An intrinsic link between scalar and volume-valued Lagrangians

Paul Popescu and Marcela Popescu

Abstract. The aim of this paper is to provide a natural frame for affine Lagrangians and affine Hamiltonians, the focus being on some Hamiltonians applicable in classical fields and their generalizations. A unitary treatment of scalar and volume-valued Hamiltonians in a special class is obtained using some suitable lifting procedures.

Key words: affine Lagrangian, affine Hamiltonian, jet space.

1 Introduction

A general setting concerning Lagrangians and Hamiltonians on affine bundles is given in [4] and [5]. The most known examples of affine bundle used in differential geometry are the higher order tangent space and the jet space of a fibered manifold. These two classical cases were recently studied in many papers. The higher order spaces are studied from the affine point of view in [4]. The jet spaces are studied in the context of multi-time Lagrangian and Hamiltonian geometry in [7] and in an affine setting in [1]-[3]. The purpose of our paper is to indicate a link between these two cases, and also to give a general setting for Lagrangians and Hamiltonians on affine bundles. An F-Hamiltonian (volume-valued) and an affine Hamiltonian (scalar valued) are defined as sections in certain affine bundles, both naturally lifting to \tilde{F}-Hamiltonians. Further investigations are given in [6], where considering a Hamilton-Jacobi variational principle for \tilde{F}-Hamiltonians, one obtain some Hamilton-Jacobi equations that extend the classical ones studied in [1]-[3].

2 Affine Lagrangians and Hamiltonians on affine spaces

Let A be an affine space modeled on the real (finite dimensional) vector space V. A Lagrangian on A is a differentiable function $L : A \to \mathbb{R}$. An affine Hamiltonian on
A is a differentiable map (non-necessary linear) \(h : V^* \to A^1 \) such that \(\pi \circ h = 1_{V^*} \).

Using local coordinates, the affine Hamiltonian is

\[
(p_i) \xrightarrow{h} (p_i, h_0(p_i)).
\]

If the coordinates change, then

\[
h'_0 (p_i) = h_0(p_i) + p_ia^i.
\]

For example, if \(x_0(\alpha_i) \in A \), then \((p_i) \xrightarrow{h_{x_0}} (p_i, \alpha^i p_i) \) is an affine Hamiltonian. For more details concerning affine Lagrangians and Hamiltonians on affine spaces and affine bundles see [4] and [5].

If \(h_1 \) and \(h_2 \) are two affine Hamiltonians, then \(h_1 - h_2 \) induces a map \(H : V^* \to \mathbb{R} \), called a vectorial Hamiltonian; we write \(H = h_1 - h_2 \), or \(h_1 = H + h_2 \). In particular, if \(h \) is an affine Hamiltonian and \(x_0 \in A \), then \(H_{x_0} = h - h_{x_0} \) is a vectorial Hamiltonian. Every vectorial Hamiltonian \(H : V^* \to \mathbb{R} \) has this form, using the affine Hamiltonian \(H + h_{x_0} \).

The vertical Hessian of a Lagrangian \(L \) (affine Hamiltonian \(h \)) is defined by \(g_{ij}(y^k) = \frac{\partial^2 L}{\partial y^i \partial y^j}(y^k) \) (by \(h^{ij}(p_k) = \frac{\partial^2 h_0}{\partial p_i \partial p_j}(p_k) \) respectively).

The Legendre map defined by a Lagrangian \(L : A \to \mathbb{R} \) is \(L : A \to V^* \), \(L(y^i) = \frac{\partial L}{\partial y^j}(y^i)e^j \) and the co-Legendre map defined by an affine Hamiltonian \(h : V^* \to A^1 \) of the form (2.1) is \(\mathcal{H} : V^* \to A, \mathcal{L}(p_i) = \left(\frac{\partial h_0}{\partial p_i}(p_j) \right) \).

The Lagrangian \(L \) is regular (hyperregular) if the Legendre map is a local diffeomorphism (global diffeomorphism). Analogous one say that an affine Hamiltonian \(h \) is regular (hyperregular) if its co-Legendre map is a local diffeomorphism (global diffeomorphism). A Lagrangian (affine Hamiltonian) is singular if it is not regular. For example, the image of the co-Legendre map of an affine Hamiltonian of the form \(h_{x_0} \) is \(\{x_0\} \) and its vertical Hessian is null (degenerate; an extreme case).

