Symplectic classification of elliptic Monge-Ampère operators

Alexei Kushner

Abstract

We construct an e-structure (absolute parallelism) for classical Monge-Ampère operators of elliptic type. This allows us to solve the problem of local symplectic equivalence for Monge-Ampère operators. As an example we consider non-linear Laplace operator and construct its functional invariants.

M.S.C. 2000: 35J60, 35J15, 47H30, 53D05, 58J05, 58 J 10.

Key words: Monge-Ampère operators, symplectic invariants, de Rham complex.
Let M be a smooth 2-dimensional manifold. Let ω be a normed effective differential 2-form (i.e. Pfaffian $\operatorname{Pf}(\omega)=1$) on the cotangent bundles $T^{*} M$ of M. Let A be the operator that corresponds to $\omega[6]$. Then $A^{2}=-1$ and the complexification of the tangent space $T_{a}\left(T^{*} M\right)$ at a point $a \in T^{*} M$ splits into the direct sum of two skeworthogonal complex symplectic planes:

$$
T_{a}\left(T^{*} M\right)^{\mathbb{C}}=V_{+}(a) \oplus V_{-}(a),
$$

where

$$
V_{ \pm}(a)=\left\{X \in T_{a}\left(T^{*} M\right)^{\mathbb{C}} \mid A_{a}^{\mathbb{C}} X= \pm \iota X\right\}
$$

The i th derivatives of the distributions $V_{ \pm}$we denote by $V_{ \pm}^{(i)}$. Let us assume that $V_{ \pm}^{(i)}$ are distributions also for $i=1,2$. We get the following decomposition of the de Rham complex [2]:

$$
\begin{aligned}
& \Omega^{s}\left(T^{*} M\right)^{\mathbb{C}}=\underset{p+q=s}{\oplus} \Omega^{p, q}\left(T^{*} M\right), \\
& d=d_{1,0} \oplus d_{0,1} \oplus d_{2,-1} \oplus d_{-1,2} .
\end{aligned}
$$

where $\Omega^{p, q}\left(T^{*} M\right)=\Omega^{p}\left(V_{+}\right) \otimes \Omega^{q}\left(V_{-}\right)$, and

$$
d_{i, j}: \Omega^{p, q}\left(T^{*} M\right) \rightarrow \Omega^{p+i, q+k}\left(T^{*} M\right)
$$

Prớceedings of The 4-th International Colloquium "Mathematics in Engineering and Numerical Physics" October 6-8, 2006, Bucharest, Romania, pp. 87-94.
(C) Balkan Society of Geometers, Geometry Balkan Press 2007.

Remark that $d_{-1,2}$ and $d_{2,-1}$ are the tensor invariants of the Monge-Ampère equation $E_{\omega}[2]$.

The formula

$$
\left.W_{\omega}\right\rfloor \Omega^{2}=2 d \omega
$$

uniquely determines the real vector field W_{ω}. Let μ_{ω} be the real differential 1-form

$$
\left.\mu_{\omega} \stackrel{\text { def }}{=} W_{\omega}\right\rfloor \Omega
$$

Using decomposition (1), we get: $W=W_{+}+W_{-}$, where $W_{+} \in D\left(V_{+}\right)$and $W_{-} \in D\left(V_{-}\right)$are complex vector fields. Since the distributions V_{+}and V_{-}are skew-orthogonal, we see that the differential 1-forms $\left.W_{+}\right\rfloor \Omega^{\mathbb{C}}$ and $\left.W_{-}\right\rfloor \Omega^{\mathbb{C}}$ belong to $\Omega^{1,0}\left(T^{*} M\right)$ and $\Omega^{0,1}\left(T^{*} M\right)$ correspondingly. Denote them by

$$
\left.\left.\mu_{+} \stackrel{\text { def }}{=} W_{+}\right\rfloor \Omega^{\mathbb{C}}, \quad \text { and } \quad \mu_{-} \stackrel{\text { def }}{=} W_{-}\right\rfloor \Omega
$$

