Notable submanifolds in Berwald-Moór spaces

Vladimir Balan

Dedicated to the 70-th anniversary
of Professor Constantin Udriste

Abstract. After proving that the Berwald-Moór structures are pseudo-Finsler of Lorentz type, for co-isotropic submanifolds of Berwald-Moór spaces ([4]), the Gauss-Weingarten and Gauss-Codazzi, Peterson-Mainardi and Ricci-Kühne equations of the such submanifolds are explicitly presented and discussed, taking into account the locally-Minkowski character of the Finslerian ambient metric.

Key words: pseudo-Finsler structure, co-isotropic submanifold, induced non-linear connection, induced linear connection, screen distribution.

1 The Berwald-Moór pseudo-Finsler structure

The Berwald-Moór framework was initiated by P.K. Rashevski ([23], [24],[25]) and further fundamented by D. Pavlov, G. Garasko and S. Kokarev ([8], [9], [20], [10], [21], [22]). The main geometric structure is here provided by the structure $\mathcal{H}_n = (\tilde{M} = \mathbb{R}^n, F)$, with

$$F(y) = \begin{cases} \sqrt[\nu]{y^1y^2 \ldots y^n}, & \text{for } n \text{ odd} \\ \sqrt[\nu]{|y^1y^2 \ldots y^n|}, & \text{for } n \text{ even} \end{cases} = \sqrt[\nu]{\varepsilon_y \cdot y^1y^2 \ldots y^n},$$

with $\varepsilon_y = (\text{sign}(y^1 \ldots y^n))^{n+1}$. This is a Finsler metric function of locally Minkowski type, i.e., F does not effectively depend on the points of \tilde{M}.

Remarks. The Berwald-Moór structure (as M. Matsumoto remarked in [16]), is peculiar, and has specific features which make it very special. In this respect, we note the following:

- though F is defined and continuous on the whole TM, the structure is C^∞ not on the whole slit tangent space $\tilde{TM} = TM \setminus \{0\}$, but on the open subset:

$$\tilde{TM} = \bigcup_{x \in \tilde{M}} T_x\tilde{M} \subset \tilde{TM}, \quad T_x\tilde{M} = \{y \in \mathbb{R}^n \equiv T_xM|y^1 \ldots y^n \neq 0\},$$

i.e. on the intersection of the main open subsets of the slit tangent space which project to the natural open charts of the projectivized space PTM;
• for \(n \) even \(F \) is (only) positive homogeneous of first order, while for \(n \) odd, it is (completely) homogeneous;

• in the odd case, \(F \) might have negative values as well.

Regarding the associated Finsler tensor field, we have the following result:

Proposition 1.1 ([16]). The fundamental tensor field \(g_{ij} dx^i \otimes dx^j \) of \(H^n \) defined by
\[
g_{ij}(y) = \frac{1}{2} \frac{\partial^2 F^2}{\partial y^i \partial y^j}
\]
has the explicit expression
\[
g_{ij} = \frac{F^2}{ny^i y^j} \left(\frac{2}{n} - \delta_{ij} \right).
\]

Its determinant is \(g = \det(g_{ij})_{i,j=1}^{n} = \frac{(-1)^{n+1}}{n^n} \), and its inverse (the dual \((2,0)\)-tensor field \(g^{ij} \) given by \(g^{ij} g_{ij} = \delta^i_j \)) has the components
\[
g^{ij} = \frac{ny^i y^j}{F^2} \left(\frac{2}{n} - \delta^{ij} \right).
\]

The proof is mainly computational, and relies on the properties of the determinant and on the following classical result from linear algebra:

Lemma 1.2. If the matrix \([a] = (a_{ij})_{i,j=1}^{\Gamma} \) is invertible, \(b_i \in \mathbb{R}, i \in \Gamma, n \), and \(\varepsilon \in \{\pm 1\} \), then \([\tilde{a}] = (\tilde{a}_{ij} = a_{ij} + \varepsilon b_i b_j)_{i,j=1}^{\Gamma} \) is invertible and

a) \(\det[\tilde{a}] = a_* (1 + B_* \varepsilon) \), where \(a_* = \det[a] \), \(b_* = a^{ij} b_i b_j \), with \([a]^{-1} = (a^{ij})_{i,j=1}^{\Gamma} \);

b) \([\tilde{a}]^{-1} \) has the coefficients \(\tilde{a}^{ij} = a^{ij} - \frac{\varepsilon}{1 + \varepsilon b_*} b^i b^j \), where \(b^i = a^{ij} b_j \).