Then \(L \) (or \(h \)) is regular iff the vertical Hessian is non-degenerate in every point (as a bilinear form).

Let \(L : A \to \mathbb{R} \) be a hyperregular Lagrangian. Then let us denote by \(\mathcal{L}^{-1} : V^* \to A \) the inverse of the Legendre map; using coordinates, \(\mathcal{L}^{-1}(p_i) = (\mathcal{L}^j(p_i)) \).

Then \(h : V^* \to A^1, \mathcal{L}(p_i) = (p_i, h_0(p_i)), h_0(p_i) = p_j L^j(p_i) - L(\mathcal{L}^j(p_i)), \) is an affine Hamiltonian.

Conversely, let \(h : V^* \to A^1 \) be a hyperregular affine Hamiltonian and \(\mathcal{H}^{-1} : A \to V^* \) the inverse of the co-Legendre map; using coordinates, \(\mathcal{H}^{-1}(y^i) = (\mathcal{H}_j(y^i)) \). Then \(L : A \to \mathbb{R}, L(y^i) = y^i \mathcal{H}_j(y^i) - h_0(\mathcal{H}_j(y^i)) \), is an affine Lagrangian.

A surjective submersion \(E \xrightarrow{\pi} M \) is usually called a fibered manifold; the manifold \(E \) is called the total space, \(M \) is the base space and \(\pi \) is the (canonical) projection. If the projection is understood, the fibered manifold is denoted by \(E \). If \(x \in M \), the submanifold \(E_x = \pi^{-1}(x) \subset E \) is the fiber of \(\pi \) at \(x \). In general, the fibers need not to be all homeomorphic; for example the fibered manifold \(\pi_1 : E = \mathbb{R}^2 \setminus \{(0,0)\} = M, \pi_1(x,y) = y \) has not all the fibers connected.

A fibered manifold map (fmm) sends fibers in fibers: if \(\pi : E \to M \) and \(\pi' : E' \to M' \), then \(f : E \to E' \) is a fmm if \(\pi = \pi' \circ f \); if \(\pi_1 : E \to M \) and \(\pi' : E' \to M' \), then \(f : E \to E' \) is an fmm if there is an induced \(f_0 : M \to M' \) such that \(f_0 \circ \pi = \pi' \circ f \).
The local coordinates on M and E adapted to the submersion π are

\[
(x^i, y^a) \quad \text{on } M \quad \text{and} \quad (x^i, y^a) \quad \text{on } E,
\]

such that π has the local form \((x^i, y^a) \rightarrow (x^i)\).

A case when all the fibers are homeomorphic is that of a \textit{locally trivial fibration} \(E \xrightarrow{\pi} M \) with the \textit{fiber type} a manifold \(F \). In this case there is an open cover of \(M \) with sets \(U \) such that for every \(U \) there is a locally diffeomorphism \(\psi : \pi^{-1}(U) \rightarrow U \times F \). For example, a vector bundle is a locally trivial fibration with the fiber type a vector space and each of its fibers has an intrinsic structure of a vector bundle. In particular, the tangent and the contangent bundles of a manifold are vector bundles.

A locally trivial fibration \(A \xrightarrow{\pi} M \) is an \textit{affine bundle} if its fiber is modeled by a (real) affine space \(A_0 \) and the structural functions are affine transformations of \(A_0 \). A vector bundle is a particular case of an affine bundle. An affine bundle \(\pi : A \rightarrow M \) gives rise to the vector bundles \(\bar{\pi} : \bar{A} \rightarrow M \) (given by the director vector space in every point) and its dual vector bundle \(\bar{\pi}^* : \bar{A}^* \rightarrow M \), called the \textit{dual vector bundle} of the given affine bundle and usually denoted by \(\pi^* : A^* \rightarrow M \), or \(A^* \) for shortness.

Let \(\pi_1 : F \rightarrow M \) be an affine bundle with the affine line \(\mathbb{R} \) as typical fiber (i.e. with a one-dimensional fiber). The local coordinates on \(F \) change according to the rules

\[
\begin{align*}
(x^i) & \quad \text{on } M \\
(y^a) & \quad \text{on } E,
\end{align*}
\]

(2.3)

If \(\sigma = 1 \) and \(\tau = 0 \), then \(\pi_1 : F \rightarrow F = M \times \mathbb{R} \rightarrow M \) is the projection on the first factor, thus it is the trivial vector bundle. If only \(\sigma(x^i) = 1 \) (for every local chart), then the affine bundle is associated with the trivial vector bundle \(M \times \mathbb{R} \rightarrow M \); we say that the affine bundle \(F \) has \textit{structural translations}.