The 3-dimensional distributions $\operatorname{ker} \mu_{+}$and $\operatorname{ker} \mu_{-}$define 2-dimensional distribution $\operatorname{ker} \mu_{+} \cap \operatorname{ker} \mu_{-}$. Note that $\mu_{+}\left(W_{+}\right)=\mu_{+}\left(W_{-}\right)=\mu_{-}\left(W_{+}\right)=\mu_{-}\left(W_{-}\right)=0$, therefore the distribution $\operatorname{ker} \mu_{+} \cap \operatorname{ker} \mu_{-}$is generated by the vector fields W_{+}and $W_{-}: \operatorname{ker} \mu_{+} \cap \operatorname{ker} \mu_{-}=\mathcal{F}\left\langle W_{+}, W_{-}\right\rangle$.

Let Q be their commutator: $Q \stackrel{\text { def }}{=}\left[W_{+}, W_{-}\right]$. Then using decomposition (1) again, we get two vector fields $Q_{+} \in D\left(V_{+}\right)^{\mathbb{C}}$ and $Q_{-} \in D\left(V_{-}\right)^{\mathbb{C}}$ such that $Q=Q_{+}+Q_{-}$.

Suppose now that the 3 -dimensional distributions $\operatorname{ker} \mu_{+}$and $\operatorname{ker} \mu_{-}$are completely integrable.

Since this distribution $\mathcal{F}\left\langle W_{+}, W_{-}\right\rangle$is completely integrable also, one can define two functional invariants g_{+}and g_{-}of the form ω by the following formula:

$$
\left[W_{+}, W_{-}\right]=g_{+} W_{+}+g_{-} W_{-}
$$

Since the distributions ker μ_{+}and $\operatorname{ker} \mu_{-}$are completely integrable, we see that $\mu_{+} \wedge$ $d \mu_{+}=\mu_{-} \wedge d \mu_{-}=0$. Then $\left.\left.\mu_{+} \wedge\left(W_{+}\right\rfloor d \mu_{+}\right)=W_{+}\right\rfloor\left(\mu_{+} \wedge d \mu_{+}\right)=0$, i.e. the 1-forms μ_{+}and $\left.W_{+}\right\rfloor d \mu_{+}$are linear dependent. Therefore

$$
\left.W_{+}\right\rfloor d \mu_{+}=g_{0} \mu_{+}
$$

for some complex-valued function g_{0}.
This function is an invariant of ω. Note also that

$$
\left.W_{-}\right\rfloor d \mu_{-}=-g_{0} \mu_{-}
$$

Since $\mu_{+} \in \Omega^{1,0}$, we have:

$$
d \mu_{+}=d_{1,0} \mu_{+}+d_{0,1} \mu_{+}+d_{-1,2} \mu_{+}
$$

By reason of dimension, $\mu_{+} \wedge d_{1,0} \mu_{+}=0$. Then

$$
\mu_{+} \wedge d \mu_{+}=\mu_{+} \wedge d_{0,1} \mu_{+}+\mu_{+} \wedge d_{-1,2} \mu_{+}
$$

Since $\mu_{+} \wedge d \mu_{+}=0, \mu_{+} \wedge d_{0,1} \mu_{+} \in \Omega^{2,1}$ and $\mu_{+} \wedge d_{-1,2} \mu_{+} \in \Omega^{1,2}$, we see that

$$
\mu_{+} \wedge d_{0,1} \mu_{+}=0
$$

and $\mu_{+} \wedge d_{-1,2} \mu_{+}=0$. Since $d_{-1,2} \mu_{+} \in \Omega^{0,2}$ and $\mu_{+} \in \Omega^{1,0}$, the last equality realized if and only if $d_{-1,2} \mu_{+}=0$.