As consequence, the metric tensor \(g_{ij} \) is non-degenerate. Regarding its signature we prove the following

Theorem 1.3. The Berwald-Moór metric tensor of \(\mathcal{H}_n \) having the coefficients (1.1) is of Minkowski type, hence provides in each fiber of the tangent bundle a pseudo-Riemannian structure.

Proof. We further denote \([g] = (g_{ij})_{i,j=1}^{\Gamma} \). Then the spectrum of \([g] \) is given by
\[
\sigma([g]) = \{ \lambda \in \mathbb{R} | \det([g] - \lambda I_n) = 0 \}.
\]

We note that
\[
[g] = \frac{\rho^{2/n}}{n^2} \begin{pmatrix}
\mu(a_1)^2 & 2a_1 a_2 & \ldots & 2a_1 a_n \\
2a_2 a_1 & \mu(a_2)^2 & \ldots & 2a_2 a_n \\
\vdots & \vdots & \ddots & \vdots \\
2a_n a_1 & 2a_n a_2 & \ldots & \mu(a_n)^2
\end{pmatrix},
\]

where \(\rho = y^1 y^2 \cdots y^n = F^n \), \(\mu = 2 - n \), \(a_k = 1/y^k \). We perform a change of coordinates given by the matrix \(C = \text{diag} \left(\frac{n}{\rho^{1/n}} \sqrt{2} \right) (y^1, \ldots, y^n) \), and then the
Notable submanifolds in Berwald-Moór spaces

matrix of the bilinear symmetric form changes to

\[
[g]' = C^t [g] C = \begin{pmatrix}
\alpha & 1 & \ldots & 1 \\
1 & \alpha & \ldots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \ldots & \alpha
\end{pmatrix}, \text{ where } \alpha = \frac{\mu}{2} = 1 - \frac{n}{2}.
\]

Hence \([g]' = U - \frac{n}{2} I_n\), where \(U\) is the \(n \times n\) matrix with all entries equal to 1. Then by Sylvester’s Theorem, \(\sigma([g]) = \sigma([g]')\) and the characteristic polynomial is

\[
P_{[g]'}(\lambda) = \det([g]' - \lambda I_n) = \det \left(U - (\lambda + \frac{n}{2}) I_n \right) = \det(U - \lambda' I_n).
\]

But the eigenvalues \(\lambda'\) of \(U\) are \(n\) (simple eigenvalue), and 0 (with multiplicity \(n - 1\)). Hence \(\lambda = \lambda' - \frac{n}{2} \in \left\{ \frac{n}{2}, -\frac{n}{2}, \ldots, -\frac{n}{2} \right\} = \sigma([g]')\).

We conclude that \([g]\) is not positive definite, its signature is \((+, \ldots, -)\), and the space \((\mathbb{R}^n, [g])\) is of Minkowski type. Hence the Berwald-Moór structure is pseudo-Finslerian of Lorentz type.

There exist numerous notable submanifolds which naturally emerge from the algebraic and geometric richness of the Berwald-Moór structure of \(H_n\). We can mention the indicatrix of \(H_n\), \(\Sigma_{H_n} : y^1 \cdot \ldots \cdot y^n = 1\), which is a Tzitzeica hypersurface (i.e., the ratio between the curvature at a point \(P \in \Sigma_{H_n}\) and the \((n + 1)\)–th power of the distance from origin to the tangent plane to \(\Sigma_{H_n}\) at \(P\), is constant, briefly \(K(P) \cdot d(O, T_P \Sigma_{H_n})^{-(n+1)} = \text{const.},\) see [26]), and whose study is essential, due to the fact that its isometries which commute with homotheties prove to be isometries of \(H_n\). The Tzitzeica hypersurface is tightly related the geometry of angles on \(H_n\) ([21], [22]). As well, it leads to natural PDEs of soliton type. The study of the symmetries of the PDEs which admit \(\Sigma_{H_n}\) as solution produces mappings which preserve the hypersurface, and which may contain subclasses of isometries of \(H_n\).

