Mond-Weir type dualities in multiobjective nonsmooth programming

Ştefan Mititelu

Abstract. In this paper are developed the generalized Mond-Weir duality and the Preda duality be weak, direct and converse duality theorems for a multiobjective nonsmooth program.

M.S.C. 2000: 90C29, 49J52.

Key words: multiobjective nonsmooth programming, nonsmooth analysis, subdifferential.

1 Introduction and preliminaries

Let X be a locally convex space and A be a nonempty open set in X. Consider as well the nonsmooth vector functions $f = (f_1, \ldots, f_p)' : A \to \mathbf{R}^p$, $g = (g_1, \ldots, g_m)' : A \to \mathbf{R}^m$ and $h = (h_1, \ldots, h_q)' : A \to \mathbf{R}^q$, where $p, m, q \in \mathbf{N}^*$. We consider the following multiobjective mathematical program:

(MP)
$$\begin{cases} \text{Minimize (Pareto)} & (f_1(x), \dots, f_p(x)) \\ \text{subject to} & g(x) \stackrel{\leq}{=} 0, \ h(x) = 0, \ x \in A. \end{cases}$$

The domain of this program is the set

$$D = \{ x \in A | g(x) \stackrel{<}{=} 0, \ h(x) = 0 \}.$$

For the multiobjective program (MP), in this paper are developed two dualities of Mond-Weir type, namely the generalized Mond-Weir duality and the Preda by means of weak, direct and converse duality theorems. The mathematical instrument used in this study is the Clarke-extended subdifferential for real functions defined on X.

In this section we present the Clarke-extended subdifferential ([5], [6]) and some Pareto extremum conditions for the vector program (MP).

1. First, we present the Clarke-extended subdifferential ([5], [6]) and some of its properties. Let X^* be the dual space of X and let $F : A \to \mathbf{R}$ be a real function.

Proceedings of The 4-th International Colloquium "Mathematics in Engineering and Numerical Physics" October 6-8, 2006, Bucharest, Romania, pp. 111-119.(c) Balkan Society of Geometers, Geometry Balkan Press 2007.

Definition 1.1. The *Clarke directional derivative* of F at the point $x \in A$ in the direction $v \in X$, denoted $F^0(x; v)$, is defined by

$$F^{0}(x;v) = \limsup_{\substack{x' \to x \\ \lambda \downarrow 0}} \frac{F(x' + \lambda v) - F(x')}{\lambda}.$$

This derivative was introduced by Clarke ([1]) in 1973 for Lipschitz functions. In 1989 we defined the Clarke-extended subdifferential of F at x.

Definition 1.2 (Mititelu [5], [6]). The set

$$\partial F(x) = \{ \xi \in \mathbf{R}^n | F^0(x; v) \ge \langle \xi, v \rangle, \quad \forall v \in X \},\$$

where $\langle \xi, v \rangle = \xi(v)$, is said to be the subdifferential (or the generalized gradient) of F at $x \in A$. If $\partial F(x) \neq \emptyset$ then F is called subdifferentiable at x. The elements of $\partial F(x)$ are called subgradients of F at x.

The vector function $f = (f_1, \ldots, f_m) : A \to \mathbf{R}^p$ is subdifferentiable when all its components f_1, \ldots, f_p are subdifferentiable functions.

We quote from ([6]) some properties of the subdifferential ∂ , that will be used in this paper

(P1) If F is continuously differentiable function at x, then $\partial F(x) = \{\nabla F(x)\}$.

(P2) If the direction function $F^0(x; \cdot)$ is finite, then the subdifferential $\partial F(x)$ is a nonempty, convex and compact set. Moreover,

$$F^{0}(x;v) = \max\{\xi'v|\xi \in \partial F(x)\}, \quad \forall x \in A.$$

(P3) If F is subdifferentiable at x, then λF ($\lambda \in \mathbf{R}$) is subdifferentiable at x and

$$\partial(\lambda F)(x) = \lambda \cdot \partial F(x).$$

(P4) If the function $f_1, \ldots f_p$ are subdifferentiable at $x \in A$, then the function $\sum_{i=1}^{p} f_i$ is subdifferentiable at x and

$$\partial\left(\sum_{i=1}^{p} f_i\right)(x) \subseteq \sum_{i=1}^{p} \partial f_i(x).$$