Then

$$
d \mu_{+}=d_{1,0} \mu_{+}+d_{0,1} \mu_{+}
$$

In the similar way we get

$$
d \mu_{-}=d_{1,0} \mu_{-}+d_{0,1} \mu_{-}
$$

From (2) it follows that

$$
d_{0,1} \mu_{+}=\mu_{+} \wedge \gamma_{-}
$$

for some uniquely determined differential 1-form $\gamma_{-} \in \Omega^{0,1}$. In the similar way we get a uniquely determined differential 1-form $\gamma_{+} \in \Omega^{1,0}$ such that:

$$
d_{1,0} \mu_{-}=\mu_{-} \wedge \gamma_{+}
$$

We denote by X_{+}and X_{-}by the dual vector fields:

$$
\left.X_{ \pm}\right\rfloor \Omega=\gamma_{ \pm}
$$

Lemma 1. $\gamma_{-}\left(W_{-}\right)=g_{+}$and $\gamma_{+}\left(W_{+}\right)=-g_{-}$.
Proof. Since formulas (3) and (4), and the fact that

$$
\left.\left.W_{-}\right\rfloor d_{1,0} \mu_{+}=W_{+}\right\rfloor d_{0,1} \mu_{-}=0
$$

we get

$$
\left.\left.\left.W_{-}\right\rfloor d \mu_{+}=W_{-}\right\rfloor d_{0,1} \mu_{+}=W_{-}\right\rfloor\left(\mu_{+} \wedge \gamma_{-}\right)=-\gamma_{-}\left(W_{-}\right) \mu_{+}
$$

and

$$
\left.\left.\left.W_{+}\right\rfloor d \mu_{-}=W_{+}\right\rfloor d_{1,0} \mu_{-}=W_{+}\right\rfloor\left(\mu_{-} \wedge \gamma_{+}\right)=-\gamma_{+}\left(W_{+}\right) \mu_{-}
$$

Using the formula $\iota_{[X, Y]}=\left[L_{X}, \iota_{Y}\right]$, we get:

$$
\begin{aligned}
{\left.\left[W_{+}, W_{-}\right]\right] \Omega } & =\left[L_{W_{+}}, \iota_{W_{-}}\right](\Omega)= \\
& \left.\left.=L_{W_{+}}\left(W_{-}\right\rfloor \Omega\right)-W_{-}\right\rfloor L_{W_{+}}(\Omega) \\
& \left.\left.=W_{+}\right\rfloor d \mu_{-}-W_{-}\right\rfloor d \mu_{+} \\
& =-\gamma_{+}\left(W_{+}\right) \mu_{-}+\gamma_{-}\left(W_{-}\right) \mu_{+}
\end{aligned}
$$

On the other hand

$$
\left.\left[W_{+}, W_{-}\right]\right] \Omega=g_{+} \mu_{+}+g_{-} \mu_{-} .
$$

Therefore, $g_{+}=\gamma_{-}\left(W_{-}\right)$and $g_{-}=-\gamma_{+}\left(W_{+}\right)$.

Note that the complex vector fields W_{+}and $W_{-}\left(Q_{+}\right.$and $\left.Q_{-}\right)$are complex conjugate, i.e, $W_{+}=\overline{W_{-}}$and $Q_{+}=\overline{Q_{-}}$. Note also that W and $V \stackrel{\text { def }}{=} A W$ are linear independent at each point real vector fields.

Define a real vector field X : if $\operatorname{Re} Q_{+} \neq 0$ we put $X \stackrel{\text { def }}{=} \operatorname{Re} Q_{+}$and $X \stackrel{\text { def }}{=} \operatorname{Im} Q_{+}$ otherwise. Moreover, put:

$$
Z \stackrel{\text { def }}{=} A X, \eta \stackrel{\text { def }}{=} V\rfloor \Omega, \xi \stackrel{\text { def }}{=} X\rfloor \Omega, \tau \stackrel{\text { def }}{=} Z\rfloor \Omega
$$

The table below indicates of values of the 1-forms ξ, τ, μ, η on the vector fields X, Z, W, V :

	X	Z	W	V
ξ	0	0	w	v
τ	0	0	v	$-w$
μ	$-w$	$-v$	0	0
η	$-v$	w	0	0

where $v \stackrel{\text { def }}{=} \Omega(X, V), w \stackrel{\text { def }}{=} \Omega(X, W)$.
Note that

$$
\Omega^{2}(W, V, X, Z)=2\left(v^{2}+w^{2}\right)
$$

and therefore the vector fields W, V, X, Z (and the differential 1-forms ξ, τ, μ, η) are linear independent if and only if $v^{2}+w^{2} \neq 0$.

