi) be a coordinate system on M and (xi, vi
A) the induced coordinate system

on T 1
k M . From the definition we deduce that the local expression of a SOPDE ξ is

(3.8) ξA(xi, vi
A) = vi

A

∂

∂xi
+ (ξA)i

B

∂

∂vi
B

, 1 ≤ A ≤ k.
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Proposition 3.1. Let ξ an integrable k-vector field on T 1
k M . The necessary and

sufficient condition for ξ to be a Second Order Partial Differential Equation (SOPDE)
is that its integral sections are first prolongations φ(1) of maps φ : Rk → M . That is

ξA(φ(1)(t)) = (φ(1))∗(t)(
∂

∂tA
)(t)

for all A = 1, . . . , k. These maps φ will be called solutions of the SOPDE ξ.

From (3.7) and (3.8) we have

Proposition 3.2. φ : Rk → M is a solution of the SOPDE ξ = (ξ1, . . . , ξk), locally
given by (3.8), if and only if

∂φi

∂tA
(t) = vi

A(φ(1)(t)),
∂2φi

∂tA∂tB
(t) = (ξA)i

B(φ(1)(t)).

If ξ : T 1
k M → T 1

k T 1
k M is an integrable SOPDE then for all integral sections

σ : U ⊂ Rk → T 1
k M we have (τM ◦ σ)(1) = σ, where τ : T 1

k M → M is the canonical
projection.

Now we show how to characterize the SOPDE using the canonical k-tangent struc-
ture of T 1

k M .

Definition 3.9. The Liouville (or canonical) vector field C on T 1
k M is the infinites-

imal generator of the one parameter group

R× (T 1
k M) −→ T 1

k M

(s, (xi, vi
B)) −→ (xi, es vi

B) .

Thus C is locally expressed as follows:

(3.9) C =
∑

B

CB =
∑

i,B

vi
B

∂

∂vi
B

,

where each CB corresponds with the canonical vector field on the B-th copy of TM
on T 1

k M .

From (3.3), (3.8) and (3.9) we deduce the next result:

Proposition 3.3. A k-vector field ξ = (ξ1, . . . , ξk) on T 1
k M is a SOPDE if and only

if
JA(ξA) = CA, ∀ 1 ≤ A ≤ k,

where (J1, . . . , Jk) is the canonical k-tangent structure on T 1
k M .

3.4 Hamiltonian and Lagrangian formalisms

The role played by symplectic manifolds in classical mechanics is here played by
the k-symplectic manifolds (see Günther, [19]). Let (M, ωA, V ; 1 ≤ A ≤ k) be a k-
symplectic manifold. Let us consider the vector bundle morphism defined by Günther
([19]):

(3.10)

Ω] : T 1
k M −→ T ∗M

(X1, . . . , Xk) −→ Ω](X1, . . . , Xk) =
k∑

A=1

iXA
ωA .
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Definition 3.10. Let H : M −→ R be a function on M . Any k-vector field
(X1, . . . , Xk) on M such that

Ω](X1, . . . , Xk) = dH

will be called an evolution k-vector field on M associated with the Hamiltonian func-
tion H.

It should be noticed that in general the solution to the above equation is not
unique. Nevertheless, it can be proved [24] that there always exists an evolution
k-vector field associated with a Hamiltonian function H.

We denote by X k
H(M) the set of k-vector fields X = (X1, . . . , Xk) on M which are

the solutions of the equation

(3.11)
k∑

A=1

iXA
ωA = dH.

Let (xi, pA
i ) be a local coordinate system on M . Then we have:

Proposition 3.4. If X = (X1, . . . , Xk) is an integrable evolution k-vector field asso-
ciated to H, i.e. X ∈ X k

H(M), then its integral sections

σ : Rk −→ M

(tB) −→ (σi(tB), σA
i (tB)),

are solutions of the classical local Hamilton equations associated with a regular multiple
integral variational problem [44]:

(3.12)
∂H

∂xi
= −

k∑

A=1

∂σA
i

∂tA
,

∂H

∂pA
i

=
∂σi

∂tA
, 1 ≤ i ≤ n, 1 ≤ A ≤ k .

