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Áron Szász-Gábor

Abstract. This paper presents arguments for the usefulness of a simple
forecasting application package for sustaining operational and strategic
engineering management and provides the description to create it. Sec-
tion 1 contains the clarification of some basic terms and concepts for the
present paper, like the importance of management seen as a package of es-
sential decision-making instruments for the engineering sciences. In section
2 criteria for selecting the appropriate forecasting method for a studied
problem are presented. Eight forecasting methods are proposed for im-
plementing, as well. In section 3 forecast quality indicators are discussed.
MATLAB is proposed as a programming platform for the forecasting in-
strument application.
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1 Introduction

The growing complexity and diversity of any business environment permanently gen-
erates problems, with solutions based on making and applying decisions. The limited
character of material, financial and human resources implies the responsibility for
reaching the objectives by finding the most favorable resource allocation and usage
conditions. This is why almost all the management science disciplines propose efficient
decision making methods.

Forecasting is mainly used in the “alternative analysis” and “result evaluation”
steps. The most efficient approach is research and analysis completed with experience.
Much more cheaper than experimenting, research and analysis’ main characteristic
is that it can deliver a model to simulate the problem. The mostly used solution is
simulating the problem’s variables in mathematical terms and relations, forecasting
being here a very useful instrument.
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2 Proposed Forecasting Methods

It is generally accepted that the following criteria should be studied when choosing
a forecasting method - see also Zäpfel (1996, p. 96): the accuracy of the forecast;
the fineness of reactions; the stability; the calculation time and the memory needed
therefore; the ways of influencing the process by the user.

Tempelmeier (1992, p. 34-105) proposes the following time series - forecasting
method associations: for time series with no seasonal variations with a relatively
constant level - gliding averages and first order exponential smoothing; with an in-
creasing or decreasing trend - linear regression, second order exponential smoothing
or Holt’s method (modified second order exponential smoothing). For time series
with seasonal variations the best suited methods are the decomposition of time se-
ries (Ratio-to-Moving-Average), Winters’ method and the multiple linear regression.
Other classifications can be also found in forecasting-related publications.

The calculus of linear regression is a statistical method used to quantify the func-
tional link between a dependent variable and one (or more) independent variables.
As a special case of multiple regressions, the linear regression is suitable for approxi-
mating the evolution of a time series, represented as linear.

Let At be the observed time series, with n elements (t = 1, n). One can write, if
the time series is almost linear: At = b0 + b1t + εt

Using linear regression, the coefficients b0, b1 can be calculated, so that the norm of
the vector (ε1, ε2, ..., εn) is minimal. In conclusion, at a certain moment, the forecasting
equation is: Fk = b0 + b1k.

The weighted averages method uses the weighted average of the last n periods
from the available time series. The value n is defined during the decision process,
normally being a small value, 3 or 4. The name “mobile” originates in the fact that
the considered data set shifts/glides along the time series. The elements’ weights can
be equal for all periods, or also different. The condition is that the sum of the weights
be equal to 1. If we suppose that the number of elements of the time series Ai is N ,
then the mobile averages also form a time series Fi with N − n elements, according
to the following:

Fk+1 =
k∑

i=k−n−1

piAi where n < k ≤ N,
n∑

i=1

pi = 1

Here pi are the weights, Ai is the time series and Fi are the forecasted values.
The exponential smoothing method is more complex than the mobile averages

method. Here the deviations of more recent values have a weight higher than the
errors from a more distant past. In practice, all values older than the forecasted value
are taken into account. This method is characterized by a relative ease of calculus and
by a reduced number of pre-calculated values for the current forecast. The formula
for exponential smoothing is: Ft = αAt−1 + (1 − α)Ft−1 where Ft is the forecast
for period t, At−1 is the value of the time series element from the previous period,
Ft−1 the forecast for the previous period and α ∈ [0; 1] the smoothing coefficient. To
initialize Ft−1 the value of At−2 is used. For α values like 0.1 or 0.2 are usually used.
Higher values of α would mean giving a higher weight to recent elements of the time
series, smaller values of α would assure higher weights for “older” values.