Let \(\pi : A \rightarrow M \) be an affine bundle and \(\pi_1 : F \rightarrow M \) be an affine bundle with a one-dimensional fiber. The \(F \)-dual of \(A \) is \(L(\bar{A}, \bar{F}) \), denoted by \(A^F \). The local coordinates on \(A^F \) change according to the rules

\[
\begin{align*}
x^i & = x^i(x^i) \\
y^a & = y^a(y^a) + \tau(x^i),
\end{align*}
\]

(2.4)

Let us consider \(\bar{F}_* \subset \bar{F} \), the fibered submanifold of the vector bundle \(\bar{\pi}_0 : \bar{F} \rightarrow M \), consisting in non-null vectors. Denote \(A = A \times_M \bar{E} \). The natural projection \(\bar{\pi} : \bar{A} \rightarrow \bar{F}_* \) is the canonical projection of an affine bundle. Let us denote also by \(\bar{F} = F \times_M \bar{F}_* \) and by \(\bar{\pi}_0 : \bar{F} \rightarrow \bar{F} \) the canonical projection.

Proposition 1. The projection \(\bar{\pi}_0 : \bar{F} \rightarrow \bar{F}_* \) is the canonical projection of an affine bundle with structural translation (i.e. the associated vector bundle is the trivial vector bundle \(M \times \mathbb{R} \rightarrow M \)).

Proof. The local coordinates on \(F \) change according to the rules (2.4). Let us denote by \((x^i, \bar{y})\) the local coordinates on \(\bar{F}_* \) and by \((x^i, \bar{y}, y)\) the local coordinates on \(\bar{F} \); such that \(\bar{\pi}_1 \) has the local form \((x^i, \bar{y}, y) \rightarrow (x^i, \bar{y})\). The local coordinates \(\bar{y} \) change according to the rule
\[\dot{y}' = \sigma(x') \dot{y}. \]

Since on \(F \) one have \(y'' = \sigma' y' + \tau' = \sigma'(\sigma y + \tau) + \tau' = \sigma' \sigma y + (\sigma' \tau + \tau') \) and \(y'' = \sigma'' y + \tau'' \), it follows \(\sigma'' = \sigma' \sigma \) and \(\tau'' = \sigma' \tau + \tau' \). Also \(\dot{y}'' = \sigma' \dot{y}' = \sigma'' \dot{y} \). Consequently
\[
\frac{\dot{\tau}'}{\sigma' \dot{y}'} + \frac{\tau'}{\sigma \dot{y}} = \frac{\tau' + \sigma' \tau}{\sigma' \sigma \dot{y}} = \frac{\tau''}{\sigma' \sigma \dot{y}}. \]
Also denoting \(z = \frac{y}{y} \) on \(\tilde{F} = F \times_M \tilde{F}_* \), one have \(z'' = z' + \frac{\dot{\tau}}{\sigma \dot{y}} \), thus the conclusion follows. \(\square \)

If \(\pi : E \rightarrow M \) is a fibered manifold, its first jet space \(J^1 \pi \) can be regarded as an affine bundle \(J^1 \pi \rightarrow E \). Using local coordinates (2.3), adapted to the submersion, the coordinates on \(J^1 \pi \) have the form \((x^i, y^\alpha, \bar{y}^\alpha)\) and change according to the rules:

\[
\begin{align*}
\frac{dx^i}{dx^j} &= x'^i(x^j) \\
\frac{dy^\alpha}{dx^j} &= y'^\alpha(x^j, y^\alpha) \\
\frac{\bar{y}^\alpha}{\bar{x}^j} &= \bar{y}'^\alpha \frac{\partial y^\alpha}{\partial x^j} + \frac{\partial \bar{y}^\alpha}{\partial x^j}.
\end{align*}
\]

If \(s : M \rightarrow E \) is a section (it can be a local one), then it lifts to a section \(s' : M \rightarrow J^1 \pi \rightarrow E \). Using local coordinates, if \(s \) has the local form \((x^i) \rightarrow (x^i, s^\alpha(x^i))\), then \(s' \) is \((x^i) \rightarrow (x^i, s^\alpha(x^i), \frac{\partial s^\alpha}{\partial x^i})\).