If we consider the canonical k-symplectic structure ((ω0)A, V ; 1 ≤ A ≤ k) on
(T 1

k )∗M and H : (T 1
k )∗M → R be a Hamiltonian function on (T 1

k )∗M , then the family(
(T 1

k )∗M, (ω0)A,H
)

is called a k-symplectic Hamiltonian system and the equations
(3.12) are called the Hamilton-de Donder-Weyl equations associated to this system.

Example 3.1 ([35]) We shall use the above formalism to obtain an intrinsic version
for the electrostatic equations. Let us consider R3 with a metric g with components
gij . Let σ : R3 → R be the electric potential and P = (P1, P2, P3) : R3 → R3 the
electric field. We denote by (t1, t2, t3) the standard coordinates on R3 and we set√

g =
√

det gij . By r(t) we denote the scalar function which gives the density of the
electric charge on R3. In this example we suppose that r(t) is constant, r(t) = r, that
is the distribution of the electric charge is constant on R3 and, also, we suppose that
the metric g on R3 is the Euclidian metric.

Let us consider on M = (T 1
3 )∗R the canonical polysymplectic structure

((ω0)1, (ω0)2, (ω0)3). We denote by (q, p1, p2, p3) the local coordinates on M = (T 1
3 )∗R

induced by the standard coordinates (q) on R, and we define a Hamiltonian function

H : (T 1
3 )∗R→ R by H(q, p1, p2, p3) = 4πrq + 1

2

3∑
A=1

(pA)2.
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Consider the equation

(3.13) Ω](X1, X2, X3) =
3∑

A=1

iXA
(ω0)A = dH,

where (X1, X2, X3) is a 3-vector field on (T 1
3 )∗R.

Let φ : R3 → (T 1
3 )∗R, φ(t) = (ψ(t), ψ1(t), ψ2(t), ψ3(t)) be an integral section of an

evolution 3-vector field which is a solution of (3.13). Then we obtain the Hamilton-de
Donder-Weyl equations associated to this 3-symplectic Hamiltonian system:

4πr = −
(

∂ψ1

∂t1
+

∂ψ2

∂t2
+

∂ψ3

∂t3

)
, ψA =

∂ψ

∂tA
, A = 1, 2, 3,

which are the electrostatic equations, and then the components ψ(t) and
(ψ1(t), ψ2(t), ψ3(t)) of φ are the electric potential σ and the electric field P = (P1, P2, P3)
on R3, respectively. So, the equation (3.13) is a geometric version of the electrostatic
equations.

Next, if we consider a Lagrangian function L : T 1
k M → R, L = L(xi, vi

A), then we
obtain, by using a variational principle, the generalized Euler-Lagrange equations for
L:

(3.14)
k∑

A=1

d

dtA
(

∂L

∂vi
A

)− ∂L

∂xi
= 0, vi

A =
∂xi

∂tA
.

Following the ideas of Günther [19], we will describe the above equations (3.14) in
terms of the geometry of k-tangent structures. In classical mechanics the symplectic
structure of Hamiltonian theory and the tangent structure of Lagrangian theory play
complementary roles [9, 10, 17, 18, 21]. Also, that the k-symplectic structures and
the k-tangent structures play similarly complementary roles. So, we construct a k–
symplectic structure on the manifold T 1

k M , using its canonical k–tangent structure
for each 1 ≤ A ≤ k.

Let us consider the 1–forms (βL)A = dL ◦ JA , 1 ≤ A ≤ k. In a local coordinate
system (xi, vi

A) we have

(3.15) (θL)A =
∂L

∂vi
A

dxi, 1 ≤ A ≤ k.