2. Also, we use Clarke's tangent cone and the normal cone in Clarke's sense at a point x of a nonempty set C of X.

Clarke's tangent cone to C at $x \in C$ is defined by the set (one of its equivalent forms [1]):

$$T_C(x) = \{ v \in X^{\bullet} | \forall t_k \downarrow 0, \ \forall (x^k) \subset C : x^k \to x, \ \exists v^k \to v \text{ such that } x + tv \in C \}.$$

The normal cone to C at $x \in C$ is defined by the set ([1]):

$$N_C(x) = \{ \nu \in \mathbf{R}^n | \nu' v \le 0, \ \forall v \in T_C(x) \}.$$

The cones $T_C(x)$ and $N_C(x)$ are nonempty, closed and convex sets ([1]).

Mond-Weir type dualities

3. According to ([13]), for $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$ we shall use the following notations:

Definition 1.3 (Geoffrion [2]). A point $x^0 \in D$ is said to be an *efficient solution* (Pareto minimum) for (MP) if there exists no other feasible point $x \in D$ such that $f(x) \leq f(x^0)$ and $f(x) \neq f(x^0)$ (or equivalently, $f(x) \leq f(x^0)$).

Lemma 1.1 (Kanniapan [3]). A point $x^0 \in D$ is an efficient solution to (MP) if and only if x^0 solves the scalar program

$$(P_k) \quad \begin{cases} \text{Minimize} \quad f_k(x) \\ \text{subject to} \quad f_s(x) \le f_s(x^0), \ \forall s \ne k, \ g(x) \stackrel{\leq}{=} 0, \ h(x) = 0, x \in A, \end{cases}$$

for each $k = \overline{1, p}$.

Definition 1.4 (Geoffrion [2]). A feasible point $x^0 \in D$ is said to be a *properly* efficient solution in (MP) if it is efficient solution in (MP) and there exists a scalar S > 0 such that, for each i, we have

$$\frac{f_i(x) - f_i(x^0)}{f_j(x^0) - f_j(x)} \le S$$

for some j such that $f_j(x) < f_j(x^0)$, whenever $x \in D$ and $f_i(x) > f_i(x^0)$.

Geoffrion considered the following scalar parametric program

$$(P_t) \quad \begin{cases} \text{Minimize} \quad t'f(x) \\ \text{subject to:} \quad g(x) \stackrel{\leq}{=} 0, \ h(x) = 0, x \in A \\ \quad t > 0, \ t'e = 1, \ e = (1, \dots, 1)' \in \mathbf{R}^p \end{cases}$$

and he established the following:

Lemma 1.2 (Geoffrion [2]). Let t > 0 be fixed with t'e = 1. If x^0 is an optimal solution of (P_t) , then x^0 is a properly efficient solution of (MP).

4. Kuhn-Tucker efficiency conditions for (MP). Let $x^0 \in D$. We define the index sets $I^0 = \{i|g_i(x) = 0\}$ and $J^0 = \{1, \ldots, m\} \setminus I^0$. Consider the following constraint qualification for D at x^0 :

$$R(x^0) \qquad \begin{cases} \exists v \in X : g_{I^0}^0(x^0; v) \le 0, \ h^0(x^0; v) = 0, \\ \exists \varepsilon > 0 : g_{J^0}(x^0 + \varepsilon v) \le 0, \ h(x^0 + \varepsilon v) = 0. \end{cases}$$

Mititelu ([11]) established the following necessary efficiency conditions of the Kuhn-Tucker type for (MP) at x^0 :

Theorem 1.1 (Necessary efficiency conditions). Let x^0 be a local efficient solution of (MP), where the functions f, g and h are subdifferentiable, and $h^0(x^0; \cdot)$ is finite

on X. Also, we suppose that (MP) satisfies at x^0 the constraint qualification $R(x^0)$. Then there are vectors $t^0 = (t_1^0, \ldots, t_p^0)' \in \mathbf{R}^n$, $u^0 = (u_1^0, \ldots, u_m^0)' \in \mathbf{R}^m$ and $y^0 = (y_1^0, \ldots, y_q^0)' \in \mathbf{R}^q$ such that the following Kuhn-Tucker type conditions at x^0 are satisfied:

