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Abstract. In the theory of general relativity, gravity is assumed to propa-
gate with the speed of light. The Newtonian gravitational force is obtained
at a nonrelativistic limit, where the propagation speed is taken to be in-
finity. The gravito-radiative force appears as a relativistic correction to
the Newtonian theory. The emission of gravitational energy is predicted in
terms of the time derivative of the gravito-tensor potentials and confirmed
to establish the gravitational wave theory. The detection of the gravita-
tional wave on Earth is discussed in terms of the gravito-radiative force,
which is due to the time derivative of the gravito-tensor potential. The
gravito-radiative force transmits energy and angular momentum to Earth
and masses on Earth. Because Earth’s crust is rigid by means of nongrav-
itational forces, the gravitational wave can be detected by observing the
extra energy and angular momentum transmitted by gravitational waves
(pulses) relative to the center of Earth. We installed verticity meters, sta-
tionary pendulums with devices to measure and record the displacements
of bobs, in Boulder, Colorado. Some impulses of about 10−8 m/s were ob-
served during 1999, and are attributed to gravitational pulses emitted by
evaporating stars at the galactic center. If incoming gravitational pulses
have this magnitude with a circular polarization, the induced change in
the rotational speed of Earth would be measurable as leap seconds in a
few decades later.
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1 Gravito-radiative forces

Einstein assumed that
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≤ c2(1.1)
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for a particle moving in the x-direction, and obtained the well-known expression of
its energy as E = mc2/

√
1− (dx/cdt)2. He [1] generalized this assummption into a

metric

ds2 = g00(ct)2 − gxx(dx)2 − gyy(dy)2 − gzz(dz)2,(1.2)

and proposed that gravity could be described in terms of the space-time dependence of
the metric coefficients, gij . Thus, in this theory, the general relativity theory, gravity,
as everything else, follows Einstein’s principle,

(
dx

dt

)2

≤ g00

g11
c2;(1.3)

that is, everything propagates with a finite speed.
In Einstein’s theory, equations of motion under gravitational fields can be obtained

from the variational principle δ
∫

ds = 0, as

d2xi

ds2
= −Γi

k`

dxk

ds

dx`

ds
≡ F i

E/(mc2),(1.4)

where the Γi
k` are called Christoffel symbols. Because the space component of the left-

hand side of eq. (1.4) reduces to the acceleration in c2, we call the space component
of the right-hand side of eq. (1.4) the Einstein force FE in mc2. The wave equations
of Einstein [1], when linearized (i. e., when the higher-order terms of the deviation of
the metric components from 1 are neglected) show [2,3] that these metric components
can be expressed in terms of gravitational scalar, vector, and tensor potentials,

φ00(p, t) =
4GM

c2r′
, φ(p, t) = −4GMv

c3r′
, and φαβ =

4GMvαvβ

c4r
,(1.5)

respectively, where α, β = 1, 2, and 3. We neglected the retardation effects, which
are not important in our cases. In the linear approximation, equation (1.4) can be
approximated as [4]

d2r

dt2
= −c2

4
∇φ00 − c

∂φ

∂t
+ cV × (∇× φ) +

∂[v(V · φ)]
c2∂t

≡ FE

m
(1.6)

where v and V are the velocities of a source particle (of mass M) and a test particle
(of mass m), respectively. In expression (1-7), we do not differentiate the velocity of
the test particle, V , by time t.

In eq. (1.6), we see that the Newtonian term appears as the first approximation, as
expected, but there are other correction terms due to Einstein’s principle. We notice
that there are two terms in eq. (1.6) that are proportional to 1/r instead of 1/r2 as
the Newtonian term is. The Newtonian term does give the orbit of a test particle
to the first approximation, but the two terms proportional to 1/r transmit energy
and momentum through space [3], as the Poynting theorem shows in the theory of
electricity and magnetism. These two terms are

F rad1/m =
4GMv̇

c2r
,(1.7)
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and

F rad2/m = −4GM [v̇(V · v) + v(V · v̇]
c4r

.(1.8)

Equations (1.7) and (1.8) are called the gravito-radiative forces of order 1 and 2,
respectively. F rad1 comes from the vector potentials of eq. (1.5). F rad2 actually comes
from the gravitational tensor potentials produced by colliding massive stars or black
holes at the center.