As above we'll consider two cases:
Case 1. $v^{2}+w^{2} \neq 0$.
In this case the vector fields W, V, X, Z form a basis of the module $D\left(\mathcal{O}_{a}\right)$ in a some neighborhood \mathcal{O}_{a} of a.

Let

$$
\begin{aligned}
& X_{1} \stackrel{\text { def }}{=}-\frac{1}{v^{2}+w^{2}}(v V+w W) \\
& X_{2} \stackrel{\text { def }}{=} X \\
& X_{3} \stackrel{\text { def }}{=} \frac{1}{v^{2}+w^{2}}(v W-w V) \\
& X_{4} \stackrel{\text { def }}{=}-Z
\end{aligned}
$$

Then $X_{3}=A X_{1}, X_{4}=-A X_{2}$, and

$$
\begin{aligned}
& \Omega\left(X_{1}, X_{2}\right)=\Omega\left(X_{3}, X_{4}\right)=1 \\
& \Omega\left(X_{1}, X_{3}\right)=\Omega\left(X_{1}, X_{4}\right)=\Omega\left(X_{2}, X_{3}\right)=\Omega\left(X_{2}, X_{4}\right)=0 .
\end{aligned}
$$

Let $\left(\theta_{1}, \ldots, \theta_{4}\right)$ be the dual basis for $\left(X_{1}, \ldots, X_{2}\right)$. Then we get

$$
\Omega=\theta_{1} \wedge \theta_{2}+\theta_{3} \wedge \theta_{4}
$$

Calculating values of ω on the vector fields $X_{1}, X_{2}, X_{3}, X_{4}$:

$\omega(\uparrow, \leftarrow)$	X_{1}	X_{2}	X_{3}	X_{4}
X_{1}	0	0	0	1
X_{2}	0	0	1	0
X_{3}	0	-1	0	0
X_{4}	-1	0	0	0

we get the following representation of the form ω :

$$
\omega=\theta_{1} \wedge \theta_{4}+\theta_{2} \wedge \theta_{3}
$$

Theorem 1. Let ω be an elliptic normed effective differential 2-form on $T^{*} M$ and $a \in T^{*} M$. Suppose that $v^{2}(a)+w^{2}(a) \neq 0$. Then in a some neighborhood of a there exist an e-structure X_{1}, \ldots, X_{4} such that we have the following representation of the forms Ω and ω :

$$
\Omega=\theta_{1} \wedge \theta_{2}+\theta_{3} \wedge \theta_{4}, \quad \omega=\theta_{1} \wedge \theta_{4}+\theta_{2} \wedge \theta_{3}
$$

Remark. Similar e-structures for hyperbolic and elliptic equations was obtained by B. Kruglikov in [1]. He used the Nijenhuis tensor of the operator field A.

Case 2. The 3-dimensional complex distributions $\operatorname{ker} \mu_{+}$and $\operatorname{ker} \mu_{-}$are completely integrable in \mathcal{O}_{a}.

Let $X \stackrel{\text { def }}{=} \operatorname{Re} X_{-}$and $Z \stackrel{\text { def }}{=} A X$. These are real vector fields. As above we put

$$
\eta \stackrel{\text { def }}{=} V\rfloor \Omega, \xi \stackrel{\text { def }}{=} X\rfloor \Omega, \tau \stackrel{\text { def }}{=} Z\rfloor \Omega .
$$

Then we get the same table (6) of values of the 1-forms on the vector fields, where as above $v \stackrel{\text { def }}{=} \Omega(P, V), w \stackrel{\text { def }}{=} \Omega(P, W)$.

We define the new basis $X_{1}, \ldots X_{4}$ of $D\left(O_{a}\right)$ by the same formulas (see Case 1) and get the same canonical representation (7) of the form Ω and ω.

