Variational study of an elliptic boundary problem

Olga Martin

Abstract. Using the Lax-Milgram theorem and the techniques of the abstract functional analysis, we prove the existence and uniqueness of the solution of a boundary value problem for a non-homogeneous Helmholtz equation.

Key words: abstract functional analysis, Lax-Milgram theorem, Helmholtz equation, Sobolev space, Hilbert space.

Let us consider the Helmholtz’s equation rewritten in the form

\(\frac{\partial^2 \varphi(x, y)}{\partial x^2} + \frac{\partial^2 \varphi(x, y)}{\partial y^2} + k^2 \varphi(x, y) = -f(x, y) \) (1)

with an homogeneous boundary value problem

\(\varphi|_{\Gamma} = 0, \) (2)

where the boundary \(\Gamma \) of \(D \) is a smooth contour, \(f \) is a given function in \(\forall (x, y) \in D \) and \(k \) is a constant.

In order to get the solution \(\varphi \) of the problem (1)-(2), we define the following spaces:

(a) the Hilbert space \(H = L^2(D) \) (the quadratically integrable functions) with the scalar product defined by the formula

\((u, v) = \int\int_D u(x, y)v(x, y)dxdy \) (3)

(b) the Sobolev space defined by

\(W^{1,2}(D) = \{ \tilde{u} \in L^2(D) | \exists g_1, g_2 \in L^2(D) \text{ such that} \} \)

\(\int\int_D \tilde{u} \frac{\partial v}{\partial x} = -\int\int_D g_1v \quad \text{and} \quad \int\int_D \tilde{u} \frac{\partial v}{\partial y} = -\int\int_D g_2v, \forall v \in C_c(D) \} \) (4)

where \(C_c(D) \) is the space of the continuous functions with compact support.

Now, we define in the space \(W^{1,2}(D) \) the scalar product

\[
(5) \quad (u, v) = (u, v)_{L_2} + \sum_{i=1}^{2} \left(\frac{\partial u}{\partial x_i} \cdot \frac{\partial v}{\partial x_i} \right)_{L_2} = \int_D \left(w + \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} \right) dxdy.
\]

Here, the \(W^{1,2}(D) \) is the prolongation of the space \(C^1(D) \) with the limit points of the Cauchy sequences from this space, hence a Banach space, \([1] \). The space \(W^{1,2}(D) \) becomes a Hilbert space \(H^1(D) \) with the scalar product (5).

If the functions \(\tilde{u} \) satisfy the boundary condition (2), then \(H^1(D) \) becomes the Hilbert space \(H^1_0(D) \).

Lemma 1. Every classical solution of the problem (1)-(2) is a weak solution.

Proof. A classical solution of the problem is a function \(\varphi \in C^2(\bar{D}) \), which verifies (1)-(2).

A weak solution of the same problem is a function \(\varphi \in H^1_0(D) \) under the following condition:

\[
(6) \quad \int_D \nabla \varphi \cdot \nabla v - k^2 \int_D \varphi v = \int_D f v, \quad \forall v \in H^1_0(D)
\]

where

\[
\nabla \varphi \cdot \nabla v = \frac{\partial \varphi}{\partial x} \frac{\partial v}{\partial x} + \frac{\partial \varphi}{\partial y} \frac{\partial v}{\partial y} \quad \text{and} \quad v|_\Gamma = 0.
\]

Let us consider \(\varphi \in H^1(D) \cap C(\bar{D}) \) and \(\varphi = 0 \) on the boundary \(\Gamma \). Then \(\varphi \in H^1_0(D) \) and we shall prove that (6) is verified for every \(v \in H^1_0(D) \).