The software package should also contain the modified double exponential smooth-
ing, also known as “Holt’s method”. This method is suitable especially for very
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dynamic data sets, without seasonal variations. In practice, the double exponential
smoothing means using the first order exponential smoothing twice - the first order
exponential smoothing applied to the time series of the first order averages (obtained
using the method described above). This way weighted averages of the first order
averages are obtained.

S′t−1 = αAt−1 + (1− α)S′t−2; S′′t−2 = βS′t−2 + (1− β)S′′t−3

From the upper two equations we obtain: Ft = 2S′t−1 − S′′t−2 where Ft is the forecast
for period t, At−1 the value of the time series element from the previous period, S′t
the first order average at the end of period t, S′′t the second order average at the
end of period t and α and β the smoothing coefficients. For initializing A1 the value
S′2 = S′′1 = A1 is used. Normally α and β can be freely chosen and usually are values
like 0.1 or 0.2.

The adaptive exponential smoothing is best suited for forecasts based on a large
set of data, without seasonal influence. In this case the smoothing coefficient α is
calculated using the forecast error from the previous steps, according to the formula:
αt+1 = |Et|

|Mt| where Et = β(At−Ft)+(1+β)Et−1 and Mt = β|At−Ft|+(1−β)Et−1.
Hence, the forecasting equation is Ft+1 = Ft + αt(At−Ft). The notations are the

same as in the methods described before. The modifiable variable is α, with values
usually around 0.1 or 0.2.

In many cases the granularity of the time series is not sufficient to have a com-
plete view of the “past” used as a base for the forecast. For some data sets with
sudden variations in short periods, undocumented by the values of the time series, a
fractal interpolation is suitable to point out the potential variations. A forecast can
be made using the new time series applying one of the classic forecasting methods,
or the process can be further refined using fractal interpolation. The simplest way to
interpolate a function x(t), when the points (ti, xi), i = 0, 1, . . . , N are known starts
with a “system of iterated functions”.

Wn

(
t
x

)
=

(
an 0
cn 0

)(
t
x

)
+

(
en

fn

)

where the coefficients an, cn, en and fn are determined from the following conditions,
for n = 1, 2, . . . , N

Wn

(
t0
x0

)
=

(
tn−1

xn−1

)
, Wn

(
tN
xN

)
=

(
tn
xn

)
, the result being the following

calculus equations:
Wn(t) ≡ t′ = (t−t0)

(tN−t0)
tn + (t−tn)

(t0−tN ) tn−1

Wn(x) ≡ x′ = (t′−tn−1)
(tn−tn−1)

xn + (t′−tn)
(tn−1−tn)xn−1

in which Wn(x) = x′ is determined by a linear interpolation function (in t) between
the points (tn−1, xn−1) and (tn, xn).

For better emphasizing the variations in a time series, a variant of the fractal
interpolation algorithm has been developed, which fractal interpolates a time series
using a geometric method. This method copies the initial form of the time series on
every interval of the initial time series, keeping the geometric proportions of the initial
sections, and can be also implemented.

In statistics, an autoregressive integrated moving average (ARIMA) model is a
generalization of the autoregressive model with a mobile average (ARMA). These
models are adapted to the time series to better understand the data or to make a
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forecast on the future points of the time series. The model is generally referred to
as ARIMA(p, d, q), where p, d and q are natural numbers and represent the order of
the autoregressive part (p), the integrated part (d), and the mobile average part (q).
For a time series Xt (where t is an integer and Xt are real numbers) an ARMA(p, q)
model is given by:(

1−
p∑

i=1

φiL
i

)
Xt =

(
1 +

q∑
i=1

θiL
i

)
εt

where L is the “lag” operator, φi are the parameters of the autoregressive part of the
model, θi are the parameters of the moving average part and εt are errors. The errors εt

are generally supposed to be independent variables, identically distributed according
to a normal distribution with zero mean: εt ∼ N(0, σ2), where σ2 is the variance. The
ARMA model is generalized by adding a parameter d to form the ARIMA(p, d, q)
model(