The manifold \(J^1 \pi \tau = V^* E \otimes \pi^* TM \) is the total space of a vector bundle over \(E \). The local coordinates on \(J^1 \pi \tau \) have the form \((x^i, y^\alpha, p^i_\alpha)\). The change rule of \((x^i)\) and \((y^\alpha)\) is given by relations (2.6), while

\[
\begin{align*}
p^i_\alpha \frac{\partial y^\alpha}{\partial x^j} &= p^i_\alpha \frac{\partial x'^i}{\partial x^j}.
\end{align*}
\]

If \(E = M \times T \), where \(T \) is a manifold, then \(x'^i = x^i(x^i) \), \(y'^\alpha = y'^\alpha(y^\alpha) \) and the coordinates \((y^\alpha)\) on \(J^1 \pi \tau \) change in a tensor manner, thus \(J^1 \pi \tau = V^* E \otimes \pi^* TM \) is a vector bundle and \(J^1 \pi \tau \) is its dual vector bundle. This vector bundle is used in a systematic way in the study of multi-time Lagrangians and Hamiltonians (see [8] and the references therein). Another particular case, considered below, is when \(\pi_1 : F \rightarrow M \) is an affine bundle with a one dimensional fiber. In this case the formulas (2.6) have the form:

\[
\begin{align*}
x'^i &= x^i(x^i) \\
y' &= y\sigma(x^i) + \tau(x^i) \\
y_i \frac{\partial x'^i}{\partial x^j} &= y_i \sigma(x^i) + y \frac{\partial \sigma}{\partial x^i} + \frac{\partial \tau}{\partial x^i}.
\end{align*}
\]

If \(\pi_1 : F \rightarrow M \) is a vector bundle, then \(\tau = 0 \).

Let us suppose that \(\pi_1 : F \rightarrow M \) is an affine bundle with structural translations. If \((x^i)\) and \((x^i, y)\) are local coordinates on \(M \) and on \(F \) respectively, then the coordinates change according to the formula

\[x'^i = x^i(x^i), \quad y' = y + f(x^i). \]

The first jet bundle \(J^1 \pi_1 \) has as coordinates \((x^i, y, u_i)\), where the coordinates \((u_i)\) change following the rule: \(u'_i = u_i + \frac{\partial f}{\partial x^i} \). There is an affine bundle \(\nu : F_1 \rightarrow M \)
such that F_1 has as coordinates (x^i, u_i) and the affine bundle $J^1 \pi_1$ is canonically isomorphic with the induced bundle $\pi_1^* \nu$; we write $J^1 \pi_1 = \pi_1^* \nu$.

A section $s \in \Gamma(\pi_1)$ lifts naturally to a section $s' \in \Gamma(J^1 F_1 \to M)$, given locally by $(x^i) \to (x^i, s(x^i), \frac{\partial s}{\partial x^i})$. It induces a section $s'' \in \Gamma(\nu)$ and implicitly an affine section $s^J \in \Gamma(J^1 F \to F)$ having the local form $(x^i, y) \to (x^i, y, \frac{\partial s}{\partial x^i})$. The section s^J defines a null curvature connection on the bundle $\pi : E \to M$. If a connection on $\pi : E \to M$ is defined by a section $\xi \in \Gamma(J^1 F \to F)$, $(x^i, y) \to (x^i, y, \xi_i(x^i, y^a))$, its curvature is locally given by $R_{ij} = \frac{\partial \xi_i}{\partial x^j} - \frac{\partial \xi_j}{\partial x^i}$. The curvature vanishes iff locally ξ has the form $\xi = s^J$, i.e. it is a lift of a local section $s \in \Gamma(\pi_1)$.

We are going to prove that one can associate an affine bundle with a one-dimensional fiber and structural translations with every affine bundle with a one-dimensional fiber.