For this, we multiply (1) by \(v \in C^1(D) \) and integrate over the domain \(D \). We have

\[
(7) \quad \int_D \left(\frac{\partial^2 \varphi}{\partial x^2} v + \frac{\partial^2 \varphi}{\partial y^2} v \right) + k^2 \int_D \varphi v = - \int_D f v.
\]

Applying the Green’s formula to the first term we get

\[
(8) \quad \int_D v \Delta \varphi = \int_\Gamma \left(- \frac{\partial \varphi}{\partial y} v dx + \frac{\partial \varphi}{\partial x} v dy \right) - \int_D \nabla v \cdot \nabla \varphi \Rightarrow \int_D v \Delta \varphi = - \int_D \nabla v \nabla \varphi.
\]

Since \(C^1(D) \) is dense in \(W^{1,2}(D) \), we obtain from (7) and (8) for every \(v \in H^1_0(D); v|_\Gamma = 0 \), the following equality

\[
(9) \quad - \int_D \nabla \varphi \nabla v + k^2 \int_D \varphi v = - \int_D f v
\]

and lemma is proved. \(\square \)
Definition. A bilinear form \(a(u, \varphi) : H \times H \to \mathbb{R} \) is called:

1. continuous, if there exists a constant \(K_1 \) such that

\[
|a(\varphi, v)| \leq K_1|\varphi||v|, \quad \forall \varphi, v \in H; \tag{10}
\]

2. coercive, if there exists a constant \(\gamma > 0 \) such that

\[
a(\varphi, \varphi) \geq \gamma|\varphi|^2, \quad \forall \varphi \in H(D) \tag{11}
\]

Lemma 2. The bilinear form

\[
a(\varphi, v) = \iint_D \nabla \varphi \nabla v - k^2 \iint_D \varphi v \tag{12}
\]

is continuous in \(H^1(D) \times H^1(D) \).

Proof. Let us consider \(K_1 = \max(1; k^2) \). Using the Cauchy-Schwarz inequality we get

\[
|a(\varphi, v)| = \left| \iint_D \nabla \varphi \nabla v - k^2 \iint_D \varphi v \right| \leq \iint_D |\nabla \varphi \nabla v - k^2 \varphi v| \leq K_1 \left(\iint_D [\varphi^2 + (\nabla \varphi)^2] \right)^{1/2} \left(\iint_D [v^2 + (\nabla v)^2] \right)^{1/2} = K_1 ||\varphi||_{H^1(D)} ||v||_{H^1(D)}.
\]

It follows from (10) that the bilinear form (12) is continuous in \(H^1(D) \times H^1(D) \).

Lemma 3. The bilinear form

\[
a(\varphi, v) = \iint_D \nabla \varphi \cdot \nabla v - k^2 \iint_D \varphi v \tag{13}
\]

is coercive in \(H^1_0(D) \).

Proof. In accordance with (13) we have

\[
a(\varphi, \varphi) = \iint_D \left(\left(\frac{\partial \varphi}{\partial x} \right)^2 + \left(\frac{\partial \varphi}{\partial y} \right)^2 \right) - k^2 \iint_D \varphi^2 \tag{14}
\]

where \(\varphi \in H^1_0(D) \) (vanish on \(\Gamma \)).

We enclose the domain \(D \) in a rectangle \(D_1 \) (with sides \(\alpha \) and \(\beta \)), whose two sides are the coordinate axes. Equating this function to zero, we extend it over the entire rectangle \(D_1 \). If \((x_1, y_1) \) is an arbitrary point, we get

\[
\varphi(x_1, y_1) = \int_0^{x_1} \frac{\partial \varphi(x, y_1)}{\partial x} dx + \varphi(0, y_1) = \int_0^{x_1} \frac{\partial \varphi(x, y_1)}{\partial x} dx.
\]

Using the Cauchy-Schwarz inequality we get

\[
\varphi^2(x_1, y_1) = \left(\int_0^{x_1} 1 \cdot \frac{\partial \varphi(x, y_1)}{\partial x} dx \right)^2 \leq \int_0^{x_1} 1^2 dx \int_0^{x_1} \left(\frac{\partial \varphi(x, y_1)}{\partial x} \right)^2 dx = x_1 \int_0^{x_1} \left(\frac{\partial \varphi(x, y_1)}{\partial x} \right)^2 dx \leq \alpha \int_0^\alpha \left(\frac{\partial \varphi(x, y_1)}{\partial x} \right)^2 dx = \alpha \cdot F(y_1).
\]
Integrating over the entire rectangle D_1 we obtain
\[\iint_{D_1} \phi^2(x_1, y_1) dx_1 dy_1 \leq \int_0^\alpha \alpha dx_1 \int_0^\beta F(y_1) dy_1 \leq \alpha^2 \iint_{D_1} \left(\frac{\partial \phi(x, y)}{\partial x} \right)^2 dx dy. \]