1−
p∑

i=1

φiL
i

)
(1− L)dXt =

(
1 +

q∑
i=1

θiL
i

)
εt

where d is a positive integer (if d is zero, the model would be equivalent to an ARMA
model). The fact that not all parameter selections lead to good models has also to
be taken into consideration. Particularly, if the model has to be stationary, then the
parameters have to respect the conditions. Of course, there are also a few well-known
special cases, for instance an ARIMA(0, 1, 0) model given by Xt = Xt−1+ε is a simple
“random walk”. A number of variations of the ARIMA model are used for various
applications.

In econometrics, an ARCH (autoregressive conditional heteroskedasticity) model,
elaborated by Engle in 1982, considers the variance of the term “error” as a function
of the variance of the errors of the previous periods. The ARCH method compares
the error’s variance with the square of the previous period’s errors and is often used
to model financial time series which present variable volatility in time. Concretely, let
εt be the revenues (or revenue residues, the net value of a medium process) and let’s
assume that εt = σtzt, where zt ∼ iid(0, 1) and where the series σ2

t are modeled by
σ2

t = α0 + α1ε
2
t−1 + . . . + αpε

2
t−p, α0 > 0 and αi ≥ 0, i > 0.

If we presume the existence of an ARMA model for the error’s variance, then the
model is a GARCH model (generalized autoregressive conditional heteroskedasticity,
Bollerslev (1986)). In this case, the GARCH(p, q) model is given by σ2

t = α0+α1ε
2
t−1+

. . . + αpε
2
t−p + β1σ

2
t−1 + . . . + βqσ

2
t−q.

Generally, when heteroskedasticity is tested in econometric models, the best test is
the ”white test”. However, in the case of time series, the best test is Engle’s ARCH
test.

3 Implementing the Forecasting Tools

Programs written for MATLAB run on various operating systems, therefore it is the
ideal environment to create a forecasting application with didactic purpose, as well
as for small enterprises to create proprietary forecasting tools for their specific needs.

To assure the quality of a forecast evaluating the qualities of the used forecasting
methods may prove useful - before and during the calculus process, as well. We define
as a forecasting error the difference between the real value At achieved in period t
and the forecasted value Ft (et = At − Ft).
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The forecasting error isn’t a useful measure for classifying the effectiveness of
a forecasting method, but the sum of errors offers information on the polarization
(BIAS) of the forecasted values. Many other error supervision alternatives are also
used to calculate the level and dispersion of forecasting errors. This way, the calculus
of the Mean Absolute Deviation (MAD) is used to quantify the dispersion and thus
the credibility of the method; the Mean Squared Error (MSE) is used to emphasize
the mean “distance” of the forecasted values compared to the real values and the
Coefficient of Variance (CV) is useful for easing the comparison of different data sets’
forecasts. For a good forecasting method the error values should fluctuate around zero
- therefore a tracking signal can provide information on that:

SIGt =

t∑
i=1

ei

MADt
= n

t∑
i=1

ei

t∑
i=1

|ei|

A good alternative to the software written for MATLAB is FreeFore (Autobox),
which can be used for comparison purposes. The solution offered by FreeFore is a time
series analysis instrument, whose results can be used to choose one of the 15 imple-
mented forecasting methods. Still, FreeFore allows “manually” selecting the method
to be used.

4 Conclusion

The proposed set of forecasting methods has been implemented using MATLAB, tests
have been carried out using various data sets, such as retail stock data presenting sea-
sonal variations, daily exchange rates on a long term and sales volumes with a trend
and no seasonal variations. The values forecasted coincided in most cases with the
ones provided by FreeFore, the free software using the Autobox forecasting engine.
This is a positive argument for implementing forecasting software with a didactic
purpose during the management education of engineers. Creating an automated fore-
casting model could be a useful extension of the proposed software package. As for
small engineering enterprises, self-programmed software on the base of MATLAB can
provide flexibility of the application at a low cost.
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