Another significant submanifold is the implicitly defined simultaneity hypersurface, with relevance in the applications of the Berwald-Moór structures in Relativity theory (see e.g., [15]).

Since the geometry of pseudo-Finsler spaces is a very recent field of research and \(H_n\) is an illustrative example of such space, we shall describe further a specific class of pseudo-Finsler submanifolds (the lightlike, or co-isotropic submanifolds), and point out the differences to the proper Finsler approach, illustrated for the case of particular ambient space \(H_n\).

2 Co-isotropic submanifolds in Berwald-Moór spaces

The pseudo-Riemann lightlike (co-isotropic) submanifolds are intensive subject of recent research, since they produce mathematical horizons in General Relativity (e.g., Cauchy or Kruskal; see [1], [6], [11], [7], [14], [13]) and appear in the theory of electromagnetism ([12]). Very recent advances regarding the ruled lightlike surfaces in
Minkowski 3-space have been obtained in [12]. The essential tool in studying the induced objects on a lightlike submanifold is the construction of a certain transversal bundle (see e.g. [6]). There exist at present few works which address such submanifolds in pseudo-Finsler spaces (e.g., [4]).

For convenience, we shall further replace the pseudo-Finslerian metric \(g_{ij} \), whose signature is \((+, -, \ldots, -)\) with the opposite metric, \(g_{ij}^* \), of signature \((-+, +, \ldots, +)\). Then we note that the metric has index 1, is non-degenerate and has constant signature \((+, \ldots, +)\). (2.1) Then we canonically obtain the shape extrinsic objects. This is performed by constructing induced objects on a lightlike submanifold is the construction of a certain transversal bundle (see e.g. [6]). There exist at present few works which address such submanifolds induced objects on a lightlike submanifold is the construction of a certain transversal bundle (see e.g. [6]). There exist at present few works which address such submanifolds.

Consider now a submanifold \(M \subset \tilde{M} \equiv \mathbb{R}^n \), \(\dim M = m \) \((2 \leq m < n)\), locally parametrized by \(x^i = x^i(u), u = (u^1, \ldots, u^m), i = 1, n \). We denote the local coordinates of \(TM \) by \((u, v) \), where \(v = (v^1, \ldots, v^m) \in \mathbb{R}^m \equiv T_u \tilde{M} \). Then \(TM \) is immersed in \(\tilde{M} \), by \(2n \)-uples of the form \(x(u), y(u, v) \in \mathbb{R}^{2n} \equiv TM \), with ((17), [4]) \(y^i = B^i_u(u), \) where \(B^i_u = \frac{\partial x^i}{\partial u} \) and by \(*\) we denote transvection with \(v \) (i.e., \(B^i_u = B^i_u v^\alpha \), and we use the indices \(\alpha, \beta, \ldots \) within the submanifold index range \(\overline{1, m} \). The vector fields tangent to \(TM \) have their canonical basis related to the one of the ambient space \(\tilde{M} \) via

\[
\frac{\partial}{\partial u^\alpha} = B^i_u(u) \frac{\partial}{\partial x^i} + B^i_u(u) \frac{\partial}{\partial y^i}, \quad \frac{\partial}{\partial v^\alpha} = B^i_u(u) \frac{\partial}{\partial y^i},
\]

where \(B^i_{\alpha, \beta}(u) du^\alpha \otimes du^\beta \) is the flat Hessian of \(x^i(u) \), \(B^i_{\alpha, \beta} = \frac{\partial^2 x^i}{\partial u^\alpha \partial u^\beta} \). We note that \(g_{ij} \) induces on the submanifold \(M \) the \((0, 2)\)-symmetric tensor field

\[
g^M_{\alpha, \beta} = B^i_u(u) B^j_u(u) g_{ij}(x(u), y(u, v)).
\]

Let now \(TM^0 \) be the normal space to \(M \) in \(\tilde{M} \),

\[
TM^0 = \bigcup_{p \in TM} TM^0_p, \quad \text{where } TM^0_p = \{ X \in VTM_p \mid X \perp Y, \forall Y \in VTM_p \}.
\]

In the proper Finslerian case (i.e., for \(g_{ij} \) positive definite), we have \(TM^0 \cap VTM = \{0\} \). But in the pseudo-Finsler space \(\mathcal{H}_0 \) this property might fail, and we distinguish the typical case of co-isotropic submanifolds ([6], [4]):

Definition 2.1. The submanifold \(M \subset \tilde{M} \) is called *co-isotropic* (or *lightlike, null*) if \(TM^0 \subset VTM \).

