Hypersurfaces of hyperbolic space
with 1-type Gauss map

Uğur Dursun

Abstract. In this work we obtain the necessary and sufficient conditions on submanifolds of a pseudo-Euclidean space R_m^n to have 1-type Gauss map. Then we classify hypersurfaces of a hyperbolic space in Lorentz-Minkowski space R_m^{n-1} with at most two distinct principal curvatures and 1-type Gauss map.

Key words: finite type map; Gauss map; hyperbolic space; principal curvature.

1 Introduction

In late 1970’s B.Y. Chen introduced the notion of finite type submanifold of a Euclidean space. Since then the finite type submanifolds of Euclidean spaces or pseudo-Euclidean spaces have been studied by many geometers, and many interesting results have been obtained (see [2, 6, 7, 8, 14], etc.).

In [9], Chen and Piccinni extended the notion of finite type to differentiable maps, in particular, to Gauss map of submanifolds. A smooth map ϕ from a compact Riemannian manifold M into a Euclidean space R_m^n is said to be of finite type if ϕ can be expressed as a finite sum of R_m^n-valued eigenfunctions of the Laplacian Δ of M, that is, $\phi = c + \sum_{i=1}^k \phi_i$, where c is a constant map, ϕ_1, \ldots, ϕ_k are non-constant maps such that $\Delta \phi_i = \lambda_i \phi_i$, $\lambda_i \in \mathbb{R}$, $i = 1, \ldots, k$. If $\lambda_1, \ldots, \lambda_k$ are different, then the map ϕ is said to be of k-type. If ϕ is an isometric immersion, then M is called a submanifold finite type (or of k-type) if ϕ does.

The notion of finite type Gauss map is especially a useful tool in the study of submanifolds, and many authors studied submanifolds with finite type Gauss map ([3, 4, 5, 9, 10], etc.). Chen and Piccinni characterized and classified compact hypersurfaces with 1-type Gauss map. Also, they proved that a compact surface M in a Euclidean space R_m^n has 1-type Gauss map if and only if M is one of the surfaces: a sphere $S^2(r) \subset R^3 \subset R^m$ or the product of two plane circles $S^1(a) \times S^1(b) \subset R^3 \subset R^m$.

Later, in [13] Choi, Ki and Suh studied space-like surfaces in pseudo-Euclidean spaces R_p^{2+p}. They proved that the only space-like surfaces in R_p^{2+p} with 1-type Gauss
map are locally the surfaces: the Euclidean space \(\mathbb{R}^2 \), the hyperbolic cylinder \(\mathbb{H}^1 \times \mathbb{R} \) in \(\mathbb{R}^3 \), and the product \(\mathbb{H}^1 \times \mathbb{H}^1 \) of two hyperbolic curves in \(\mathbb{R}_p^2 \).

In this work we study hypersurfaces of the hyperbolic space \(\mathbb{H}^{n+1}(-1) \subset \mathbb{R}^{n+2} \) with 1-type Gauss map. We mainly prove that if \(M \) is a hypersurface of \(\mathbb{H}^{n+1}(-1) \subset \mathbb{R}^{n+2} \) with at most two distinct principal curvatures, then the Gauss map of \(M \) is of 1-type if and only if \(M \) is one of the hypersurfaces: \(\mathbb{H}^n(-c) \subset \mathbb{H}^{n+1}(-1) \) with \(0 < c \leq 1 \), \(S^n(c) \subset \mathbb{H}^{n+1}(-1) \) with \(c > 0 \) or \(\mathbb{H}^n(-b) \times \mathbb{S}^{n-k}(a) \subset \mathbb{H}^{n+1}(-1) \) with \(1/a - 1/b = -1 \).

2 Preliminaries

Let \(\mathbb{R}^m \) be an \(m \)-dimensional pseudo-Euclidean space with an inner product of signature \((t, m-t)\) given by

\[
\langle x, x \rangle = -\sum_{i=1}^t x_i^2 + \sum_{i=t+1}^m x_i^2,
\]

where \((x_1, \ldots, x_m)\) is the natural coordinate of \(\mathbb{R}^m \). We define pseudo-Riemannian manifolds \(S^n_t(c) \) and \(\mathbb{H}^n_t(-c) \) as follows:

\[
S^n_t(c) = \{(x_1, \ldots, x_{n+1}) \in \mathbb{R}^{n+1} | -\sum_{i=1}^t x_i^2 + \sum_{i=t+1}^{n+1} x_i^2 = \frac{1}{c} \}, \quad (c > 0),
\]

\[
\mathbb{H}^n_t(-c) = \{(x_1, \ldots, x_{n+1}) \in \mathbb{R}^{n+1} | -\sum_{i=1}^{t-1} x_i^2 + \sum_{i=t+2}^{n+1} x_i^2 = -\frac{1}{c} \}, \quad (c > 0).
\]

