A moment problem with values positive definite matrices

Luminita Lemnete-Ninulescu

Abstract

In this article, we study the following generalization of a classical complex moment problem: Given a Hermitian multisequence of kdimensional matrices with complex entries, when does exist a nonnegative k -dimensional matrix of positive Borelian measures such that every term of the given sequence admits a moment representation with respect to the matrix of measures.

M.S.C. 2000: 49M15, 26A09.

Key words: Hermitian multisequence of matrices, positive definite matrix, positive definite matrix of measures, complex moment problem.

1 Introduction and preliminaries

In this note, following the ideas of K.Schmudgen in [6], we reformulate and solve a k -complex moment sequence having as values complex Hermitian matrices. Obviously, in case $k=1$ the problem reduces to the classical 1 dimensional complex moment problem. The k-complex moment problem solved is: given a Hermitian multisequence

$$
S_{(m, n)}=\left(a_{i, j}(m, n)\right)_{1 \leq i, j \leq k} \forall(m, n) \in Z_{+}^{2}
$$

of (k, k) matrices with complex entries $a_{i, j}(m, n)$ when does exist a nonnegative (k, k) matrix

$$
\Lambda=\left(\lambda_{i, j}\right)_{1 \leq i, j \leq k}
$$

of positive Borel measures $\lambda_{i, j}$ on the unit polydisc $D_{1} \subset C$ such that $a_{i, j}(m, n)=$
$\int_{D_{1}} z^{m} \overline{z^{n}} d \lambda_{i, j}(z)$ for every $1 \leq i, j \leq k$ and any $(m, n) \in Z_{+}^{2}$.
Notation Let $k \in N^{*}, D_{1}=\{z \in \mathbb{C},|z| \leq 1\}$; a matrix $\Lambda=\left(\lambda_{i, j}\right)_{1 \leq i, j \leq k}$ of positive Borel measures on D_{1} is nonnegative definite on D_{1} if

$$
\sum_{1 \leq i, j \leq k} \lambda_{i, j}(B) t_{i} t_{j} \geq 0
$$

Prơceedings of The 4-th International Colloquium "Mathematics in Engineering and Numerical Physics" October 6-8, 2006, Bucharest, Romania, pp. 95-98.
(C) Balkan Society of Geometers, Geometry Balkan Press 2007.
for any $B \in \operatorname{Bor}\left(D_{1}\right)$ and any $t=\left(t_{1}, \ldots, t_{k}\right) \in R^{k}$. We denote with $M_{k}^{*}\left(D_{1}\right)$ the set of positive definite matrices of positive measures on D_{1}, having complex moments of all orders. Let $\left\{S_{(m, n)}\right\}_{(m, n) \in Z_{+}^{2}}$ be a complex Hermitian multisequence of k-dimensional complex matrices that is $S_{m, n}=\overline{S_{n, m}}$ for any $(m, n) \in Z_{+}^{2}$.

Definition 1. The Hermitian multisequence of matrices $\left\{S_{(m, n)}\right\}_{m, n} \in Z_{+}^{2}$ is called a k - complex moment sequence on D_{1} if there exists a matrix

$$
\Lambda=\left(\lambda_{i, j}\right)_{1 \leq i, j \leq k} \in M_{k}^{*}\left(D_{1}\right)
$$

such that

$$
a_{i, j}(m, n)=\int_{D_{1}} z^{m} \bar{z}^{n} d \lambda_{i, j}(z)
$$

for all $(m, n) \in Z_{+}^{2}$ and all $1 \leq i, j \leq k$.
These equalities can also be written as

$$
S_{m, n}=\int_{D_{1}} z^{m} \bar{z}^{n} d \Lambda(z)
$$

Let $\mathbb{P}_{n}(\mathbb{C})=\left\{P(z, \bar{z})=\sum_{(m, n) \in H} a_{m n} z^{m} \bar{z}^{n}, a_{m n} \in \mathbb{C}\right\}$ the \mathbb{C}-vector space of polynomials in z, \bar{z} variable with complex coefficients. As in the theory of the classical moment problems, it is useful to replace the Hermitian multisequence $\{S(m, n)\}_{m, n}$ of (k, k) matrices by $k \times k \mathbb{C}$-linear mappings

$$
\mathbb{S}_{i j}: \mathbb{P}_{n}(\mathbb{C}) \rightarrow \mathbb{C}, \mathbb{S}_{i j}(P(z, \bar{z}))=\sum_{(m, n) \in H \text { finite }} a_{m n} a_{i j}(m, n)
$$

when $P(z, \bar{z})=\sum_{(m, n) \in H \text { finite }} a_{m n} z^{m} \bar{z}^{n}$ for any $1 \leq i, j \leq k$.
The $\mathbb{S}_{i j}-\mathbb{C}$ linear mapping is called positive on D_{1} iff for any $P \in \mathbb{P}_{n}$ with $P(z, \bar{z}) \geq 0$ and any $z \in D_{1}$ we have $\mathbb{S}_{i j}(P) \geq 0$.