When the two massive particles are located near the origin, Newton’s third law
ΣiMiv̇i = 0, is applied to null the total contribution of ΣiF rad1/m = 0. Therefore,
we will consider the gravito-radiative force, F rad2, only in the following discussions.

2 Transmission of energy and angular momentum

The total energy of a test particle of mass m and speed V , under the gravitational
field due to mass M at the origin is

E = mc2 +
1
2
mV 2 − GMm

r
,(2.1)

to the first approximation in (V/c)2 of static general relativity, and it agrees with
the Newtonian theory. In the Newtonian theory we know that dE/dt = 0, but in the
general relativity theory, assuming that dm/dt = 0, we see that

dE
dt

= m
V · dV

dt
−GMm

d(1/r)
dt

= V · FE −GMm
d(1/r)

dt
= −8GMm(V · v)(V · v̇)

c4r
,(2.2)

taking FE for mdV /dt from eq. (1.6).
The orbital angular momentum, L = R × V , is conserved under the Newtonian

gravitational force. But with the general relativistic force, given by eq. (1.6), we obtain

dL
dt

= R× FE = TGM + TGR,(2.3)

where

TGM = −4GMm
(R× v)(V · r)

c2r3
,(2.4)

and

TGR = −4GMm
R× [v(V · v̇) + v̇(V · v)]

c4r
.(2.5)

The extra torque produced by the gravito-magnetic force, TGM , is proportional
to 1/r2 and dissipates before propagating through the space, but that produced by
the gravito-radiative force, TGR, can reach stars at great distances.
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It is known that, when the gravity source (mass M) has an accelerated mass
quadrupole moment, a gravitational wave is emitted and the source particle loses its
energy [2], and that theory is confirmed by observing an energy loss of a binary star
[5]. Our eq. (2.2) shows that the gravitational energy is transmitted to a moving test
particle (mass m and velocity V ) through the gravito-radiative force F rad2. Thus, our
theory is the corresponding theory of detecting gravitation waves. In fact, the rate of
energy loss, dε/dt, from the gravitation wave source (mass M) is given as

dε

dt
=

G

45c5
(Mvv̇)2.(2.6)

with the assumption that v · v̇ = 0 [2]. Thus, to estimate the order of magnitude of
the gravito-radiative force, we can use

Frad2/m ' V

r

√
45G

c3

dε

dt
.(2.7)

Extra factors would appear in this relation, depending on the relative angles between
V , v, and v̇.

3 Detection of gravitational waves
by verticity meters

A test particle fixed to the surface of Earth at latitude Θ is moving toward East with
speed

V = 464 cos Θ m/s(3.1)

with respect to the center of Earth. The gravito-radiative force, F rad2, exerted on a
test particle fixed on the surface of Earth, is obtained by eq. (1.8), using eq. (3.1)
for V . Take the z-axis along the North direction and x- and y-axes in the East-West
plane, which contains an Earth-bound observation point. Let the spherical angles that
v and v̇ make in this xyz-system be θ, ϕ and θ’, ϕ’, respectively. If the longitude of
the observation point is Φ, then the East component of F rad2 is

F (E)rad2/m =
2GV

c4r
ΣMvv̇ sin θ sin θ′[(cos(2Φ− ϕ− ϕ′)− cos(ϕ− ϕ′)].(3.2)

We see that the first term of F (E)rad2/m, proportional to cos(2Φ− ϕ− ϕ′), tries to
induce a mass quadrupole moment on Earth. However, Earth’s crust is rigid by means
of the chemical bond force, and resists such possible deformation. If a motionless
pendulum (verticity meter) is placed on the surface of Earth, its pendulum-bob is free
to move horizontally, and the gravito-radiative force at its location can be detected
by measuring the resulting displacements, unless the gravito-radiative force at the
location Φ happend to be equal to the average of the gravito-radiative force on the
surface of Earth. Mizushima and Zimmerer constructed vertisity meters at Boulder,
Colorado and recorded the displacements of the bobs [6,7]. Many of the observed
signals were due to earthquakes, but some of them were not earthquakes [7].