(KT1)
$$\begin{cases} \sum_{k=1}^{p} t_{k}^{0} \partial f_{k}(x^{0}) + \sum_{i=1}^{m} u_{i}^{0} \partial g_{i}(x^{0}) + \sum_{j=1}^{q} v_{j}^{0} \partial h_{j}(x^{0}) + N_{A}(x^{0}) \supset \{0\} \\ u^{0'}g(x^{0}) = 0, \ u^{0} \stackrel{\geq}{=} 0 \\ t^{0} > 0 \text{ or } t^{0} \ge 0, \ t^{0'}e = 1. \end{cases}$$

Corollary 1.2 (Efficiency necessary conditions). Let x^0 be a local efficient solution of (MP), where the functions f, g and h are subdifferentiable, and $h^0(x^0; \cdot)$ is finite. We also assume that (MP) satisfies at x^0 the constraint qualification $R(x^0)$. Then there are vectors $t^0 = (t_1^0, \ldots, t_p^0)' \in \mathbf{R}^n$, $u^0 = (u_1^0, \ldots, u_m^0)' \in \mathbf{R}^m$ and $v^0 = (v_1^0, \ldots, v_q^0)' \in \mathbf{R}^q$ such that the following Kuhn-Tucker type conditions for (MP) at x^0 are satisfied:

(KT2)
$$\begin{cases} \sum_{k=1}^{p} t_{k}^{0} \partial f_{k}(x^{0}) + \sum_{i=1}^{m} u_{i}^{0} \partial g_{i}(x^{0}) + \sum_{j=1}^{q} v_{j}^{0} \partial h_{j}(x^{0}) \supset \{0\} \\ u^{0'}g(x^{0}) = 0, \ u^{0} \stackrel{\geq}{=} 0 \\ t^{0} > 0 \text{ or } t^{0} \ge 0, \ t^{0'}e = 1. \end{cases}$$

Corollary 1.3 (Efficiency necessary conditions). Let x^0 be a local efficient solution of (MP), where the functions f, g and h are subdifferentiable. Also we suppose that (MP) satisfies at x^0 the constraint qualification $R(x^0)$. Then there are vectors $t^0 =$ $(t_1^0, \ldots, t_p^0)' \in \mathbf{R}^n$, $u^0 = (u_1^0, \ldots, u_m^0)' \in \mathbf{R}^m$ and $v^0 = (v_1^0, \ldots, v_q^0)' \in \mathbf{R}^q$ such that the following Kuhn-Tucker type conditions at x^0 for (MP) are satisfied:

(KT3)
$$\begin{cases} \sum_{k=1}^{p} t_{k}^{0} \partial f_{k}(x^{0}) + \sum_{i=1}^{m} u_{i}^{0} \partial g_{i}(x^{0}) + \sum_{j=1}^{q} v_{j}^{0} \partial h_{j}(x^{0}) + N_{A}(x^{0}) \supset \{0\} \\ u^{0'}g(x^{0}) = 0, \ u^{0} \stackrel{\geq}{=} 0, \ v^{0} \stackrel{\geq}{=} 0 \\ t^{0} > 0 \text{ or } t^{0} \ge 0, \ t^{0'}e = 1. \end{cases}$$

Corollary 1.4 (Efficiency necessary conditions). Let x^0 be a local efficient solution of (PV), where the functions f, g and h are subdifferentiable. Moreover, we suppose that (MP) satisfies at x^0 the constraint qualification $R(x^0)$. Then there are vectors $t^0 = (t_1^0, \ldots, t_p^0)' \in \mathbf{R}^n$, $u^0 = (u_1^0, \ldots, u_m^0)' \in \mathbf{R}^m$ and $v^0 = (v_1^0, \ldots, v_q^0)' \in \mathbf{R}^q$ such that the following Kuhn-Tucker type conditions at x^0 for (MP) are satisfied:

(KT4)
$$\begin{cases} \sum_{k=1}^{p} t_k \partial f_k(x^0) + \sum_{i=1}^{m} u_i \partial g_i(x^0) + \sum_{j=1}^{q} v_j \partial h_j(x^0) \supset \{0\} \\ u^{0'}g(x^0) = 0, \ u^0 \stackrel{\geq}{=} 0, \ v^0 \stackrel{\geq}{=} 0 \\ t^0 > 0 \text{ or } t^0 \ge 0, \ t^{0'}e = 1. \end{cases}$$