3 Lagrangians and Hamiltonians on affine bundles

Let $\pi : A \to M$ be an affine bundle and $\pi_1 : F \to M$ be an affine bundle with a one-dimensional fiber. An F-Lagrangian on E is a fibered manifold map $L : A \to F$ (i.e. $\pi_1 \circ L = \pi$). Since every affine map induces a linear map on the director vector space, then there is a canonical projection $\Pi : Aff(A, F^*) \to A^*F$. An F-Hamiltonian on E is a fibered manifold map $h : A^*F \to Aff(A, F^*)$ such that $\Pi \circ h = 1_{A^*F}$. For example, let us consider $F = M \times \mathbb{R}$ and $p_1 : M \times \mathbb{R} \to M$ be the projection on the first factor. The F-dual of A is just A^*. An F-Lagrangian has the form $L(e) = (\pi(e), L_0(e))$, where $L_0 : A \to \mathbb{R}$ is usually called a Lagrangian. An F-Hamiltonian on A has the form $h : A^* \to Aff(A, M \times \mathbb{R})$. This case was considered in the study of affine Hamiltonians of higher order (see [3]). Another more elaborated example, using jet spaces, is given in [6].

Then an F-Lagrangian L has the local form $(x^i, y^a) \xrightarrow{L_0} (x^i, L_0(x^i, y^a))$ and the local functions L_0 change according to the rules given by (2.4):

\begin{equation}
L_0'(x^i, y^a') = L_0(x^i, y^a)\sigma(x^i) + \tau(x^i).
\end{equation}

Since

\[\frac{\partial L_0}{\partial y^a} = \sigma \frac{\partial L_0}{\partial y^a'} \frac{\partial y^a'}{\partial y^a} = \sigma \frac{\partial L_0}{\partial y^a} \delta_{a a'} , \]

the formula $(x^i, y^a) \to (x^i, \frac{\partial L_0}{\partial y^a})$ defines a Legendre map $\mathcal{L} : A \to A^*F$ of L. The local form of a map $\Omega \in Aff(A, F^*)$ is $(y^a) \xrightarrow{\Omega} (y^a, p_a)$; then $\Pi(\Omega)$ has the local form $(y^a) \xrightarrow{\Pi(\Omega)} (y^a p_a)$.

There are also local forms of $\Pi : Aff(A, F^*) \to A^*F$ and of an F-Hamiltonian $h : A^*F \to Aff(A, F^*)$ given by $(p_a, p) \xrightarrow{h} (p_a, p_0)$ and by $(x^i, p_0) \xrightarrow{h} (x^i, p_0, h_0(x^i, p_0))$, respectively. The change rules of local coordinates are:

\[\begin{pmatrix} p_a \\ p' \end{pmatrix} = \sigma \cdot \begin{pmatrix} p_0 \\ p' \end{pmatrix} \begin{pmatrix} a_{a'}^{a'} \\ 0 \\ 1 \end{pmatrix} , \]
or \((p_{a\alpha}, p') = \sigma' \cdot (p_{a\alpha}, p)\left(\begin{array}{cc} a_{\alpha}^\alpha & a^\alpha \\ 0 & 1 \end{array} \right)\), where \((a_{\alpha}^\alpha)^{-1}, \sigma = (\sigma')^{-1}\) and \(a^\alpha = -a^\epsilon a_{\alpha}^\epsilon\). Thus \(h_0(x^i, p_{a\alpha}) = \sigma^{-1}(x^i) \cdot (p_{a\alpha}(x^i) + h_0(x^i, p_{a\alpha}))\). Since

\[
p_{a\alpha} = \sigma p_{a\alpha} a_{\alpha}^\alpha,
\]

\[
\frac{\partial h_0}{\partial p_{a'}} = \frac{\partial h_0}{\partial y^\alpha} a^\alpha - a^\alpha = \frac{\partial h_0}{\partial p_{a'}} a_{\alpha}^\alpha - a^\alpha,
\]

it follows that \((x^i, p_{a\alpha}) \rightarrow (x^i, -\frac{\partial h_0}{\partial p_{a'}})\) defines a co-Legendre map \(H^* : A^{*F} \rightarrow A\) of \(h\).

A Lagrangian \(L : A \rightarrow F\) is \textit{regular} if its Legendre map is a local diffeomorphism; it is equivalent to say that the \textit{vertical hessian}, given by the local matrix

\[
\left(g_{\alpha\beta} = \frac{\partial^2 L}{\partial y^\alpha \partial y^\beta} \right)
\]

is non-singular. The Lagrangian is \textit{hyperregular} if its Legendre map is a (global) diffeomorphism.