The displacements of the bobs were measured to 1 µm, digitized, and averaged over
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2 min. Both averages and mean-square deviations (msd) were recorded. Earthquakes
were identified by comparing the published earthquake table of the time of occurrence
and the location of the origin. It was observed that each earthquake was seen as an
oscillation in the msd, but not in the average of the 2-min displacements. Because the
diameter of the string of each pendulum is about 1 mm, Hooke’s potential is modified
at the origin of the displacement, so that the potential energy is nearly constant for
about a 10 µm region near the origin (imperfect pendulum). Each gravitational pulse
thus found comes as a pulse of gravito-radiative force, F rad2, of duration time, ∆t,
much less than 2 min, giving an impulse of 10−8 m/s each to the bob relative to the
surface of Earth [8,9].

If we take eq. (2.7) assuming that ε = Mc2 and dt = ∆t, we obtain Frad2∆t/m =
(V/r)

√
∆t45GM/c. Taking the observed value, Frad2∆t = 10−8 s, we obtain M∆t =

1037 s-kg. If we take 10 s for ∆t we obtain M = 1036 kg, a fraction of a possible
black-hole mass, but we do not know the value of ∆t.

4 Rotation of Earth and gravitational wave

When the average of F (E)rad2 over Φ is calculated using eq. (3.2), the first term,
which depends on 2Φ, becomes zero, but the last term is zero only when v · v̇ = 0.
Because Earth’s crust is rigid, we can still detect a gravito-radiative force by means
of the verticity meter, but we expect that the rotational speed of Earth changes when
a gravitational wave comes if v · v̇ is not zero. If the duration time of the galactic
nuclear collision is ∆t, then the rotational speed ω of Earth’s surface changes by

∆ωz = ∆tF (E)rad2/(mR) =
2GV ∆t

c4rR
ΣMvv̇ sin θ sin θ′ cos(ϕ− ϕ′),(4.1)

where R is the radius of Earth. Because Earth is rigid, the ratio V/R stays the same
when the rotational speed and the distance from the center of that part of Earth’s
crust are used for V and R, respectively, in this formula. That is,

∆ωz

ω
=

2G∆t

c4r
ΣMvv̇ sin θ sin θ′ cos(ϕ− ϕ′)(4.2)

gives the fractional change in ωz due to the gravitational pulse with duration time
∆t. The length of day (LOD) is defined as 2π/ω, and is nearly a constant, which
used to be defined as 24 hours. Now LOD is measured continuously, in terms of the
atomic clock, to an accuracy of one part in 1011 and is found to fluctuate [10]. The
fluctuation is interpreted as due to the motion of the soft parts of Earth which changes
the moment of inertia [11]. But a gravitational wave may contribute to the fluctuation
[9].

If one of the signals we observed at Boulder (Θ = 40◦), with impulse 1×10−8 m/s,
is due to a gravitational pulse with v · v̇ = 0, then the associated gravito-radiative
force must have produced the fractional change in the rotational speed of Earth as

∆ω

ω
= 3× 10−11.(4.3)

The corresponding change in LOD is 3 × 10−6 s on that day. This is within the
accuracy, but smaller than the fluctuation of the LOD measurement. The fractional



Detection of gravitational waves II 125

change in ω means a fractional change in the rotational angular momentum, and the
changed angular momentum is conserved until the next gravitational pulse comes
in. Because of the moving mantle, ω itself would fluctuate, but the average ω would
keep the new value. In 1 year, for example, the shift of 3 × 107 × 3 × 10−11 = 1
ms would result. It has been reported [10] that the adjustment time, called a leap
second, appeared almost 2 s each year until January 1, 1999, but then disappeared
until January 1, 2006. The adjustment has been necessary because the definition of
LOD in terms of the atomic clock, which has an accuracy of one part in 1013 to 1015,
was not good enough. We see that the change in ω as expected by eq. (4.3) would
be measurable as a leap second in a few decades, when the adjustment is done with
enough accuracy already, assuming that the gravitational pulses are coming with a
polarization v ·v̇ ' 0. This polarization corresponds to the head-on collision of massive
objects at the galactic center.
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