Definition 3.11. A Lagrangian L is called regular if

(3.16) det(
∂2L

∂vi
A∂vj

B

) 6= 0, 1 ≤ i, j,≤ n, 1 ≤ A, B ≤ k .

By introducing the following 2–forms

(3.17) (ωL)A = −d(θL)A , 1 ≤ A ≤ k,

one can easily prove the following.

Proposition 3.5. L : T 1
k M → R is a regular Lagrangian if and only if

((ωL)1, . . . , (ωL)k, V ) is a k-symplectic structure on T 1
k M , where V denotes the ver-

tical distribution of τ : T 1
k M → M .
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Let L : T 1
k M → R be a regular Lagrangian and let us consider the k-symplectic

structure ((ωL)1, . . . , (ωL)k, V ) on T 1
k M defined by L. Let Ω]

L be the morphism
defined by this k-symplectic structure

Ω]
L : T 1

k (T 1
k M) −→ T ∗(T 1

k M).

Thus, we can set the following equation:

(3.18) Ω]
L(X1, . . . , Xk) = dEL,

where EL = C(L)− L =
∑
i,A

vi
A

∂L

∂vi
A

− L.

The family
(
T 1

k M, (ωL)A, EL

)
is called a k-symplectic Lagrangian system. As in

the Hamiltonian case, we will denote by X k
L(T 1

k M) the set of k -vector fields ξ =
(ξ1, · · · , ξk) on T 1

k M which are the solutions of the equation (3.18).

Proposition 3.6. Let L be a regular Lagrangian. If ξ = (ξ1, · · · , ξk) is a solution of
(3.18) then it is a SOPDE. In addition, if ξ is integrable then the solutions of ξ are
solutions of the generalized Euler-Lagrange equations (3.14).

This k-symplectic structure, associated to a regular Lagrangian L, was also intro-
duced by Günther([19]) using the Legendre transformation, as follow.

The Legendre map FL : T 1
k M → (T 1

k )∗M was introduced by Günther ([19]) and
was rewritten in [35] as follow: if (v1x, . . . , vkx) ∈ (T 1

k )xM , then

(3.19) [FL(v1x, . . . , vkx)]A (ux) =
d

ds
|s=0 L(v1x, . . . , vAx + sux, . . . , vkx),

for each A = 1, . . . , k and ux ∈ TxM . Locally, FL is given by

(3.20) FL(xi, vi
A) =

(
xi,

∂L

∂vi
A

)
.

In fact, from (3.15), (3.17) and (3.20) we obtain the following propositions:

Proposition 3.7. For all A = 1, . . . , k, (ωL)A = (FL)∗(ω0)A , where ((ω0)1, . . . , (ω0)k)
are the 2-forms of the canonical k -symplectic structure on (T 1

k )∗M .

Proposition 3.8. Let L be a Lagrangian. The following conditions are equivalent:
(1) L is regular.
(2) FL is a local diffeomorphism.
(3) ((ωL)1, . . . , (ωL)k, V ) is a k-symplectic structure on T 1

k M .

Example 3.2 ([35]) In this example we consider the theory of a vibrating string.
Coordinates (t1, t2) are interpreted as the time and the distance along the string, re-
spectively. If φ(t1, t2) denotes the displacement of each point of the string as function
of the time t1 and the position t2, the motion equations are

(3.21) σ
∂2φ

∂(t1)2
− τ

∂2φ

∂(t2)2
= 0,

where σ and τ are certain constants of the mechanical system.
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We shall show that the equations (3.21) can be described as the generalized Euler-
Lagrange equations associated to a Lagrangian L defined on the jet bundle T 1

k M with
M = R and k = 2. Let us denote by (x, v1, v2) the coordinates on T 1

2R and consider
the Lagrangian L : T 1

2R→ R, (x, v1, v2) → 1
2 (σv2

1 − τv2
2).