These spaces are complete and of constant curvature \(c \) and \(-c\), respectively. \(S^n_t(c) \) and \(\mathbb{H}^n_t(-c) \) are called a pseudo-sphere and a pseudo-hyperbolic space, respectively. Also, for \(t = 0 \) and \(x_1 > 0 \), \(\mathbb{H}^n(-c) = \mathbb{H}^n_0(-c) \) is called a hyperbolic space of \(\mathbb{R}^{n+1}_1 \).

Let \(M_q \) be an \(n \)-dimensional pseudo-Riemannian submanifold with index \(q \) in an \(m \)-dimensional pseudo-Euclidean space \(\mathbb{R}^m_t \). Let \(e_1, \ldots, e_n, e_{n+1}, \ldots, e_m \) be an adapted local orthonormal frame on \(M_q \) in \(\mathbb{R}^m_t \) such that \(\langle e_A, e_B \rangle = \varepsilon_{AB} \delta_{AB} \), \(\varepsilon_{AB} = \langle e_B, e_B \rangle = \pm 1 \), \(e_1, \ldots, e_n \) are tangent to \(M_q \), and \(e_{n+1}, \ldots, e_m \) are normal to \(M_q \). We use the following convention on the range of indices:

\[1 \leq A, B, C, \ldots \leq m, \quad 1 \leq i, j, k, \ldots \leq n, \quad n + 1 \leq \beta, \gamma, \theta, \ldots \leq m. \]

Let \(\nabla \) be the Levi-Civita connection of \(\mathbb{R}^m_t \) and \(\bar{\nabla} \) the induced connection on \(M_q \). Denote by \(\{\omega^1, \ldots, \omega^m\} \) the dual frame and by \(\{\omega_{AB}\} \) with \(\omega_{AB} + \omega_{BA} = 0 \) the connection forms associated to \(\{e_1, \ldots, e_m\} \). Then we have the formulas of Gauss and Weingarten, respectively, as

\[
\bar{\nabla}_{e_k} e_\beta = \sum_{j=1}^n \varepsilon_{j\beta} \omega_{ij}(e_k) e_j + \sum_{\beta=n+1}^m \varepsilon_{\beta\beta} \omega_{\beta\beta}(e_k) e_\beta
\]

and

\[
\bar{\nabla}_{e_k} e_\nu = -A_\beta(e_k) + \sum_{\nu=n+1}^m \varepsilon_{\nu\beta} \omega_{\nu\beta}(e_k) e_\nu.
\]
From the Cartan’s Lemma we have \(\omega_{ij} = \sum_{i=1}^{n} e_j h^j_i \omega^i \) with \(h^j_i = h^j_{i} \), where \(h^j_i \)'s are the coefficients of the second fundamental form \(h \), and \(A^r \) the Weingarten map.

The mean curvature vector \(H \) and the squared length \(||h||^2 \) of the second fundamental form \(h \) are defined, respectively, by

\[
H = \frac{1}{n} \sum_{i,j} e_i h^j_i e_j \quad \text{and} \quad ||h||^2 = \sum_{i,j} e_i e_j h^j_i h^i_j.
\]

The scalar curvature \(S \) of \(M_q \) is given by

\[
(2.1) \quad S = n^2 |H|^2 - ||h||^2,
\]

where \(|H|^2 \) is the squared length of the mean curvature vector \(H \) of \(M_q \) in \(\mathbb{R}^m \).

The Codazzi equation of \(M_q \) in \(\mathbb{R}^m \) is given by

\[
(2.2) \quad h^j_{ik} = h^j_{ik} \quad \text{and} \quad h^j_{ik} = e_i (h^j_{ik}) - \sum_{t=1}^{n} e_t \left(h^j_t \omega_{kt}(e_i) + h^j_k \omega_{it}(e_i) \right) + \sum_{\nu=n+1}^{m} e_\nu h^j_{ik} \omega_{\nu}(e_i).
\]

Also, from the Ricci equation of \(M_q \) in \(\mathbb{R}^m \) we have

\[
(2.3) \quad R^\perp (e_j, e_k; e_\theta, e_\beta) = \langle [A_{e_\theta}, A_{e_\beta}](e_j), e_k \rangle = \sum_{i=1}^{n} e_i \left(h^j_i h^j_i - h^j_i h^j_i \right),
\]

where \(R^\perp \) is the normal curvature tensor.