2 The existence of a solution

A solution of the k-dimensional complex moment problem is given by the following:
Proposition 1. Let $S_{(m, n)}=\left(\left(a_{i j}(m, n)\right)_{1 \leq i, j \leq k}\right.$ for any $(m, n) \in Z_{+}^{2}$ a Hermitian multisequence of (k, k) matrices. The following statements are equivalent:
(i) $\left\{S_{(m, n)}\right\}_{(m, n) \in Z_{+}^{2}}$ is a k-complex moment sequence.
(ii) The \mathbf{C}-linear mappings $\mathbf{S}_{i j} 1 \leq i, j \leq k$ are all positive on D_{1} and

$$
\sum_{1 \leq i, j \leq k} \mathbf{S}_{i j}(P(z, \bar{z})) t_{i} t_{j} \geq 0
$$

for any $t_{i} \in \mathbb{R}$ and any positive polynomial on $D_{1}, P \in \mathbb{P}_{n}(\mathbb{C})$.

Proof i) \Rightarrow ii) Assume that the Hermitian multisequence $S_{m n} \in M(k, \mathbb{C})$ is a k complex moment sequence on D_{1}. There exists a positive definite matrix

$$
\Lambda=\left(\lambda_{i j}\right)_{1 \leq i, j \leq k} \in M_{k}^{\star}\left(D_{1}\right)
$$

such that

$$
a_{i j}(m, n)=\int_{D_{1}} z^{m} \bar{z}^{n} d \lambda_{i j}(z)
$$

for any $1 \leq i, j \leq k$ and any $(m, n) \in \mathbb{Z}_{+}^{2}$
Let $P(z, \bar{z}) \in \mathbf{P}_{n}(\mathbb{C}), P(z, \bar{z})=\sum_{(m, n) \in H \text { fin }} a_{m n} z^{m} \bar{z}^{n}$ with $P(z, \bar{z}) \geq 0$ for any $z \in D_{1}$. In this case,

$$
\begin{aligned}
\mathbf{S}_{i j}(P(z, \bar{z})) & =\sum_{(m, n) \in H f i n} a_{m n} z^{m} \bar{z}^{n} d \lambda_{i j}(z) \\
= & \int_{D_{1}} P(z, \bar{z}) d \lambda_{i j} \geq 0
\end{aligned}
$$

for any $1 \leq i, j \leq n$; that means that all $\left\{\mathbf{S}_{i j}\right\}_{1 \leq i, j \leq k}$ are positive on D_{1}. Because of the positivity condition of the matrix

$$
\Lambda=\left(\lambda_{i j}\right)_{1 \leq i, j \leq k} \in M_{k}^{\star}\left(D_{1}\right)
$$

we also have:

$$
\begin{aligned}
\sum_{1 \leq i, j \leq k} \mathbf{S}_{i j}(P(z, \bar{z})) t_{i} t_{j}= & \sum_{1 \leq i, j \leq k} \int_{D_{1}} P(z, \bar{z}) d \lambda_{i j}(z) t_{i} t_{j}= \\
& =\int_{D_{1}} P(z, \bar{z}) \sum_{1 \leq i, j \leq k} d \lambda_{i j}(z) t_{i} t_{j} \geq 0
\end{aligned}
$$

for any $t_{i}, t_{j} \in \mathbb{R}$ and any $P \in \mathbf{P}_{n}(\mathbb{C})$ with $P(z, \bar{z}) \geq 0$ on D_{1}. With this, the statement (ii) is fulfilled.

Conversely, let be $\mathbf{S}_{i j}: \mathbf{P}_{n}(\mathbb{C}) \rightarrow \mathbb{C}$ defined by $\mathbf{S}_{i j}\left(z^{m} \bar{z}^{n}\right)=a_{i j}(m, n)$ positive definite on D_{1} for any $1 \leq i, j \leq k$. Let \mathbf{P} denote the \mathbb{C} vector subspace of $\mathbf{P}_{n}(\mathbb{C})$, $\mathbf{P}=\left\{P(z)=\sum_{n \in H f i n} a_{n} z^{n}, a_{n} \in \mathbb{C}\right\}$ of all analytic polynomials with complex coefficients.Using $\mathbf{S}_{i j}$ we define on \mathbf{P} an inner product by:

$$
<P, Q>\mathbf{S}_{i j}=\sum_{m, n \in H f i n} a_{i j}(m, n) b_{m} \bar{c}_{n}
$$

when

$$
P(z)=\sum_{m \in H_{1} f i n} b_{m} z^{m}, Q(z)=\sum_{n \in H_{2} f i n} c_{n} z^{n}
$$