Since L is regular there exists a k-symplectic structure ((ωL)1, (ωL)2), associated
to L, given in local coordinates by (ωL)1 = σdv1∧dx, (ωL)1 = −τdv2∧dx. The energy
EL = C(L)− L is locally given by EL = 1

2 (σv2
1 − τv2

2) and dEL = σv1dv1 − τv2dv2.
Now, we consider the map Ω]

L : T 1
2 (T 1

2R) −→ T ∗(T 1
2R) and let us suppose that

there exists (ξ1, ξ2) a solution of the equation

(3.22) Ω]
L(ξ1, ξ2) = iX1(ωL)1 + iX2(ωL)2 = dEL.

Then, from the Proposition (3.6), we know that (ξ1, ξ2) is a SOPDE. Let us suppose
that (ξ1, ξ2) ∈ T 1

2 (T 1
2R) are locally given by ξA = vA

∂
∂x +(ξA)1 ∂

∂v1
+(ξA)2 ∂

∂v2
, A =

1, 2.
If (ξ1, ξ2) is a solution of Ω]

L(ξ1, ξ2) = dEL, then we have σ(ξ1)1 − τ(ξ2)2 = 0. So,
if we consider φ : R2 → R, φ = φ(t1, t2), a solution of ξ = (ξ1, ξ2), then we obtain

0 = σ(ξ1)1 − τ(ξ2)2 = σ
∂2φ

∂(t1)2
− τ

∂2φ

∂(t2)2
.

Thus, the equation (3.22) is a geometric version for the equations (3.21).
An example of an integrable SOPDE solution ξ = (ξ1, ξ2) of (3.21) is given by (see

[7])

ξ1 = v1
∂

∂x
+ τ(σ(v1)2 + τ(v2)2)

∂

∂v1
+ 2στv1v2

∂

∂v2
,

ξ2 = v2
∂

∂x
+ 2στv1v2

∂

∂v1
+ σ(σ(v1)2 + τ(v2)2)

∂

∂v2
.

Thus any solution φ of the SOPDE ξ = (ξ1, ξ2) in the formulae above is a solution of
the vibrating string equation (3.21).

4 Generalized results and applications to k-symplectic
Hamiltonian and Lagrangian systems

In this section we will present a result which allow us to obtain new kinds of con-
servation laws for k-symplectic Hamiltonian systems, without the help of a Noether
type theorem and without the use of a variational principle, using only symmetries
and pseudosymmetries associated to the k-vector fileds X = (X1, . . . , Xk) which are

solutions of the equation
k∑

A=1

iXA
ωA = dH ([37]). This result is a generalization

from the classical case (k = 1) of a results of G.L. Jones ([20]) and M. Crâşmăreanu
([12]). Applications for Lagrangian and Hamiltonian k-symplectic formalisms are also
presented ([35], [37]).

In the classical case (k = 1), let us recall that Cartan symmetries induce and are
induced by constants of motions (conservation laws), and these results are known as
Noether Theorem and its converse ([11], [12], [20], [38], [39]).
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For the higher order case the problem was be solved by L. Bua, I.Bucătaru and
M. Salgado in [7]. So, for k > 1 the Noether Theorem is also true, that is each
Cartan symmetry induces a conservation law (defined for a regular Lagrangian on
T 1

k M , like in [7]). However, the converse of Noether Theorem may not be true and
in [7] is provided some examples of conservation laws that are not induced by Cartan
symmetries.

Using the notions from the previous section, we have:

Definition 4.1. ([7]) A vector field X ∈ X (T 1
k M) is called a Cartan symmetry for

the regular Lagrangian L, if LX(ωL)A = 0, for all 1 ≤ A ≤ k and LXEL = 0, where
EL = vi

A
∂L
∂vi

A
− L.

Let us remark that LX(ωL)A = 0 implies that, locally, we have iX(ωL)A = dfA,
for all 1 ≤ A ≤ k ([7]).