Theorem 2. Let ω be an elliptic normed effective differential 2-form on $T^{*} M$ and $a \in T^{*} M$. Suppose that the 3-dimensional complex distributions $\operatorname{ker} \mu_{+}$and ker μ_{-} are completely integrable in \mathcal{O}_{a}. Then in a some neighborhood of a there exist an estructure X_{1}, \ldots, X_{4} such that we have the following representation of the forms Ω and ω :

$$
\begin{aligned}
\Omega & =\theta_{1} \wedge \theta_{2}+\theta_{3} \wedge \theta_{4} \\
\omega & =\theta_{1} \wedge \theta_{4}+\theta_{2} \wedge \theta_{3}
\end{aligned}
$$

Example 1. As an example we consider the following non-linear Laplace operator

$$
\Delta_{\omega}(v)=\left(v_{q_{1} q_{1}}+v_{q_{2} q_{2}}-f(q, p)\right) d q_{1} \wedge d q_{2}
$$

which corresponds to the non-linear Laplace equation

$$
v_{x x}+v_{y y}=f\left(x, y, v_{x}, v_{y}\right)
$$

For this operator corresponding effective differential 2 form is

$$
\omega=-f(q, p) d q_{1} \wedge d q_{2}+d q_{1} \wedge d p_{2}+d q_{2} \wedge d p_{1}
$$

In the basis $\frac{\partial}{\partial q_{1}}, \frac{\partial}{\partial q_{2}}, \frac{\partial}{\partial p_{1}}, \frac{\partial}{\partial p_{2}}$ the operator A has the following matrix representation:

$$
A=\left\|\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & f & 0 & -1 \\
-f & 0 & 1 & 0
\end{array}\right\|
$$

The complex distributions V_{+}and V_{-}are

$$
\begin{aligned}
& V_{+}=\left\langle\frac{\partial}{\partial q_{2}}+f \frac{\partial}{\partial p_{2}}+\iota \frac{\partial}{\partial q_{1}}, \frac{\partial}{\partial q_{1}}+f \frac{\partial}{\partial p_{1}}-\iota \frac{\partial}{\partial q_{2}}\right\rangle \\
& V_{-}=\left\langle\frac{\partial}{\partial q_{2}}+f \frac{\partial}{\partial p_{2}}-\iota \frac{\partial}{\partial q_{1}}, \frac{\partial}{\partial q_{1}}+f \frac{\partial}{\partial p_{1}}+\iota \frac{\partial}{\partial q_{2}}\right\rangle
\end{aligned}
$$

The vector field

$$
W=-f_{p_{2}} \frac{\partial}{\partial p_{1}}+f_{p_{1}} \frac{\partial}{\partial p_{2}}
$$

falls into two components

$$
W_{ \pm}=\frac{1}{2}\left(-f_{p_{2}} \frac{\partial}{\partial p_{1}}+f_{p_{1}} \frac{\partial}{\partial p_{2}} \mp \iota\left(f_{p_{1}} \frac{\partial}{\partial p_{1}}+f_{p_{2}} \frac{\partial}{\partial p_{2}}\right)\right) .
$$

Therefore,

$$
\mu_{ \pm}=\frac{1}{2}\left(f_{p_{2}} d q_{1}-f_{p_{1}} d q_{2} \pm \iota\left(f_{p_{1}} d q_{1}+f_{p_{2}} d q_{2}\right)\right)
$$

We see that $\mu_{+} \wedge d \mu_{+}=0$ and $\mu_{-} \wedge d \mu_{-}=0$, therefore the distributions ker μ_{+} and $\operatorname{ker} \mu_{-}$are completely integrable and the equation belongs to the class $H_{2,2}$. The vector field

$$
\begin{aligned}
Q= & \iota\left(\left(2 f_{p_{1}} f_{p_{1} p_{2}}+f_{p_{2}}\left(f_{p_{2} p_{2}}-f_{p_{1} p_{1}}\right)\right) \frac{\partial}{\partial p_{1}}+\right. \\
& \left.\left(-2 f_{p_{2}} f_{p_{1} p_{2}}+f_{p_{1}}\left(f_{p_{2} p_{2}}-f_{p_{1} p_{1}}\right)\right) \frac{\partial}{\partial p_{2}}\right)
\end{aligned}
$$

is a linear combination of the vector fields W_{+}and W_{-}with coefficients

$$
\begin{aligned}
& g_{+}=\frac{\left(f_{p_{2}}-\iota f_{p_{1}}\right)\left(2 f_{p_{1} p_{2}}+\iota\left(f_{p_{1} p_{1}}-f_{p_{2} p_{2}}\right)\right)}{2\left(f_{p_{1}}-\iota f_{p_{2}}\right)} \\
& g_{-}=\frac{\left(f_{p_{1}}-\iota f_{p_{2}}\right)\left(f_{p_{2} p_{2}}-f_{p_{1} p_{1}}-\iota 2 f_{p_{1} p_{2}}\right)}{2\left(f_{p_{2}}-\iota f_{p_{1}}\right)}
\end{aligned}
$$

respectively.