. Because $\mathbf{S}_{i j}\left(|P(z)|^{2}\right) \geq 0$ for any $P \in \mathbf{P}$ this inner product is positive definite.Let $\mathbf{H}_{i j}$ be the separate completion of \mathbf{P} with respect to the mentioned inner product.Let $S_{i j}$ the operator of multiplication by z on \mathbf{P} that is $S_{i j}: \mathbf{P} \rightarrow \mathbf{P}, S_{i j} P=z P$.Because

$$
\mathbf{S}_{i j}\left(\left(1-|z|^{2}\right)|P(z)|^{2}\right) \geq 0
$$

when $z \in D_{1}, S_{i j}$ are all contractions on \mathbf{P}. Therefore, since \mathbf{P} is dense in $\mathbf{H}_{i j}, S_{i j}$ admits a unique extension to a bounded linear operator on $\mathbf{H}_{i j}$ with the same norm,
also denoted by $S_{i j}$. From the positive condition of the \mathbb{C}-linear mappings $\mathbb{S}_{i j}$ on D_{1}, we have:

$$
\begin{gathered}
0 \leq \mathbf{S}_{i j}\left(\left|\sum_{k=0}^{n} \bar{z}^{k} P_{k}(z)\right|^{2}\right)=\left\|\sum_{k=0}^{n} S_{i j}^{\star k} P_{k}\right\|^{2}= \\
=\sum_{p, q}<S_{i j}^{\star p} P_{p}, S^{\star} q P_{q}>\mathbf{H}_{i j}=\sum_{p, q}<S^{q} P_{p}, S^{p} P_{q}>\mathbf{H}_{i j} .
\end{gathered}
$$

These conditions are exactly Ito's necessary and sufficient condition for an operator $S_{i j}$ to be a subnormal one.In this case, for any operator $\mathbb{S}_{i j}$, there exist normals $N_{i j}: \mathbf{K}_{i j} \rightarrow K_{i j}$ such that $\mathbf{H}_{i j} \subset \mathbf{K}_{i j}$ and $\left.N_{i j}\right|_{\mathbf{H}_{i j}}=S_{i j}$ for any $1 \leq i, j \leq k$. Let $E_{i j}$ be the spectral measure associated to the normals $N_{i j}, 1 \leq i, j \leq k$. Let be also $l_{0}=1$ in \mathbf{P} and the positive Borel measure

$$
\lambda_{i j}(B)=<E_{i j}(B) l_{0}, l_{0}>_{\mathbf{S}_{i j}}
$$

for any $1 \leq i, j \leq k$. The measures $\lambda_{i j}$ are all supported on D_{1} because $N_{i j}$ are all contractions. From the properties of the spectral measures, we have

$$
\begin{gathered}
a_{i j}(m, n)=<S_{i j}^{m} l_{0}, S_{i j}^{n} l_{0}>\mathbf{S}_{i j} \int_{D_{1}} z^{m} \bar{z}^{n} d \lambda_{i j}(z) t_{i} t_{j} \text { for any } \\
P(z, \bar{z}) \in \mathbb{P}_{n}(\mathbb{C}) .
\end{gathered}
$$

Because of the uniform approximation of the continuous complex valued functions on D_{1} with polynomials in z, \bar{z}, we have

$$
\int_{D_{1}} \sum_{1 \leq i, j \leq k}|f(z)|^{2} d \lambda_{i j}(z) t_{i} t_{j} \geq 0
$$

for any $t_{i} \in \mathbb{R}$. From this, it follows that: $\sum_{1 \leq i, j \leq k} \lambda_{i j}(B) t_{i} t_{j} \geq 0$ for any $B \in$ $\operatorname{Bor}\left(D_{1}\right)$.We have proved with this, that the matrix $\Lambda=\left(\lambda_{i j}\right)_{1 \leq i, j \leq k}$ of positive Borel measures on D_{1} is positive definite on D_{1}.

References

[1] N.I. Akhizer, The classical Moment Problem, Oliver\&Boyd, Edinburgh, 1965.
[2] G. Choquet, Lectures on Analysis, Vol. 2, Benjamin, New York, 1968.
[3] T. Ito, On the commuting family of subnormal operators, J.Fac.Sci. Hokkaido Univ. 14 (1968), 1-5.
[4] L. Lemnete, A multidimensional moment problem on the unit polydisc, Rev. Roumaine Math. Pures Appl. 39, 9 (1994), 905-909.
[5] L.Lemnete-Ninulescu, R.Vidican, On a generalization of a complex moment problem on the unit polydisc, Scientific Bull.UPB, Series A, 66, 1 (2004), 23-28.
[6] K.Schmudgen, On a classical moment problem, J.of Mathematical Analysis and Applications, 125 (1987), 463-470.

Author's address:

Luminita Lemnete-Ninulescu
Departament of Mathematics, University "Politehnica" of Bucharest, Splaiul Independentei 313, RO-060042, Bucharest, ROMANIA.
email: luminita_lemnete@yahoo.com