Example 2.2. The hyperquadrics

\[
K_y = \{ w \in \mathbb{R}^n \mid w^i [g]_y w = 0 \} \subset \mathbb{R}^n, \quad \forall y \in \mathbb{R}^n
\]

and their submanifolds are co-isotropic. We have denoted \([g]_y = (g_{ij}(y))_{i,j=1,n}\).

In the following, in order to study the induced geometry of the co-isotropic submanifolds \(M \) of \(\mathcal{H}_0 \), we remark the need of a proper transversal to \(M \) bundle, for canonically obtaining the shape extrinsic objects. This is performed by constructing several total spaces for subbundles in \(VTM \), determined by the following decompositions

\[
\begin{align*}
\begin{cases}
VTM = S(VTM) \perp TM^0 \\
VTM = S(VTM) \perp S(VTM)^+ \\
S(VTM)^+ = TM^0 \oplus tr(VTM),
\end{cases}
\end{align*}
\]
where \perp and \oplus denote the orthogonal direct, and simple direct sums, respectively. Then (2.1) lead to the decompositions ([4]):

\[(2.2) \quad \tilde{V}T\mathcal{M} = S(VT\mathcal{M}) \perp (TM^0 \oplus tr(VT\mathcal{M})) = VT\mathcal{M} \oplus tr(VT\mathcal{M}).\]

The defined by (2.1) subspaces are

- $S(VT\mathcal{M})$ - called the screen distribution of $VT\mathcal{M}$;
- $S(VT\mathcal{M})^\perp$ - the orthogonal complement of the screen distribution;
- $tr(VT\mathcal{M})$ - called the transversal vector bundle of \mathcal{M}.

![Fig.1. Building the transversal bundle in co-isotropic submanifolds.](image)

The proof of existence of a local basis $B' = \{N_a | a \in [m+1, n]\}$ of the $F(TM)$-module of sections $\Gamma(tr(VT\mathcal{M}))$ relies on imposing the requirements:

\[g(N_a, \xi_b) = \delta_{ab}, \quad B' \perp g, \quad B' \perp g S(VT\mathcal{M}),\]

i.e., the new basis has to be dual to a pre-existing basis $B = \{\xi_a | a \in [m+1, n]\}$ of TM^0, has to be g-orthogonal and isotropic, and g-orthogonal to the screen distribution. The new local basis is still lightlike, but slant, transversal to \mathcal{M}, hence replacing the tangent to \mathcal{M} orthogonal basis B. Then one may consider the classic Gauss-Weingarten and Gauss-Codazzi, Peterson-Mainardi and Ricci-Kühne equations of the co-isotropic submanifold \mathcal{M}, as follows.

3 Nonlinear connections on co-isotropic submanifolds of \mathcal{H}_n

We further use the common for general Finsler spaces abbreviations:

\[\partial_i = \frac{\partial}{\partial x^i}, \quad \dot{\partial}_i = \frac{\partial}{\partial y^i}, \quad \delta_i = \frac{\delta}{\delta x^i} = \partial_i - N_i^j \dot{\partial}_j,\]

where $N_i^j = \dot{\partial}_j \gamma_{00}^i$ are the coefficients of the nonlinear Cartan canonic connection of $\tilde{\mathcal{M}}$, the null index denotes transvection with γ and $\gamma_i^j_k = \frac{1}{2} g^{xy}(\partial_j g_{yk} + \partial_k g_{sj} - \partial_s g_{jk})$ are the usual Christoffel symbols of second kind. We note that since \mathcal{H}_n is locally Minkowski, the nonlinear connection has locally null coefficients. Assuming that \mathcal{H}_n admits an affine atlas, the null nonlinear connection can be regarded as a global
geometric object. This connection still locally induces a generally non-trivial non-linear connection \tilde{N}_α^β on $M \subset \mathcal{H}_n$, given by