Mond-Weir type dualities

Remark 1.1. Everywhere, in relations (KT1), (KT2), (KT3) and (KT4) the relation $u^{0'}g(x^0) = 0$ is equivalent with the following relations:

$$u_i^0 g_i(x^0) = 0, \quad i = \overline{1, m}$$

5. In a recent paper ([11]) Mititelu developed for the multiobjective program (MP) a duality of Wolfe type.

In the following we developed for the program (MP) dualities of Mond-Weir types, namely: the generalized Mond-Weir duality and Preda duality.

2 Generalized Mond-Weir duality for multiobjective program (MP)

In this section is developed a generalized Mond-Weir duality for the multiobjective mathematical program (MP) in the case when its functions are sub-differentiable nonsmooth on A. We consider the sets $M = \{1, \ldots, m\}$ and $Q = \{1, \ldots, q\}$. Let $\{J_0, J_1, \ldots, J_r\}$ be a partition of M, that is

$$J_{\alpha} \subseteq M, \ J_{\alpha} \cap J_{\beta} = \emptyset \quad \text{if} \quad \alpha \neq \beta, \ \bigcup_{\alpha=0}^{r} J_{\alpha} = M$$

and let $\{K_0, K_1, \ldots, K_r\}$ be a similar partition of Q.

The generalized dual program of Mond-Weir type, associated to the multiobjective nonsmooth program (MP), is the following multiobjective nonsmooth program:

$$(\text{MWD}) \begin{cases} \text{Maximize } L^0(y, u, v) = f(y) + [u'_{J_0}g_{J_0}(y) + v'_{K_0}h_{K_0}]e\\\\ \text{subject to} : \sum_{k=1}^p t_k \partial f_k(y) + \sum_{i=1}^m u_i \partial g_i(y) + \sum_{j=1}^q v_j \partial h_j(y) + N_A(y) \supset \{0\}\\\\ u'_{J_\alpha}g_{J_\alpha}(y) + v'_{K_\alpha}h_{K_\alpha}(y) \stackrel{\geq}{=} 0, \ \alpha = \overline{1, r}\\\\ y \in A, \ t \in \mathbf{R}^p_+, \ t'e = 1, \ u \in R^q, \end{cases}$$

where

$$u'_{J_{\alpha}}g_{J_{\alpha}}(y) = \sum_{i \in J_{\alpha}} u_i g_i(y), \quad v'_{K_{\alpha}}h_{J_{\alpha}}(y) = \sum_{j \in K_{\alpha}} v_j h_j(y).$$

We call the function L^0 , the generalized Lagrangian associated to program (MP). We also denote by $\Omega = \{(t, y, u, v) | \dots\}$ the domain of the dual (MWD) and let $\Omega_t = \{(y, u, v) | (t, y, u, v) \in \Omega\}.$

The set $\Omega_0 = \bigcup_{t \ge 0} \Omega_t$ is the domain of the generalized Lagrangian objective

 $L^0(y, u, v)$. Therefore, the domain Ω of the restrictions is different from the domain Ω_0 of the objective L^0 .

Definition 2.1. A point $(t^0, x^0, u^0, v^0) \in \Omega$ is said to be a t^0 -efficient solution of (MWD) if (x^0, u^0, v^0) is an efficiency point of maximum type for $L^0(y, u, v)$.

Theorem 2.1 (Weak duality). We suppose that:

a) The domain D and Ω of the dual programs (MP) and (MWD) are nonempty.

b) For each $(t, y, u, v) \in \Omega$, the inequality $L^0(y, u, v) \ge L^0(x, u, v)$ is false, $\forall x \in A$. Then, for $\forall x \in D$ and $\forall (t, y, u, v) \in \Omega$, the inequality $f(x) \leq L^0(y, u, v)$ is false.