Analogously,
\[\iint_{D_1} \phi^2(x_1, y_1) dx_1 dy_1 \leq \beta^2 \int_{\Gamma_1} \left(\frac{\partial \phi(x, y)}{\partial y} \right)^2 dx dy. \]

Therefore
\[\iint_{D} \left[\left(\frac{\partial \phi}{\partial x} \right)^2 + \left(\frac{\partial \phi}{\partial y} \right)^2 \right] dx dy \geq \frac{\alpha^2 + \beta^2}{\alpha^2 \beta^2} \int_{D} \phi^2(x, y) dx dy \geq \frac{2}{\alpha \beta} \int_{D} \phi^2(x, y) dx dy \]

Thus, we obtained the Friedrichs inequality for our problem. If $A = \max(\alpha, \beta)$, we find from (14) and (15) the following inequality
\[a(\phi, \phi) = \frac{2}{A^2} \int_{D} (|\nabla \phi|^2 - k^2 \phi^2) \geq 2 \alpha \beta \int_{D} \phi^2 \quad \forall \phi \in H^1_0(D) \quad (16) \]

In view of the definition, the bilinear form is coercive if $k \leq 0 \left(\sqrt{\frac{2}{A}} \right)$. \hfill \Box

Theorem (Lax-Milgram, [1]). Let $a(\phi, v)$ be a bilinear form, $a : H^1_0 \times H^1_0 \rightarrow \mathbb{R}$, which is continuous and coercive. Then, for every $f \in L^2(D)$ exists an unique $\phi \in H^1_0(D)$ such that
\[a(\phi, v) = \int_{D} f v, \quad \forall v \in H^1_0(D). \quad (17) \]

Moreover, if $a(\phi, v)$ is symmetric we find $\phi \in H^1_0$ by
\[\frac{1}{2} a(\phi, \phi) - (f, \phi) = \min_{v \in H^1_0} \left\{ \frac{1}{2} \int_{D} (|\nabla v|^2 - k^2 v^2) - \int_{D} fv \right\}. \quad (18) \]

Theorem 1. If $f \in L^2(D)$, then the weak solution of the problem
\[\Delta \phi(x, y) + k^2 \phi(x, y) = -f(x, y) \quad (19) \]

exists and is unique.

Proof. It follows from Lemma 2 and Lemma 3 that $a(\phi, v)$ is continuous and coercive in D. Applying the theorem Lax-Milgram’s for $f \in L^2(D)$, we get an unique weak solution of our boundary problem. \hfill \Box
Theorem 2. If $\varphi \in H_0^1(D) \subset L_2(D)$ is a weak solution of (19)-(20), then $\varphi \in H^2(D)$.

Proof. Let us consider the function v of the form

$$v(x, y) = \begin{cases} e^{-\varphi}, & \forall (x, y) \in D \\ 0, & \forall (x, y) \notin D \end{cases}$$

where $\varphi \in H_0^1(D) \subset L_2(D)$.