Definition 4.2. Let (M, ωA, V ; 1 ≤ A ≤ k) be a k-symplectic manifold.
The map Φ = (Φ1, . . . , Φk) : M −→ Rk is called conservation law
for a k-vector field X = (X1, . . . , Xk) on M if

(4.1)
k∑

A=1

LXAΦA = 0.

In [7], [42] it is presented an equivalent definition for conservation law on T 1
k M .

Theorem 4.1. (Noether Theorem, [7]) Let be L a regular Lagrangian on T 1
k M . If

X ∈ X (T 1
k M) is a Cartan symmetry for L such that there exists (locally defined)

functions fA on T 1
k M with

(4.2) LX(θL)A = dfA , 1 ≤ A ≤ k ,

then the following functions

(4.3) ΦA = (θL)A(X)− fA , 1 ≤ A ≤ k ,

give a conservation law for the Euler-Lagrange equations associated to L, i.e. for an
integrable evolution k-vector field associated to H = EL, the energy of L.

Next result show when a conservation law for a Lagrangian induces and are induced
by a Cartan symmetry.

Theorem 4.2. ([7]) Let be L a regular Lagrangian on T 1
k M , the functions fA ∈

C∞(T 1
k M), 1 ≤ A ≤ k, and a vector field X ∈ X (T 1

k M) such that

(4.4) iX(ωL)A = dfA , 1 ≤ A ≤ k .

Then F = (f1, . . . , fk) is a conservation law for L if and only if X is a Cartan
symmetry.

Example 4.1 ([35], [7]) The following two functions Φ1,Φ2 : T 1
2R→ R,

(4.5) Φ1(v1, v2) = −2σv1v2 , Φ2(v1, v2) = σ(v1)2 + τ(v2)2
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give a conservation law Φ = (Φ1,Φ2) for the evolution 2-vector field associated with
the Hamiltonian EL from example 3.2. We can say that Φ = (Φ1, Φ2) is a conservation
law for the Euler-Lagrange equations (3.21) of the vibrating string, or Φ = (Φ1, Φ2)
give a conservation law for an integrable evolution k-vector field associated to H = EL,
where EL is the energy of L. More that, this conservation law is not induced by a
Cartan symmetry, and hence it will show that the converse of the Noether Theorem
4.1 is not true, unless the assumptions (4.4) are satisfied ([7]).

Now, let us introduce the notions:

Definition 4.3. A k-vector field Y = (Y1, . . . , Yk) on M is called symmetry for
X = (X1, . . . , Xk) if

(4.6) LXA
YA = 0, for all A = 1, . . . , k.

Definition 4.4. If we fixed a k-vector field Y = (Y1, . . . , Yk) on M , then a k-vector
field Z = (Z1, . . . , Zk) is called Y-pseudosymmetry for X = (X1, . . . , Xk) if, for all
A = 1, . . . , k, there is a function fA ∈ C∞(M) such that

(4.7) LXAZA = fA YA.

A X-pseudosymmetry for X is called pseudosymmetry for X. It is clear that a
O-pseudosymmetry for X = (X1, . . . , Xk) is a symmetry for X.

Next, we will present the main result, which allow us to obtain new kinds of
conservation laws for k-symplectic Hamiltonian systems, without the help of a Noether
type theorem and without the use of a variational principle. The proof of this theorem
can be found in [37].

Theorem 4.3. ([37]) Let be X = (X1, . . . , Xk) a k-vector field on M and (ω1, . . . , ωk)
be a family of p-forms on M , invariant for X, i.e. LXA

ωA = 0, for all A = 1, . . . , k.
If the k-vector field Y = (Y1, . . . , Yk) on M is a symmetry for X and the p−1 k-vector
fields S1 = (S1

A)A=1,k , ..., Sp−1 = (Sp−1
A )A=1,k are Y-pseudosymmetries for X, then

(4.8) Φ = (Φ1, . . . , Φk) ,

is a conservation law for X = (X1, . . . , Xk), where ΦA = ωA

(
S1

A, . . . , Sp−1
A , YA

)
, for

all A = 1, . . . , k.
Particularly, if Y, S1, ..., Sp−1 are symmetries for X then Φ given by (4.8) is a

conservation law for X = (X1, . . . , Xk).