Proof. According to b), for each $(t, y, u, v) \in \Omega$ and $\forall x \in A$ the inequality

(2.1)
$$L^{0}(y, u, v) \ge f(x) + [u'_{J_{0}}g_{J_{0}}(x) + v'_{K_{0}}h_{K_{0}}(x)]e$$

is false. Taking into account the true relations:

$$u_i g_i(x) \le 0, \ i = \overline{1, m}, \ \forall x \in D, \ \forall u \ge 0,$$
$$v_j h_j(x) = 0, \ j = \overline{1, q}, \ \forall x \in D, \ \forall v \in \mathbf{R}^q,$$

we obtain

$$u'_{J_{\alpha}}g_{J_{\alpha}}(x) + v'_{K_{\alpha}}h_{K_{\alpha}}(x) \le 0$$

and then, we infer that $(t, y, u, v) \in \Omega$ and moreover, from (2.1), it results that for each $(t, y, u, v) \in \Omega$ and $\forall x \in D$ the inequality $f(x) \leq L^0(y, u, v)$ is false. But the point (t, y, u, v) being arbitrarily taken in Ω , it results that for $\forall x \in D$ and $\forall (t, y, u, v) \in \Omega$ the relation $f(x) \leq L^0(y, u, v)$ is false.

Theorem 2.2 (Direct duality). Let x^0 be a local efficient solution of the primal (MP), where the functions f, g and h are subdifferentiable. Also, we assume the next hypotheses:

(d1) The domain D satisfies the constraint qualifications $R(x^0)$.

(d2) For every $(t, y, u, v) \in \Omega$, the inequality $L^0(y, u, v) \geq L^0(x, u, v)$ is false, $\forall x \in A.$

Then there exist the vectors $t^0 \in \mathbf{R}^p$, $u^0 \in \mathbf{R}^m$ and $v^0 \in \mathbf{R}^q$ such that (t^0, x^0, u^0, v^0) is a t^0 -efficient solution of the dual (MWD) and $f(x^0) = L^0(x^0, u^0, v^0).$

Proof. Since x^0 is a local efficient solution of (MP) and (MP) satisfies the constaint qualification $R(x^0)$, then (MP) verifies the consistions (KT3) of Corollary 2.1. Using Remark 1.1, from these conditions it results that $(t^0, x^0, u^0, v^0) \in \Omega$ and the relations $u_{J_0}^0 g_{J_0} = 0, v_{K_0}^0 h(x^0) = 0.$ Then,

$$f(x^{0}) = f(x^{0}) + [u^{0}_{J_{0}}g_{J_{0}}(x^{0}) + v^{0}_{K_{0}}h_{K_{0}}(x^{0})]e = L^{0}(x^{0}, u^{0}, v^{0}).$$

From (d2), according to Theorem 2.1, it results that $f(x^0) \leq L^0(y, u, v)$ is false. Moreover, it results that $L^0(x^0, u^0, v^0) \leq L^0(y, u, v), \forall (t, y, u, v) \in \Omega$ is false. Then (t^0, x^0, u^0, v^0) is a t^0 -efficient point of maximum type for L^0 .

Theorem 2.3 (Converse duality). Let (t^0, x^0, u^0, v^0) be a t^0 -efficient solution of (MWD), where $t^0 > 0$. We suppose that:

(c1) The primal program (MP) admits the efficient solution \bar{x} , where D verifies the constraint qualification $R(\bar{x})$.

(c2) The function $L^0(x^0, u^0, v^0)$ admits at x^0 an efficient minimum on A. Then $x^0 = \bar{x}$, where x^0 is a property efficient solution of (MP) and $f(x^0) =$ $L^0(x^0, u^0, v^0).$

Proof. We suppose that $x^0 \neq \bar{x}$ and we shall a contradiction. Because \bar{x} is an efficient solution of (MP) which satisfies the constraint qualification $R(\bar{x})$, then there exist the vectors $\bar{t} \in \mathbf{R}^p_+$, $\bar{u} \in \mathbf{R}^m$, $\bar{u} \stackrel{\geq}{=} 0$ and $\bar{v} \in \mathbf{R}^q$, $\bar{v} \stackrel{\geq}{=} 0$, such that (MP) satisfies at \bar{x} efficiency Kuhn-Tucker conditions of the form (KT3) (with \bar{x} instead of x^0); consequently, $(\bar{t}, \bar{x}, \bar{u}, \bar{v}) \in \Omega$ and

$$(2.2) \qquad \qquad \bar{u}'g(\bar{x}) = 0.$$

Also, we have

(2.3)
$$\bar{v}'h(\bar{x}) = 0.$$

Obviously, the relation $L^0(x^0, u^0, v^0) \leq L^0(\bar{x}, \bar{u}, \bar{v})$ is false, because (t^0, x^0, u^0, v^0) is a t^0 -efficient solution of (MWD). Multiplying this inequality by $t^0 > 0$ it results that the relation $t^{0'}L^0(x^0, u^0, v^0) \leq t^{0'}L^0(\bar{x}, \bar{u}, \bar{v})$ is false. Then the next relation is true:

(2.4)
$$t^{0'}L^0(x^0, u^0, v^0) > t^{0'}L^0(\bar{x}, \bar{u}, \bar{v}).$$

For every $x \in D$ the relation $L^0(x, u^0, v^0) \leq L^0(x^0, u^0, v^0)$ is false (see (c2)). Then it results that the relation $t^{0'}L^0(x, u^0, v^0) \leq t^{0'}L^0(x^0, u^0, v^0)$ is false too. Consequently we have

(2.5)
$$t^{0'}L^0(x, u^0, v^0) > t^{0'}L^0(x^0, u^0, v^0), \quad \forall x \in D$$

and particularly, for $x = \bar{x}$, we obtain

(2.6)
$$t^{0'}L(\bar{x}, u^0, v^0) > t^{0'}L(x^0, u^0, v^0)$$

From the relations (2.4) and (2.6) we obtain

$$t^{0'}L(\bar{x}, u^0, v^0) > t^{0'}L(\bar{x}, \bar{u}, \bar{v}),$$

or equivalently (using (2.2), (2.3)), $u^{0'}g(\bar{x}) > 0$, that is a contradiction. Therefore, $x^0 = \bar{x}$.

We have

(2.7)
$$t^{0'}f(x) \ge t^{0'}f(x) + u^{0'}g(x) + v^{0'}h(x) = t^{0'}L^0(x, u^0, v^0),$$

or shortly, $t^{0'}f(x) > t^{0'}L^0(x, u^0, v^0)$. Using now in this inequality relation $(t^0, x, u^0, v^0) \in \Omega$ it result $t^{0'}f(x) > t^{0'}f(x^0)$, $\forall x \in D$. Taking into account Lemma 1.2 we infer that x^0 is a properly efficient solution of (MP).

Remark 2.1. Using other Kuhn-Tucker conditions, given by Theorem 1.1 or Corollaries 1.2 or 1.4, instead of (KT3), result other duality theorems.

Remark 2.2. For the following particular partitions of M and Q:

$$J_0 = M, \ J_\alpha = \emptyset, \ \alpha = \overline{1, r}; \ K_0 = Q, \ K_\alpha = \emptyset, \ \alpha = \overline{1, r}, \ r = \max\{m, q\}$$

is obtained a Wolfe duality, generated by (MP) and duality which was studied by us in ([11]).

3 The Preda duality for multiobjective program (MP)

Let $\{J_1, \ldots, J_r\}$ be a partition of the set M and $\{K_1, \ldots, K_r\}$ a partition of Q. The dual program Preda associated to the primal multiobjective program (MP) is the following multiobjective program

$$(\text{MPD}) \begin{cases} \text{Maximize (Pareto) } L(y, u, v) = f(y) + [u'g(y) + v'h(y)]e \\ \text{subject to} : \sum_{k=1}^{p} t_k \partial f_k(y) + \sum_{i=1}^{m} u_i \partial g_i(y) + \sum_{j=1}^{q} v_j \partial h_j(y) + N_A(y) \supset \{0\} \\ u'_{J_{\alpha}}g_{J_{\alpha}} \stackrel{\leq}{=} 0, \ v'_{K_{\alpha}}h_{K_{\alpha}} = 0, \ \alpha = \overline{1, r} \\ y \in A, \ t \in \mathbf{R}^p_+, \ t'e = 1, \ u \in R. \end{cases}$$

Between the multiobjective programs (MP) and (MPD) we develop a duality by means of the following weak, direct and converse duality theorems:

Theorem 3.1. (Weak duality). We suppose that:

a) The domains D and Ω_p of the dual programs (MP) and (MPD) are nonempty.
b) For each (t, y, u, v) ∈ Ω_p the inequality L(y, u, v) ≥ L(x, u, v), ∀x ∈ A, is false. Then ∀x ∈ D, ∀(t, y, u, v) ∈ Ω_p, the inequality f(x) ≤ L(y, u, v) is false.