Example 2. Let us construct e-structure for the following case of the non-linear Laplace operator:

$$
\Delta_{\omega}(v)=\left(v_{q_{1} q_{1}}+v_{q_{2} q_{2}}-v_{q_{1}}^{2}\right) d q_{1} \wedge d q_{2}
$$

For this operator

$$
\begin{aligned}
W & =2 p_{1} \frac{\partial}{\partial p_{2}} \\
V & =-2 p_{1} \frac{\partial}{\partial p_{1}} \\
W_{ \pm} & =p_{1} \frac{\partial}{\partial p_{2}} \mp \iota p_{1} \frac{\partial}{\partial p_{1}}, \\
\gamma_{ \pm} & =\frac{1}{2 p_{1}}\left(-d p_{1} \pm \iota\left(p_{1}^{2} d q_{2}-d p_{2}\right)\right), \\
v & =1 \\
w & =0 .
\end{aligned}
$$

Therefore we get the following e-structure:

$$
\begin{aligned}
X_{1} & =2 p_{1} \frac{\partial}{\partial p_{1}} \\
X_{2} & =-\frac{1}{2 p_{1}} \frac{\partial}{\partial q_{1}} \\
X_{3} & =2 p_{1} \frac{\partial}{\partial p_{2}} \\
X_{4} & =-\frac{1}{2 p_{1}} \frac{\partial}{\partial q_{2}}-\frac{p_{1}}{2} \frac{\partial}{\partial p_{2}} .
\end{aligned}
$$

Indeed, the dual basis is:

$$
\begin{aligned}
& \theta_{1}=\frac{1}{2 p_{1}} d p_{1}, \\
& \theta_{2}=-p_{1} d q_{1}, \\
& \theta_{3}=\frac{1}{2 p_{1}} d p_{2}-\frac{p_{1}}{2} d q_{2}, \\
& \theta_{4}=-2 p_{1} d q_{2} .
\end{aligned}
$$

and we see that

$$
\begin{aligned}
& \theta_{1} \wedge \theta_{2}+\theta_{3} \wedge \theta_{4}=d q_{1} \wedge d p_{1}+d q_{2} \wedge d p_{2}=\Omega \\
& \theta_{1} \wedge \theta_{4}+\theta_{2} \wedge \theta_{3}=-p_{1}^{2} d q_{1} \wedge d q_{2}+d q_{1} \wedge d p_{2}+d q_{2} \wedge d p_{1}=\omega
\end{aligned}
$$

References

[1] B. Kruglikov, Classification of Monge-Ampere equations with two variables, CAUSTICS '98 (Warsaw)", Polish Acad. Sci., Warsaw, 1999, 179-194.
[2] A. Kushner, Almost product structures and Monge-Ampère equations, Lobachevskii Journal of Mathematics 23 (2006), 151(181); http://ljm.ksu.ru.
[3] A. Kushner, Classification of mixed type Monge-Ampre equations, Geometry in Partial Differential Equations 1993, 173-188.
[4] A. Kushner, Symplectic geometry of mixed type equations, Amer. Math. Soc. Transl. Ser. 2 (1995), 131-142.
[5] A. Kushner, Monge-Ampre equations and e-structures, Dokl. Akad. Nauk 361 (5) (1998), 595-596.
[6] V. Lychagin, Contact geometry and second-order nonlinear differential equations, Russian Math. Ser. 34 (1979), 137-165.

Author's address:
Alexei Kushner
Department of Mathematics, Astrakhan State University, ul. Tatishcheva, 20A, 414056, Astrakhan, Russia.
e-mail: kushnera@mail.ru