$$\tilde{N}_\alpha^\beta(u, v) = \tilde{B}_i^\beta (B_{\alpha}^a N_j^a + B_{\alpha}^a t_{v}^a) = \tilde{B}_i^\beta B_{\alpha}^a t_{v}^a,$$

which is practically provided by the flat Hessian of the immersion components, where we denoted by $[\tilde{B}_i^\alpha, \tilde{N}_j^\alpha]$ the inverse matrix of $[B_{\alpha}^a, N_j^a]$, and assume that the indices a, b, \ldots take the complementary index values $m + 1, n$. The components of this inverse matrix practically link the fields of frames $\{\partial_{\hat{a}}, \ldots, \partial_{\hat{n}}\}$ to the local adapted frame $\{\frac{\partial}{\partial x^a}, \ldots, \frac{\partial}{\partial x^n}, \xi_{m+1}, \ldots, \xi_n\} \subset \Gamma_{loc}(VT\tilde{M})$. As well, for M co-isotropic, $M \subset \tilde{M} = \mathcal{H}_n$ admits a local adapted basis of the sections of $TTM = HTM \oplus VTM$, with the horizontal fields

$$\delta\frac{\partial}{\partial u^a} = \delta\frac{\partial}{\partial v^a} - \tilde{N}_\alpha^a \delta\frac{\partial}{\partial \xi^a} =$$

$$= B_{\alpha}^a \delta\frac{\partial}{\partial x^a} + \tilde{N}_\alpha^a (B_{\alpha}^a N_j^a + B_{\alpha}^a) B_{\alpha}^a \delta\frac{\partial}{\partial y^a} =$$

$$= B_{\alpha}^a \delta\frac{\partial}{\partial x^a} + \tilde{N}_\alpha^a B_{\alpha}^a, N_a \in \Gamma(HTM \oplus tr(VTM)).$$

We note that $\{\delta\frac{\partial}{\partial u^a}\}$ locally span $\Gamma(HTM)$, where HTM is a subbundle of $HT\tilde{M} \oplus tr(VTM)$.

4 The co-isotropic Gauss and Weingarten equations in \mathcal{H}_n

For a given Finsler linear connection $\tilde{\nabla}$ on \tilde{M}, we infer the Gauss formula

$$\nabla_{\tilde{\nabla}}(X, Y) = B(X, Y),$$

for all $X \in \Gamma(TTM), Y \in \Gamma(VTM)$. Here B is the second fundamental form on M and ∇ is the induced by $\tilde{\nabla}$ on M linear connection; locally we have $B(X, Y) = B^a(X, Y)lera$. Then, due to a result in [4, Prop. 2.1, p. 65], we have $B^a(X, Y) = g(\nabla_X Y, \xi_a)$ and hence the second fundamental form does not depend on the choice of the screen distribution; this form vanishes for $X, Y \in \Gamma(TM^0)$. Moreover, the induced linear connection is metrical, if and only if it vanishes for $Y \in \Gamma(S(VTM))$. Hence we can state the following

Theorem 4.1. The induced tangent connection on a co-isotropic submanifold $M \subset \mathcal{H}_n$ is metrical if and only if the second fundamental form is zero outside the sections

$$\Gamma(S(VTM)) \times \Gamma(TM^0) \ni (X, Y).$$

The Weingarten formula has the form

$$\nabla_{\tilde{\nabla}}(X, V) = -A_V(X) + \nabla_{\tilde{\nabla}}V,$$

for all $X \in \Gamma(TTM), V \in \Gamma(tr(VTM))$. Here ∇_{tr} is the vertical linear connection on $tr(VTM)$ and A_V is the Weingarten (shape) morphism of $\mathcal{F}(TM)$ modules A_V:
\[\Gamma(TTM) \to \Gamma(VTM). \]