A submanifold \(M_q \) of a Euclidean space \(\mathbb{R}^m \) or a pseudo-Euclidean space \(\mathbb{R}^m_t \) is said to be of finite type if its position vector \(x \) can be expressed as a finite sum of eigenvectors of the Laplacian \(\Delta \) of \(M_q \), that is,

\[
x = c + x_1 + \cdots + x_k,
\]

where \(c \) is a constant map, \(x_1, \ldots, x_k \) are non-constant maps satisfying \(\Delta x_i = \lambda_i x_i \), \(\lambda_i \in \mathbb{R}, i = 1, \ldots, k \). If \(\lambda_1, \ldots, \lambda_k \) are different, then \(M_q \) is said to be of \(k \)-type. It is known that if \(P \) is a polynomial defined by \(P(t) = \prod_{i=1}^{k} (t - \lambda_i) \), then \(P(\Delta)(x - c) = 0 \).

Conversely, if \(M \) is compact and there exist a constant vector \(c \) and a non-trivial polynomial \(P \) such that \(P(\Delta)(x - c) = 0 \), then \(M \) is of finite type [6, pp.255-258].

If \(M \) is not compact, then the existence of a non-trivial polynomial \(P \) such that \(P(\Delta)(x - c) = 0 \) does not imply that \(M \) is of finite type in general. However, in [11] it was proved that the existence of such a polynomial \(P \) guaranties that \(M \) is of finite type when either \(M \) is of 1-dimensional or the polynomial \(P \) has exactly \(k \) distinct roots, where \(k = \deg P \). In [12], Chen studied non-compact finite type pseudo-Riemannian submanifolds of pseudo-Euclidean spaces. He gave the following definition for the finite type submanifolds of the pseudo-Riemannian sphere \(\mathbb{S}^{m-1}_t \) or the pseudo-hyperbolic space \(\mathbb{H}^{m-1}_{t-1}(-r) \).

Definition 2.1. An \(n \)-dimensional pseudo-Riemannian submanifold \(M_q \) of a pseudo-Riemannian sphere \(\mathbb{S}^{m-1}_t \) (resp., of a pseudo-hyperbolic space \(\mathbb{H}^{m-1}_{t-1}(-r) \)) is called
of k-type in $\mathbb{S}_t^{m-1}(r)$ (resp., in $\mathbb{H}_{t-1}^{m-1}(-r)$) if the position vector x of M_q in \mathbb{R}_t^n has the following form:

$$x = x_1 + \cdots + x_k, \quad \Delta x_i = \lambda_i x_i, \quad \lambda_i \in \mathbb{R}, \; i = 1, \ldots, k$$

such that $\lambda_1, \ldots, \lambda_k$ are distinct.

Similarly we give

Definition 2.2. A smooth map $\phi : M_q \to \mathbb{S}_t^{m-1}(r) \subset \mathbb{R}_t^n$ (resp., $\phi : M_q \to \mathbb{H}_{t-1}^{m-1}(-r) \subset \mathbb{R}_t^n$) from a pseudo-Riemannian manifold M_q into a pseudo-Riemannian sphere $\mathbb{S}_t^{m-1}(r)$ (resp., into a pseudo-hyperbolic space $\mathbb{H}_{t-1}^{m-1}(-r)$) is called of k-type in $S_t^{m-1}(r)$ (resp., in $\mathbb{H}_{t-1}^{m-1}(-r)$) if the map ϕ has the following form:

$$\phi = \phi_1 + \cdots + \phi_k, \quad \Delta \phi_i = \lambda_i \phi_i, \quad \lambda_i \in \mathbb{R}, \; i = 1, \ldots, k$$

such that $\lambda_1, \ldots, \lambda_k$ are distinct.

The following proposition was given in [11].