Theorem 3.2. (Direct duality). Let x^0 be a local efficient solution of the primal (MP), where the functions f, g and h are subdifferentiable. Also, we suppose that the following hypotheses are satisfied:

(d1) The domain D satisfies the constraint qualifications $R(x^0)$.

(d2) For every $(t, y, u, v) \in \Omega_p$, the inequality $L(y, u, v) \ge L(x, u, v)$ is false $\forall x \in A$.

Then there exist the vectors $t^0 \in \mathbf{R}^p$, $u^0 \in \mathbf{R}^m$ and $v^0 \in \mathbf{R}^q$, such that (t^0, y^0, u^0, v^0) is a t^0 -efficient solution of the dual (MPD) and $f(x^0) = L(x^0, u^0, v^0)$.

Theorem 3.3. (Converse duality). Let (t^0, x^0, u^0, v^0) be a t^0 -efficient solution of (MPD), where $t^0 > 0$. We suppose that

(c1) The primal program (MP) admits the efficient solution \bar{x} , where D verifies the constraint qualification $R(\bar{x})$.

(c2) The function $L(x, u^0, v^0)$ admits at x^0 an efficient minimum on A.

Then $x^0 = \bar{x}$, where x^0 is a properly efficient solution of (MP) and $f(x^0) = L(x^0, u^0, v^0)$.

The proofs of Theorems 3.1, 3.2 and 3.3 are similar to those of Theorems 2.1, 2.2, 2.3, respectively.

References

- F.H. Clarke, Optimization and Nonsmooth Analysis, J. Wiley & Sons, New York, 1983.
- [2] A.M. Geoffrion, Proper efficiency and the theory of vector maximization, J. Math. Anal. Appl. 22 (1968), 618-630.
- [3] P. Kannianpan, Necessary conditions for optimality of on differentiable convex multiobjective programming, J.O.T.A. 40 (1983), 2, 167-174.

118

- [4] S. Mititelu, Optimality and Mond-Weir duality in nonsmooth programming, St. Cerc. Mat. 45 (1993), 5, 435-444.
- [5] S. Mititelu, A survey on optimality and duality in nonsmooth programming, In: "Generalized Convexity", Proceedings of the IV-th International Workshop on Generalized Convexity, Aug. 31 - Sept. 2, 1992, Springer-Verlag 1994, 211-225.
- [6] S. Mititelu, Nonconvex subdifferential calculus, Anal. St. Univ. Ovidius Constanţa, Ser. Mat. 3 (1995), 1, 118-128.
- [7] S. Mititelu, Hansons's duality theorem in nonsmooth programming, Optimization 28 (1994), 275-281.
- [8] S. Mititelu, Nonsmooth programming with nonconvex functions, Rev. Roum. Math. Appl. 40 (1995), 7-8, 655-667.
- [9] S. Mititelu, The unitary character of Mond-Weir duality on nonlinear programming, An. Univ. Bucureşti, Mat.-Inf. 60 (2002), 1, 91-98.
- [10] S. Mititelu, Kuhn-Tucker conditions and Preda duality for multiobjective mathematical programs with n-set functions, U.P.B. Sci. Bull., Series A. 64 (2002), 4, 3-16.
- [11] S. Mititelu, Efficiency and duality in multiobjective nonsmooth programming, Proceedings of The 3-rd International Colloquium "Mathematics in Engineering and Numerical Physics (MENP-3)", Oct. 7-9, 2004, Bucharest, Romania, 186-194, Geometry Balkan Press, 2005.
- [12] V. Preda, Duality for multiobjective mathematical programming involving n-set functions, Scripta Scientiarum Mathematicarum 1 (1999), 2, 339-354.
- [13] T. Weir, Proper efficiency and duality for vector valued optimization problems, J. Austral. Math. Soc., Series A 43 (1987), 21-34.

Author's address:

Ştefan Mititelu

Technical University of Civil Engineering, Department of Mathematics and Informatics, Bd. Lacul Tei 124, 020396 Bucharest, Romania. e-mail: st_mititelu@yahoo.com