If the boundary Γ of D is a smooth contour, it is sufficient that $v \in H^1(D)$ and it is not necessary that $v \in C(\overline{D})$, [1]. We shall show that starting in (4) with the function v and $\tilde{u} = \frac{\partial \varphi}{\partial x} \in L_2(D)$, we obtain

$$\int\int_D \frac{\partial \varphi}{\partial x} \frac{\partial v}{\partial x} = -\int\int_D \left(\frac{\partial \varphi}{\partial x}\right)^2 e^{-\varphi}.$$ (21)

Hence, there exits a function $g_1 = \left(\frac{\partial \varphi}{\partial x}\right)^2 \in L_2(D)$ such that

$$\int\int_D \frac{\partial \varphi}{\partial x} \frac{\partial v}{\partial x} = -\int\int_D g_1 v.$$ (23)

Analogously, there exists

$$g_2 = \left(\frac{\partial \varphi}{\partial y}\right)^2 \in L_2(D)$$

such that

$$\int\int_D \frac{\partial \varphi}{\partial y} \frac{\partial v}{\partial y} = -\int\int_D g_2 v.$$ (24)

According to (4), (21) and (22), it should be observed that $\frac{\partial \varphi}{\partial x} \in H^1(D)$ and $\frac{\partial \varphi}{\partial y} \in H^1(D)$ when $f \in L_2(D)$. Consequently, $f \in H^2(D)$.

Theorem 3. Let the mild solution of (19)-(20) be $\varphi \in C^2(D)$. If $f \in L_2(D)$, then φ is a classical solution of the problem.

Proof. Let us consider $\varphi \in C^2(D)$, which verifies (6)

$$\int\int_D \left(\frac{\partial \varphi}{\partial x} \frac{\partial v}{\partial x} + \frac{\partial \varphi}{\partial y} \frac{\partial v}{\partial y}\right) - k^2 \int\int_D \varphi v = \int\int_D fv$$

$\forall v \in C^1_0(D)$ and $v|_\Gamma = 0$. Integrating by parts we get

$$\int\int_D \left[\left(-\frac{\partial^2 \varphi}{\partial x^2} - \frac{\partial^2 \varphi}{\partial y^2}\right) - k^2 \varphi - f\right] v dx dy = 0.$$ (23)

Since $C^1_0(D)$ is dense in $L_2(D)$, we obtain that

$$\Delta \varphi(x, y) + k^2 \varphi(x, y) = -f(x, y)$$ (25)

$$\varphi|_\Gamma = 0$$

everywhere in D. Since $\varphi \in C^2(D)$, the equation (23) is verified in D. \qed
Conclusion. Many authors paid attention to the abstract variational formulation of the boundary problem for partial differential equations, [6], [9], [12], [13]. An entertaining and complete survey of the results obtained in this field of functional analysis appears in [1]. Applications of the theory of semi-groups of linear operators to differential equations are presented by Pazy in [13].

An exact solution for the problem (1)-(2) has been presented in [15]. If $D = [0, a] \times [0, b]$, it is of the form

$$
\varphi(x, y) = \int_0^a \int_0^b f(x, y) G(x, y, \xi, \eta) d\xi d\eta
$$

where

$$
G(x, y, \xi, \eta) = \frac{2}{a} \sum_{n=1}^{\infty} \frac{\sin(p_n x)(\sin(p_n \xi))}{\beta_n \sinh(\beta_n b)} \cdot H_n(y, \eta), p_n = \frac{\pi n}{a}, \\
\beta_n = \sqrt{p_n^2 - k^2}, \ a \geq b
$$

$$
H_n(y, \eta) = \begin{cases}
\sinh(\beta_n \eta) \sinh(\beta_n(b-y)), & b \geq y > \eta \geq 0 \\
\sinh(\beta_n y) \sinh(\beta_n(b-\eta)), & b \geq \eta > y \geq 0
\end{cases}, \ n = 1, 2, \ldots
$$

It should be observed that in our case, when we study the solution of a boundary problem using the techniques of the abstract functional analysis, the natural oscillating frequencies $k > 0$, belong to

$$
k \in \left(0, \frac{\sqrt{2}}{A}\right) \subset \left(0, \frac{\pi}{A}\right),
$$

the interval which was obtained from (26). Here A is the greatest side of the rectangle D_1.

References

Variational study of an elliptic boundary problem

Author’s address:

Olga Martin
Department of Mathematics, Faculty of Applied Sciences, University "Politehnica" of Bucharest, Bucharest, Romania.
e-mail: omartin_ro@k.ro