Proposition 2.1. Let $x : M \to \mathbb{R}^m$ be an immersion. If there exist a constant vector $c \in \mathbb{R}^m$ and a polynomial $P(t) = \prod_{i=1}^k (t - \lambda_i)$ with mutually distinct $\lambda_1, \ldots, \lambda_k$ such that $P(\Delta)(x - c) = 0$, then M is finite type.

This proposition remains true if M is a pseudo-Riemannian submanifold of a pseudo-Euclidean space, [11]. For smooth maps we have the following result analogous to Proposition 2.1 whose proof is the same as that of Proposition 2.1.

Proposition 2.2. Let $\phi : M_q \to \mathbb{R}_t^n$ be a smooth map from a pseudo-Riemannian manifold M_q into a pseudo-Euclidean space \mathbb{R}_t^n. If there exist a constant vector $c \in \mathbb{R}_t^n$ and a polynomial $P(t) = \prod_{i=1}^k (t - \lambda_i)$ with mutually distinct root $\lambda_1, \ldots, \lambda_k$ such that $P(\Delta)(\phi - c) = 0$, then the map ϕ is of finite type.

By Definition 2.2 and Proposition 2.2 we can state

Corollary 2.3. Let $\phi : M_q \to \mathbb{S}_t^{m-1}(r) \subset \mathbb{R}_t^n$ (resp., $\phi : M_q \to \mathbb{H}_{t-1}^{m-1}(-r) \subset \mathbb{R}_t^n$) be a smooth map from a pseudo-Riemannian manifold M_q into a pseudo-Riemannian sphere $\mathbb{S}_t^{m-1}(r)$ (resp., into a pseudo-hyperbolic space $\mathbb{H}_{t-1}^{m-1}(-r)$). Then the map ϕ is of finite type if there exists a polynomial $P(t) = \prod_{i=1}^k (t - \lambda_i)$ with mutually distinct roots $\lambda_1, \ldots, \lambda_k$ such that $P(\Delta)(\phi) = 0$. In particular, ϕ is of 1-type if and only if $\Delta \phi = \lambda \phi$ for some real number λ.

3 The Gauss Map

The definition of Gauss map of a pseudo-Riemannian submanifold of pseudo-Euclidean space was given in [15] as follows. Let $G(n, m)$ be the Grassmannian manifold consisting of all oriented n-planes through the origin of \mathbb{R}_t^n and $\bigwedge^n \mathbb{R}_t^n$ the vector space obtained by the exterior product of n vectors in \mathbb{R}_t^n. Let $f_{i_1} \wedge \cdots \wedge f_{i_n}$ and $g_{i_1} \wedge \cdots \wedge g_{i_n}$ be two vectors in $\bigwedge^n \mathbb{R}_t^n$, where $\{f_1, f_2, \ldots, f_m\}$ and $\{g_1, g_2, \ldots, g_m\}$ are two orthonormal bases of \mathbb{R}_t^n. Define an indefinite inner product (\cdot, \cdot) on $\bigwedge^n \mathbb{R}_t^n$ by

$$ (f_{i_1} \wedge \cdots \wedge f_{i_n}, g_{i_1} \wedge \cdots \wedge g_{i_n}) = \det((f_{i_1}, g_{j_k})). $$

(3.1)
Therefore, for some positive integer s, we may identify $\bigwedge^n \mathbb{R}^m$ with some pseudo-Euclidean space \mathbb{R}^N_s, where $N = \binom{m}{n}$. Let $e_1, \ldots, e_n, e_{n+1}, \ldots, e_m$ be an oriented local orthonormal frame on M_q in \mathbb{R}^m with $e_B = \langle e_B, e_B \rangle = \pm 1$ such that e_1, \ldots, e_n are tangent to M_q and e_{n+1}, \ldots, e_m are normal to M_q. The map $\nu : M_q \to G(n, m) \subset \mathbb{R}^N_s$ from an oriented pseudo-Riemannian submanifold M_q into $G(n, m)$ defined by

$$\nu(p) = (e_1 \wedge e_2 \wedge \cdots \wedge e_n)(p)$$

is called the Gauss map of M_q that is a smooth map which assigns to a point p in M_q the oriented n-plane through the origin of \mathbb{R}^m and parallel to the tangent space of M_q at p. We put $\varepsilon = \langle \nu, \nu \rangle = \varepsilon_1 \varepsilon_2 \cdots \varepsilon_n = \pm 1$ and

$$M_s^{N-1}(\varepsilon) = \begin{cases} S_1^{N-1}(1) & \text{in } \mathbb{R}^N_s \text{ if } \varepsilon = 1, \\ H_1^{N-1}(-1) & \text{in } \mathbb{R}^N_s \text{ if } \varepsilon = -1. \end{cases}$$

Then the Gauss image $\nu(M_q)$ can be viewed as $\nu(M_q) \subset M_s^{N-1}(\varepsilon)$.