If \(L : A \rightarrow F\) is an \(F\)-Lagrangian, then \(\tilde{L} : \tilde{A} \rightarrow \tilde{F}\) defined locally by \(\tilde{L}(x^i, y^\alpha, \tilde{y}) = \frac{L(x^i, y^\alpha)}{\tilde{y}}\) is an \(\tilde{F}\)-Lagrangian on \(\tilde{A}\). We say that \(\tilde{L}\) is the \textit{lift} of \(L\) from \(A\) to \(\tilde{A}\). It is easy to see that the following statement is true.

Proposition 2. The lift \(\tilde{L}\) is regular (hyperregular) iff \(L\) is regular (hyperregular).

Analogously, if \(h : A^{*F} \rightarrow Aff(A, F)\) is an \(F\)-Hamiltonian, then one can consider an \(\tilde{F}\)-Hamiltonian \(\tilde{h} : \tilde{A}^{*F} \rightarrow Aff(\tilde{A}, \tilde{F})\) defined by \(\tilde{h}(x^i, \tilde{y}, \tilde{p}_{a\alpha}) = \frac{1}{\tilde{y}} h(x^i, \frac{1}{\tilde{y}} \tilde{p}_{a\alpha})\). We say that \(\tilde{h}\) is the lift of \(h\) from \(A^{*F}\) to \(\tilde{A}\). It is easy to see that the following statement is also true.

Proposition 3. The lift \(\tilde{h}\) is regular (hyperregular) iff \(h\) is regular (hyperregular).

There are natural maps \(\Phi : A^* \times_{\bar{M}} \bar{F} = \bar{A}^* \rightarrow A^{*F}\) and \(\Psi : Aff(A, \bar{R}) \times_{\bar{M}} \bar{F} = Aff(\bar{A}, \bar{R}) \rightarrow Aff(A, F)\) given in local coordinates by

\[
\Phi : (x^i, \tilde{p}_{a\alpha}, \tilde{z}) \rightarrow (x^i, p_{a\alpha} = \tilde{z}^{-1} \tilde{p}_{a\alpha}),
\]

\[
\Psi : (x^i, \bar{p}_{a\alpha}, \bar{z}, \bar{p}) \rightarrow (x^i, p_{a\alpha} = \bar{z}^{-1} \bar{p}_{a\alpha}, \bar{z}^{-1} \bar{p}).
\]

One can see that considering the natural maps

\[
\tilde{\Pi} : Aff(\tilde{A}, \bar{R}) \rightarrow \tilde{A}^*,
\]

\[
\Pi : Aff(A, F) \rightarrow A^{*F},
\]

the following diagram

\[
\begin{array}{ccc}
Aff(\tilde{A}, \bar{R}) & \xrightarrow{\tilde{\Pi}} & \tilde{A}^* \\
\Psi \downarrow & & \downarrow \Phi \\
Aff(A, F) & \xrightarrow{\Pi} & A^{*F}
\end{array}
\]

is commutative. If \(\tilde{h}\) is the lift an \(F\)-Hamiltonian \(h\), then the diagram
we consider our purpose we consider also the induced vector bundles with one dimensional fibers π. We say that $\tilde{\pi}$ is commutative.

Analogously, if $\tilde{h} : A^* \to Aff(A, \mathcal{F})$ is an affine Hamiltonian, then one can consider an \tilde{F}-Hamiltonian $\tilde{h} : \tilde{A}^* \to Aff(\tilde{A}, \tilde{F}^*)$ defined by $\tilde{h}(x^i, \tilde{y}, \tilde{p}_\alpha) = \tilde{h}(x^i, \tilde{p}_\alpha)$. We say that \tilde{h} is the lift of \tilde{h} (from A^* to A).

We consider below some examples.

Let $\pi : E \to M$ be a fibered manifold (or a bundle). The vector bundle $\Lambda^m(TM) \to M$, $m = \dim M$, has a one-dimensional fiber; it has as sections the top forms (or volume densities) on M. It is easy to see that $\Lambda^m(TM)^* = \Lambda^m(T^*M)$. For our purpose we consider also the induced vector bundles with one dimensional fibers $\pi_1 : F = \pi^*\Lambda^m(TM) \to E$, $\pi_1^* : F^* = \pi^*\Lambda^m(T^*M) \to E$. In this particular case, our F-Hamiltonian on E is just a Hamiltonian considered in [1, 2, 3] as a section $h : J^1\pi^* F \to J^1\pi^+ F$ having the local form

$$\tilde{h}(x^i, y^\alpha, p_\alpha, \omega(x^i, y^\alpha, p_\alpha)).$$

The local coordinates (p^i_α) and the local functions h change according to the rules

$$p^i_\alpha \phi' = \phi \frac{\partial y^i}{\partial y^\alpha}, \quad h' = \phi^{-1} \left(h + \phi \frac{\partial y^i}{\partial y^\alpha} \frac{\partial y^\alpha}{\partial x^i} \right).$$