We note that in \(\mathcal{H}_n \) the components \((L^i_{jk}, C^i_{jk}) \) of the Cartan linear connection are given by
\[
L^i_{jk} = \frac{1}{2} g^{is}(\delta_j g_{sk} + \delta_k g_{sj} - \delta_s g_{jk}) \equiv 0
\]
\[(4.3) \]
\[C^i_{jk} = g^{is} C_{jsk} = \frac{g^{is}}{g^{ys}} \left(-\frac{2}{n} + \frac{\delta_{jk} + \delta_{sj} + \delta_{sk}}{n} - \delta_j \delta_k \right). \]

where \(\tilde{\nabla} \) is the h-covariant derivation associated to the Cartan connection, i.e.,
\[
\tilde{\nabla}_i = \frac{1}{2} \delta_j \partial_i \log g^{ij} + \frac{1}{2} \delta_i \partial_j \log g^{ij} + \frac{1}{2} \delta_j \partial_i \log g^{ij}.
\]

5 The co-isotropic Gauss, Codazzi and Ricci equations in \(\mathcal{H}_n \)

The three curvature tensors of a Finsler space have the coefficients:
\[
\begin{cases}
\delta_i [L^i_{jk}] + L^i_{jk}[L^i_{kl}] + C^i_{jk} R^i_{kl} \\
P^i_{jk} = \tilde{\nabla}_i C^i_{jk} - C^i_{jc} P^c_{jk} \\
S^i_{bcd} = \tilde{\nabla}_i C^i_{bc} + C^i_{bc} C^i_{rd}.
\end{cases}
\]

(5.1)

where \(\delta_k \) denotes the h-covariant derivation associated to the Cartan connection, i.e.,
\[
C^i_{jc} = \delta_k C^i_{jc} + C^i_{jc} L^i_{jk} - C^i_{jc} L^i_{jk} - C^i_{jc} L^i_{jk},
\]

and we considered the torsion fields, \(R^i_{kl} = \delta_i [N^i_{jk}] \) \(P^i_{kc} = \tilde{\nabla}_i N^i_{jk} - L^i_{jk} \) (which vanish for Berwald-Moór spaces), the Cartan tensor \(C_{jk} = \frac{1}{2} \tilde{\nabla}_j \tilde{\nabla}_k - \tilde{\nabla}_l \tilde{\nabla}^l \), for \(H^n \) has the form ([16]):
\[
C_{jk} = \frac{F^2}{ny^y y^y} \left(\frac{2}{n^2} - \delta_{ij} + \delta_{jk} + \delta_{ki} + \delta_{ij} \delta_{jk} \delta_{ki} \right),
\]

and we denoted by square braces the skew-symmetrization (e.g., \(\tau_{[i \ldots j]} = \tau i \ldots j - \tau j \ldots i \)). The covariant curvature tensors are given by
\[
R^i_{jk} = g_{jk} R^i_{kl}, \quad P^i_{jk} = g_{jk} P^i_{kl}, \quad S^i_{jk} = g_{jk} S^i_{kl}.
\]

Since \(H^n \) is locally Minkowski, its horizontal and mixed curvatures identically vanish; moreover, it is known that ([16])

Theorem 5.1. The Berwald-Moór space \(\mathcal{H}_n \) has the following properties:

a) \(A_i \equiv F \cdot \tilde{\nabla}_i (\log g^{1/2}) = 0; \)

b) The covariant vertical curvature satisfies the equality
\[
S_{ijkl} = F^{-2} S \cdot (g_{ij} k g_{iji}),
\]

with \(S = -1 = \text{const}, \) i.e., \(\mathcal{H}_n \) is \(S^3 \)-like.

c) The \(T \)-tensor \(T_{ijkl} = FC_{ijkl} + \Sigma_{ijkl} l^1 C_{ijkl} \) identically vanishes, where \(l_i = \frac{F}{ny} \), and \(\Sigma_{ijkl} \) denotes the cyclic sum over the lower indices.
It is known as well ([16]), that $S_{ijkl} \equiv 0$ for $n = 2$, and that the $S3$–property always holds true for 3-dimensional Finsler spaces. The T–property shows that the Finsler space is locally symmetric, like in (pseudo-)Riemannian geometry, and that the space becomes (pseudo-)Riemannian under some weak assumptions. The conformally deformed space $\tilde{F}(x, y) = e^{s(x)} \sqrt{g_1^1y^2\cdots y^n}$ satisfies the Theorem as well, and $P_{ijkl} \equiv 0$.