Considering ν as an \mathbb{R}^N_s-valued function on M_q we have

$$\nu e_i = \sum_{j=1}^n e_1 \wedge \cdots \wedge \nabla_{e_i} e_j \wedge \cdots \wedge e_n = \sum_{j, \beta} \varepsilon_{\beta} h_{\beta}^{ij} e_1 \wedge \cdots \wedge \hat{\nabla}_{e_i} e_j \wedge \cdots \wedge e_n.$$

Using $\nabla_{e_i} e_i = \sum_{j=1}^n \varepsilon_j \omega_j(e_k) e_j$ we have

$$(\nabla_{e_i} e_i) \nu = \sum_{j, k, \beta} \varepsilon_k \varepsilon_{\beta} h_{\beta}^{ij} \omega_k(e_i) e_1 \wedge \cdots \wedge \hat{\nabla}_{e_i} e_j \wedge \cdots \wedge e_n.$$

Since

$$\Delta \nu = \sum_{i=1}^n \varepsilon_i (\nabla_{e_i} e_i - e_i e_i) \nu,$$

considering the Codazzi equation (2.2) we obtain by a direct calculation that

$$\Delta \nu = \|h\|^2 \nu - \sum_{j=1}^n e_1 \wedge \cdots \wedge \nabla_{e_j}^\perp H \wedge \cdots \wedge e_n$$

$$- \sum_{i,j,\ell,\theta,\beta} \varepsilon_\beta \varepsilon_{\theta} e_i h_{\theta}^{ij} h_{\beta}^{\ell j} e_1 \wedge \cdots \wedge \hat{\nabla}_{e_i} e_j \wedge \cdots \wedge e_\beta \wedge \cdots \wedge e_\theta \wedge \cdots \wedge e_{n},$$

where ∇^\perp is the normal connection induced on M_q. Hence, from (2.3) and (3.4) we have

Lemma 3.1. Let M_q be an n-dimensional oriented pseudo-Riemannian submanifold of an m-dimensional pseudo-Euclidean space \mathbb{R}_m^n. Then the Laplacian of the Gauss
map $\nu : M_q \to G(n, m) \subset \overline{M}_s^{N-1}(\varepsilon) \subset \mathbb{R}^N_s$ is given by

$$\Delta \nu = \|h\|^2 - n \sum_{j=1}^{n} e_1 \wedge \cdots \wedge \nabla_{e_j} H \wedge \cdots \wedge e_n$$

$$+ \sum_{i,j, \theta \prec \beta} e_\theta e_\beta \overline{R}^i(e_i, e_j; e_\theta, e_\beta) e_1 \wedge \cdots \wedge \overline{e}_\theta \wedge \cdots \wedge \overline{e}_\beta \wedge \cdots \wedge e_n.$$

(3.5)

4 Hypersurfaces of Hyperbolic Space with 1-Type Gauss Map

We classify hypersurfaces of a hyperbolic space in the Lorentz-Minkowski space \mathbb{R}^{m+1}_1 with at most two distinct principal curvatures and 1-type Gauss map.

Theorem 4.1. Let M_q be an n-dimensional oriented pseudo-Riemannian submanifold of an m-dimensional pseudo-Euclidean space \mathbb{R}^m. Then the Gauss map $\nu : M_q \to \overline{M}_s^{N-1}(\varepsilon) \subset \mathbb{R}^N_s$, $N = \binom{m+n}{n}$, is of 1-type if and only if M_q has constant scalar curvature, parallel mean curvature vector, and flat normal connection.

Proof. Suppose that the Gauss map is of 1-type, that is, from Corollary 2.3 $\Delta \nu = \lambda \nu$ for some $\lambda \in \mathbb{R}$. It follows from (3.5) that $\|h\|^2 = \lambda$ is a constant, $\overline{R}^i(e_i, e_j; e_\theta, e_\beta) = 0$ and $\nabla_{\overline{e}} H = 0$. So, the normal connection is flat and the mean curvature vector is parallel which implies that the mean curvature is constant. Hence, from (2.1) the scalar curvature is constant.