An affine Hamiltonian on $J^1\pi^+$ is a section $\tilde{h} : J^1\pi^+ \to J^1\pi^+$ and it has the local form

$$\tilde{h}(x^i, y^\alpha, p_\alpha) = (x^i, y^\alpha, p_\alpha, \tilde{h}(x^i, y^\alpha, p_\alpha)).$$

The local coordinates (\tilde{p}_α) and the local functions \tilde{h} change according to the rules

$$p^i_\alpha \phi = \tilde{p}_\alpha \frac{\partial x^i}{\partial y^\alpha}, \quad h' = \tilde{h} + \tilde{p}_\alpha \frac{\partial y^\alpha}{\partial x^i} \frac{\partial y^\alpha}{\partial x^i}.$$

We are going to put together F-Hamiltonians and affine Hamiltonians. In order to do this we consider \tilde{F}-Hamiltonians. In order to simplify notations and the exposition, we consider F^*_ω instead of F_ω previously. We denote by $\tilde{F} = F \times_M \tilde{F}^*_\omega$ and we use the canonical projection $\tilde{\pi}_0 : \tilde{F} \to \tilde{F}^*_\omega$. Also, $\tilde{J} = J^1\pi^+ F \times_M \tilde{F}^*_\omega$ and $\tilde{\pi} : \tilde{J} \to \tilde{E} = E \times_M \tilde{F}^*_\omega$ (a canonical projection of a fibered manifold). An \tilde{F}-Hamiltonian on E is a section $h : \tilde{J}^* \to \tilde{J}$ that has the local form

$$\tilde{h}(x^i, y^\alpha, \omega, \tilde{p}_\alpha) = (x^i, y^\alpha, \omega, \tilde{p}_\alpha, \tilde{h}(x^i, y^\alpha, \omega, \tilde{p}_\alpha)).$$

The local functions \tilde{h} change according to the rules $\tilde{h}' = \tilde{h} + \tilde{p}_\alpha \frac{\partial y^\alpha}{\partial y^\alpha} \frac{\partial y^\alpha}{\partial x^i}$. As we have already seen, an F-Hamiltonian, as well as an affine Hamiltonian, lift both to an \tilde{F}-Hamiltonian. More specifically,

- if h is an F-Hamiltonian that has the local form (3.2), then its lift \tilde{h} is an \tilde{F}-Hamiltonian that has the local form (3.4), with $\tilde{h}(x^i, y^\alpha, \omega, \tilde{p}_\alpha) = \frac{1}{\omega} h(x^i, y^\alpha, \omega \tilde{p}_\alpha)$;
An intrinsic link between scalar and volume-valued Lagrangians

– if \(\tilde{h} \) is an affine Hamiltonian that has the local form (3.3), then its lift \(\tilde{\tilde{h}} \) is an \(\tilde{F} \)-Hamiltonian that has the local form (3.4), with \(\tilde{\tilde{h}}(x^i, y^\alpha, \omega, \tilde{p}^\alpha_i) = \tilde{h}(x^i, y^\alpha, \tilde{p}^\alpha_i) \).

An important tool in the study of \(F \)-Hamiltonians (Hamiltonians in the classical terminology) can be found in the multi-symplectic formalism developed in [1, 2, 3] (see also the bibliography therein). In [1] one define the action of an \(F \)-Hamiltonian \(h \) on sections on \(E \rightarrow M \) and one deduce the equation of a critical section of this action, using a Hamilton-Jacobi principle. In [6] one defines an action for an \(\tilde{F} \)-Hamiltonian, in order to recover the same action for the lift of an \(F \)-Hamiltonian.

Acknowledgements. Partially supported by Grant 61C/2007–PNCD, Prog. 4 Part., Dir. Cerc.7.

References

Authors’ address:

Paul Popescu and Marcela Popescu
University of Craiova, Department of Applied Mathematics,
13 Al.I.Cuza st., Craiova, 200585, Romania.
E-mail: Paul_P_Popescu@yahoo.com