As an immediate consequence of the previous theorem, we have the result:

Theorem 4.4. Let (M,ωA, V ; 1 ≤ A ≤ k) be a k–symplectic manifold and H : M −→
R be a function on M . Let X = (X1, . . . , Xk) be an integrable evolution k-vector field
associated to H, i.e. X ∈X k

H(M). If we suppose that LXAωA = 0, for all A = 1, . . . , k,
then for any k-vector field Y = (Y1, . . . , Yk) on M , which is a symmetry for X and
for any k-vector field S = (S1, . . . , Sk), which is a Y-pseudosymmetry for X, we have
that

Φ = (Φ1, . . . , Φk) ,

is a conservation law for X = (X1, . . . , Xk), where ΦA = ωA (SA, YA), for all A =
1, . . . , k.

Particularly, if Y, S are symmetries for X then Φ given above is a conservation
law for X = (X1, . . . , Xk).
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Remark 4.5. a) Obviously, for any k-vector field X ∈X k
H(M), using (3.11), we have

k∑
A=1

LXAωA = 0. But, for our purpose we have need more that, that is we need that

LXA
ωA = 0, for all A = 1, . . . , k.

b) Obviously, the Hamiltonian function H is not a conservation law for an inte-
grable evolution k-vector field X = (X1, . . . , Xk)∈X k

H(M). Neither the map H =
(H, . . . , H) : M −→ Rk is not a conservation law for any integrable evolution k-vector

field X ∈X k
H(M), because

k∑
A=1

LXA
H 6= 0.

Now, using this last result we can obtain new kinds of conservation laws for k-
symplectic Lagrangian systems and k-symplectic Lagrangian systems.

Corollary 4.5. Let
(
(T 1

k )∗M, (ω0)A,H
)

be a k-symplectic Hamiltonian system and
X = (X1, . . . , Xk) be an integrable evolution k-vector field associated to H, i.e.
X ∈X k

H((T 1
k )∗M). If we suppose that LXA

(ω0)A = 0, for all A = 1, . . . , k, then
for any k-vector field Y = (Y1, . . . , Yk) on (T 1

k )∗M , which is a symmetry for X and
for any k-vector field S = (S1, . . . , Sk), which is a Y-pseudosymmetry for X, we have
that

Φ = (Φ1, . . . , Φk) ,

is a conservation law for X = (X1, . . . , Xk), where ΦA = (ω0)A (SA, YA), for all
A = 1, . . . , k.

Particularly, if Y, S are symmetries for X then Φ given above is a conservation
law for X = (X1, . . . , Xk).

Corollary 4.6. Let
(
T 1

k M, (ωL)A, EL

)
be a k-symplectic Lagrangian system and X =

(X1, . . . , Xk) be an integrable evolution k-vector field associated to H = EL, i.e.
X ∈ X k

L(T 1
k M). If we suppose that LXA(ωL)A = 0, for all A = 1, . . . , k, then for

any k-vector field Y = (Y1, . . . , Yk) on T 1
k M , which is a symmetry for X and for any

k-vector field S = (S1, . . . , Sk), which is a Y-pseudosymmetry for X, we have that

Φ = (Φ1, . . . , Φk) ,

is a conservation law for X = (X1, . . . , Xk), where ΦA = (ωL)A (SA, YA), for all
A = 1, . . . , k.

Particularly, if Y, S are symmetries for X then Φ given above is a conservation
law for X = (X1, . . . , Xk).

Remark 4.6. If each vector fields X1, . . ., Xk of X ∈ X k
L(T 1

k M) are Cartan symme-
tries for L, then we have LXA

(ωL)A = 0, for all A = 1, . . . , k, and then we can apply
the last corollary for this k-vector field X. Moreover, we have that (H, . . . , H) is a
conservation law for X = (X1, . . . , Xk), where H = EL.