The converse follows from (2.1) and (3.5). \qed

For example, all n-dimensional isoparametric hypersurfaces of \mathbb{R}^{n+1}_1 have 1-type Gauss map.

Corollary 4.2. Let M be an oriented hypersurface of the hyperbolic space $\mathbb{H}^{n+1}(-1) \subset \mathbb{R}^{n+2}_1$. Then the Gauss map ν of M is of 1-type if and only if M has constant scalar curvature and constant mean curvature.

Proof. Let $\{e_1, \ldots, e_{n+2}\}$ be an orthonormal local moving frame on M in \mathbb{R}^{n+2}_1 such that e_1, \ldots, e_n are tangent to M, and $e_{n+1}, e_{n+2} = x$ are normal to M, where x is the position vector of M in \mathbb{R}^{n+2}_1. Since x is parallel in the normal bundle and the codimension of M is two, then e_{n+1} is also parallel, and thus the normal connection is flat. Therefore the proof follows from Theorem 4.1. \qed

For example, since isoparametric hypersurfaces of a hyperbolic space have constant mean curvature and constant scalar curvature, then all such hypersurfaces of a hyperbolic space have 1-type Gauss map by Corollary 4.2.

Now we consider the following hypersurfaces of $\mathbb{H}^{n+1}(-1)$:

$$\mathbb{H}^n(-c) = \{x \in \mathbb{H}^{n+1}(-1) \mid x_1 > 0, \ x_{n+2} = \sqrt{-1 + \frac{1}{c}} \}, \ (0 < c \leq 1),$$

$$\mathbb{S}^n(c) = \{x \in \mathbb{H}^{n+1}(-1) \mid x_1 = \sqrt{1 + \frac{1}{c}} \}, \ (c > 0)$$
and
\[\mathbb{H}^t(-b) \times S^{n-k}(a) = \{ x \in \mathbb{H}^{n+1}(-1) \mid -x_1^2 + \sum_{i=2}^{k+1} x_i^2 = -\frac{1}{b}, \sum_{i=k+2}^{n+2} x_i^2 = \frac{1}{a}, \ x_1 > 0 \}, \]
where \(1/a - 1/b = -1\). Then we give the following classification theorem.

Theorem 4.3. Let \(M \) be an oriented hypersurface of the hyperbolic space \(\mathbb{H}^{n+1}(-1) \subset \mathbb{R}^{n+2} \) with at most two distinct principal curvatures. Then, the Gauss map \(\nu : M \to S^{n-1}_+(1) \subset \mathbb{R}^n \), \((N = (n + 1)(n + 2)/2, s = n(n+1)/2)\), is of 1-type if and only if \(M \) is congruent to one of the followings:

1) \(\mathbb{H}^t(-c) \subset \mathbb{H}^{n+1}(-1) \) with \(0 < c \leq 1\),
2) \(S^n(c) \subset \mathbb{H}^{n+1}(-1) \) with \(c > 0 \) or
3) \(\mathbb{H}^t(-b) \times S^{n-k}(a) \subset \mathbb{H}^{n+1}(-1) \) with \(1/a - 1/b = -1\).

Proof. Let \(M \) be one of \(\mathbb{H}^t(-c) \subset \mathbb{H}^{n+1}(-1) \) with \(0 < c \leq 1\), \(S^n(c) \subset \mathbb{H}^{n+1}(-1) \) with \(c > 0 \) or \(\mathbb{H}^t(-b) \times S^{n-k}(a) \subset \mathbb{H}^{n+1}(-1) \) with \(1/a - 1/b = -1\). The principle curvatures in the unit normal direction of \(M \) in \(\mathbb{H}^{n+1}(-1) \) are constant, and the number of distinct principal curvatures are at most two. Then, the Gauss map \(\nu \) of \(M \) is of 1-type by Corollary 4.2.

Conversely, let \(M \) be a hypersurface in \(\mathbb{H}^{n+1}(-1) \subset \mathbb{R}^{n+2} \) with 1-type Gauss map \(\nu \). Then \(M \) has constant mean curvature and constant scalar curvature by Corollary 4.2. Let \(\{e_1, e_2, \ldots, e_{n+2}\} \) be an orthonormal local moving frame on \(M \) in \(\mathbb{R}^{n+2} \) such that \(e_1, e_2, \ldots, e_n \) are tangent to \(M \), \(e_{n+1}, e_{n+2} = x \) are normal to \(M \), and also \(A_{e_{n+1}}(e_i) = \mu_i e_i, \ i = 1, \ldots, n \), where \(x \) denote the position vector of \(M \) in \(\mathbb{R}^{n+2} \).