For deriving the Gauss, Codazzi and Ricci equations, we build the linear connection ∇' on TM ([4]) via

$$\nabla'_X Y = \tilde{\nabla}_X V(Y) + \varphi(\tilde{\nabla}_X \varphi(h Y)), \forall X, Y \in \Gamma(TM),$$

where h and v are the horizontal, respectively vertical projectors for the decomposition $\Gamma(TM) = \Gamma(TM) \oplus \Gamma(VTM)$, and $\varphi \in \text{End}(\Gamma(TM))$ is the almost product $\mathcal{F}(TM)$–module endomorphism given on the local basis via

$$\varphi \left(\frac{\partial}{\partial u^\alpha} \right) = \frac{\partial}{\partial v^\alpha}, \quad \varphi \left(\frac{\partial}{\partial v^\alpha} \right) = \frac{\partial}{\partial u^\alpha}, \forall \alpha \in \overline{1,m}.$$

Denoting by \tilde{R}, R, R^{tr} the curvatures of $\tilde{\nabla}, \nabla, \nabla^{tr}$ one can explicitly derive the Gauss, Codazzi and Ricci equations of $M \subset \tilde{M} = \mathcal{H}_n$. Namely, denoting by $+(X/Y)$ the addition of the term which has X and Y interchanged, and by $-(X/Y)$ its substraction, $A(V, X) = A_V(X)$, considering the torsion T' of ∇' and the objects:

$$\begin{cases}
(\nabla'_X B)(Y, Z) = \nabla'_X (B(Y, Z)) - [B(\nabla'_X Y) + (X/Y)] + \\
(\nabla_X A)(V, Y) = \nabla_X (A(V, Y)) - [A(\nabla'_X V) + (X/Y)],
\end{cases}$$

we infer the announced three sets of equations ([4, Sec. 3.6]):

\begin{align}
\begin{cases}
\tilde{R}(X, Y)Z & = R(X, Y)Z + [A(B(X, Z), Y) + (\nabla'_X B)(Y, Z) - (X/Y)] + \\
& + B(T'(X, Y) Z)
\end{cases} & \quad (5.2) \\
\begin{cases}
\tilde{R}(X, Y)V & = R^{tr}(X, Y)V + [B(Y, A_V(X)) + (\nabla'_Y A)(V, X) - (X/Y)] + \\
& + A_V(T'(X, Y),)
\end{cases} \\
\begin{cases}
\tilde{g}R((X, Y) Z, U) & = g(R(X, Y)Z, U) + [\delta_{ab} B^{ab}(X, Z) g(A_{N_a}(Y), U) - (X/Y)] \\
g(\tilde{R}(X, Y) Z, \xi) & = [g(\nabla'_X B)(Y, Z, \xi) - (X/Y)] + g(B(T'(X, Y), Z), \xi) \\
g(\tilde{R}(X, Y) Z, N) & = g(R(X, Y)Z, N),
\end{cases}
\end{align} \quad (5.3)

for all $X, Y \in \Gamma(TM), \ Z \in \Gamma(VTM), \ V \in \Gamma(tr(VTM)), \ U \in \Gamma(S(VTM)), \ \xi \in \Gamma(TM^0), \ N \in \Gamma(tr(VTM))$. In $M = \mathcal{H}_n$, the relations (5.3) are nontrivial only
when $X, Y \in \Gamma(VTM)$, due to the splitting $\Gamma(VTM) = \Gamma(TM^0) \perp \Gamma(S(VTM))$ and considering the skew-symmetry in X, Y, these are refined to $3(2+3+3)$ equations.

Acknowledgements. The present research was supported by the Romanian Academy Grant 4/3.06.2009.

References

Author’s address:

Vladimir Balan
University Politehnica of Bucharest, Faculty of Applied Sciences,
Department of Mathematics-Informatics I,
313 Splaiul Independentei, 060042 Bucharest, Romania.
E-mail: vladimir.balan@upb.ro