Example 4.2 ([7], [39]) a) If we consider the Lagrangians L1, L2 : T 1
2R→ R, defined

by L1(x, v1, v2) = 1
2 (σ(v1)2−τ(v2)2), L2(x, v1, v2) =

√
1 + (v1)2 + (v2)2, then the vec-

tor field X = ∂
∂x is a Cartan symmetry, and the induced conservation laws are Φ =

(Φ1 = σv1, Φ2 = −τv2) for L1 and Φ = (Φ1 = v1√
1+(v1)2+(v2)2

, Φ2 = v2√
1+(v1)2+(v2)2

)

for L2.
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Let us observe that the above Lagrangians corresponde to the vibrating string equa-
tions and, respectively to the equations of minimal surfaces.

b) For the Lagrangian L : T 1
3R → R, L(x, v1, v2, v3) = 1

2

(
(v1)2 + (v2)2 + (v3)2

)
,

the vector field X = ∂
∂x is a Cartan symmetry, and the induced conservation law is

Φ = (Φ1, Φ2,Φ3), where Φi = vi, i = 1, 2, 3. The Euler-Lagrange equations corre-
sponding to L are the Laplace’s equations.

c) For the Lagrangian L : T 1
2R2 → R, defined by

L(x1, x2, v1
1 , v1

2 , v2
1 , v2

2) =
(

1
2
λ + ν

) [
(v1

1)2 + (v2
2)2

]
+

1
2
ν

[
(v1

2)2 + (v2
1)2

]
+(λ+ν)v1

1v2
2 ,

the vector field X = ∂
∂x1 + ∂

∂x2 is a Cartan symmetry, and the induced conservation
law is Φ = (Φ1, Φ2), where Φ1 = (λ + 2ν)v1

1 + νv2
1 + (λ + ν)v2

2 , Φ2 = (λ + ν)v1
1 +

νv1
2 + (λ + 2ν)v2

2 . The Euler-Lagrange equations corresponding to L are the Navier’s
equations.
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[21] J. Klein, Espaces variationelles et mécanique, Ann. Inst. Fourier 12 (1962),1-124.
[22] M. de León, I. Méndez, M. Salgado, p-almost tangent structures, Rend. Circ.

Mat. Palermo Serie II, XXXVII (1988), 282-294.
[23] M. de León, I. Méndez, M. Salgado, Integrable p–almost tangent structures and

tangent bundles of p1-velocities, Acta Math. Hungar. 58 (1-2) (1991), 45-54.
[24] M. de León, E. Merino, J. Oubina, P. Rodriguez, M. Salgado, Hamiltonian sys-

tems on k–cosymplectic manifolds, J. Math. Phys. 39 (2), (1998), 876.
[25] M. de León, E. Merino, M. Salgado, k-cosymplectic manifolds and Lagrangian

field theories, J. Math. Phys. 42 (5), (2001), 2092.
[26] C. Lopez, E. Martinez, M. F. Ranada, Dynamical Symmetries, Non-Cartan

Symmetries and Superintegrability of the n -Dimensional Oscillator, J. Phys.
A: Math. Gen. 32, (1999), 1241-1249.

[27] R. Miron, M. Anastasiei, The Geometry of Lagrange Spaces: Theory and Ap-
plications, Fundamental Theories of Physics, 59, Kluwer Academic Publishers,
1994.

[28] R. Miron, The Geometry of Higher-Order Lagrange Spaces. Applications to Me-
chanics and Physics, Fundamental Theories of Physics, 82, Kluwer Academic
Publishers, 1997.

[29] R. Miron, The Geometry of Higher-Order Finsler Spaces, Hadronic Press, Inc.,
USA, 1998.

[30] R. Miron, D. Hrimiuc, H. Shimada, V. S. Sabău, The Geometry of Lagrange and
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