Since \(M \) has at most two distinct principal curvature, we put \(\mu_1 = \cdots = \mu_k = \mu \) and \(\mu_{k+1} = \cdots = \mu_n = \lambda \) for \(0 \leq k < n \). Hence, the mean curvature vector \(H \) of \(M \) in \(\mathbb{R}^{n+2} \) is \(H = \alpha' e_{n+1} + x \), where \(\alpha' = (k\mu + (n-k)\lambda)/n \) is the mean curvature of \(M \) in \(\mathbb{H}^{n+1}(-1) \).

The mean curvature \(|H| \) of \(M \) in \(\mathbb{R}^{n+2} \) is constant if and only if \(\alpha' = (k\mu + (n-k)\lambda)/n \) is constant. Also, the square of the length of the second fundamental form is \(||h||^2 = n + k\mu^2 + (n-k)\lambda^2 \) which is constant because of (2.1). Let \(X \) be a vector on \(M \). From \(X(||H||^2) = 0 \) and \(X(||h||^2) = 0 \) we obtain
\[kX(\mu) + (n-k)X(\lambda) = 0 \quad \text{and} \quad k\mu X(\mu) + (n-k)\lambda X(\lambda) = 0 \]
which gives \((\mu - \lambda)X(\mu) = 0\). So, \(\mu - \lambda = 0 \) or \(X(\mu) = 0 \) with \(\mu - \lambda \neq 0 \).

Case 1. \(\mu = \lambda \). Clearly, \(\mu \) and \(\lambda \) are constants as \(\alpha' = (k\mu + (n-k)\lambda)/n \) is constant. The hypersurface \(M \) is totally umbilical in \(\mathbb{H}^{n+1}(-1) \), i.e., \(A_{e_{n+1}} = \mu I \), where \(I \) denotes the identity transformation. From the Gauss equation it is easily seen that \(M \) is of constant curvature \(-1 + \mu^2 \). By Theorem 5.1 in [1], \(M \) is locally congruent to \(\mathbb{H}^t(-c) \subset \mathbb{H}^{n+1}(-1) \) with the curvature \(-c, 0 < c \leq 1 \) or \(S^n(c) \subset \mathbb{H}^{n+1}(-1) \) with the curvature \(c > 0 \).

Case 2. \(X(\mu) = 0 \) with \(\mu - \lambda \neq 0 \). Hence, \(\mu \) and \(\lambda \) are constants. Again, by Theorem 5.1 in [1], \(M \) is locally congruent to \(\mathbb{H}^t(-b) \times S^{n-k}(a) \subset \mathbb{H}^{n+1}(-1) \) with \(1/a - 1/b = -1\), where \(-b = -1 + \mu^2 \), \((0 < b \leq 1)\), \(a = 1 + \lambda^2 \), \((a > 0)\) and \(\mu \lambda = 1 \). \(\square \)

We conclude that
Corollary 4.4. The totally geodesic hypersurface $H^n(-1)$ of $H^{n+1}(-1) \subset \mathbb{R}^{n+2}_1$ is the only minimal hypersurface of $H^{n+1}(-1)$ with at most two distinct principal curvatures and 1-type Gauss map.

From Corollary 4.4, the totally geodesic surface $H^2(-1)$ of $H^3(-1) \subset \mathbb{R}^4_1$ is the only minimal surface of $H^3(-1)$ with 1-type Gauss map.

Corollary 4.5. An oriented surface M of the hyperbolic space $H^3(-1) \subset \mathbb{R}^4_1$ has 1-type Gauss map $\nu : M \to S^5_3(1) \subset \mathbb{R}^6_3$ if and only if M is congruent to one of the followings: $H^2(-c) \subset H^3(-1)$ with $0 < c \leq 1$, $S^3(c) \subset H^3(-1)$ with $c > 0$ or $H^1(-b) \times S^1(a) \subset H^3(-1)$ with $1/a - 1/b = -1$.

References

Author's address:

Uğur Dursun
Istanbul Technical University, Faculty of Science and Letters
Department of Mathematics, 34469 Maslak, Istanbul, Turkey.
E-mail: udursun@itu.edu.tr