Symplectic classification of elliptic Monge-Ampère operators

Alexei Kushner

Abstract. We construct an e-structure (absolute parallelism) for classical Monge-Ampère operators of elliptic type. This allows us to solve the problem of local symplectic equivalence for Monge-Ampère operators. As an example we consider non-linear Laplace operator and construct its functional invariants.

M.S.C. 2000: 35J60, 35J15, 47H30, 53D05, 58J05, 58J10. Key words: Monge-Ampère operators, symplectic invariants, de Rham complex.

Let M be a smooth 2-dimensional manifold. Let ω be a normed effective differential 2-form (i.e. Pfaffian Pf (ω) = 1) on the cotangent bundles T^*M of M. Let A be the operator that corresponds to ω [6]. Then $A^2 = -1$ and the complexification of the tangent space $T_a(T^*M)$ at a point $a \in T^*M$ splits into the direct sum of two skeworthogonal complex symplectic planes:

$$T_a \left(T^* M \right)^{\mathbb{C}} = V_+ \left(a \right) \oplus V_- \left(a \right),$$

where

$$V_{\pm}(a) = \left\{ X \in T_a \left(T^* M \right)^{\mathbb{C}} \mid A_a^{\mathbb{C}} X = \pm \iota X \right\}.$$

The *i*th derivatives of the distributions V_{\pm} we denote by $V_{\pm}^{(i)}$. Let us assume that $V_{+}^{(i)}$ are distributions also for i = 1, 2. We get the following decomposition of the de Rham complex [2]:

$$\Omega^{s} \left(T^{*} M\right)^{\mathbb{C}} = \bigoplus_{p+q=s} \Omega^{p,q} \left(T^{*} M\right),$$
$$d = d_{1,0} \oplus d_{0,1} \oplus d_{2,-1} \oplus d_{-1,2}.$$

where $\Omega^{p,q}(T^*M) = \Omega^p(V_+) \otimes \Omega^q(V_-)$, and

$$d_{i,j}: \Omega^{p,q}(T^*M) \to \Omega^{p+i,q+k}(T^*M).$$

Proceedings of The 4-th International Colloquium "Mathematics in Engineering and Numerical Physics" October 6-8, 2006, Bucharest, Romania, pp. 87-94. © Balkan Society of Geometers, Geometry Balkan Press 2007.

Remark that $d_{-1,2}$ and $d_{2,-1}$ are the tensor invariants of the Monge-Ampère equation E_{ω} [2].

The formula

$$W_{\omega} \mid \Omega^2 = 2d\mu$$

uniquely determines the real vector field W_{ω} . Let μ_{ω} be the real differential 1-form

$$\mu_{\omega} \stackrel{\text{def}}{=} W_{\omega} \mid \Omega.$$

Using decomposition (1), we get: $W = W_+ + W_-$, where $W_+ \in D(V_+)$ and $W_- \in D(V_-)$ are complex vector fields. Since the distributions V_+ and V_- are skew-orthogonal, we see that the differential 1-forms $W_+ \rfloor \Omega^{\mathbb{C}}$ and $W_- \rfloor \Omega^{\mathbb{C}}$ belong to $\Omega^{1,0}(T^*M)$ and $\Omega^{0,1}(T^*M)$ correspondingly. Denote them by

$$\mu_+ \stackrel{\text{def}}{=} W_+ \rfloor \Omega^{\mathbb{C}}, \quad \text{and} \quad \mu_- \stackrel{\text{def}}{=} W_- \rfloor \Omega.$$

The 3-dimensional distributions ker μ_+ and ker μ_- define 2-dimensional distribution ker $\mu_+ \cap \ker \mu_-$. Note that $\mu_+(W_+) = \mu_+(W_-) = \mu_-(W_+) = \mu_-(W_-) = 0$, therefore the distribution ker $\mu_+ \cap \ker \mu_-$ is generated by the vector fields W_+ and W_- : ker $\mu_+ \cap \ker \mu_- = \mathcal{F} \langle W_+, W_- \rangle$.

Let Q be their commutator: $Q \stackrel{\text{def}}{=} [W_+, W_-]$. Then using decomposition (1) again, we get two vector fields $Q_+ \in D(V_+)^{\mathbb{C}}$ and $Q_- \in D(V_-)^{\mathbb{C}}$ such that $Q = Q_+ + Q_-$.

Suppose now that the 3-dimensional distributions $\ker \mu_+$ and $\ker \mu_-$ are completely integrable.

Since this distribution $\mathcal{F} \langle W_+, W_- \rangle$ is completely integrable also, one can define two functional invariants g_+ and g_- of the form ω by the following formula:

$$[W_+, W_-] = g_+ W_+ + g_- W_-$$

Since the distributions ker μ_+ and ker μ_- are completely integrable, we see that $\mu_+ \wedge d\mu_+ = \mu_- \wedge d\mu_- = 0$. Then $\mu_+ \wedge (W_+ \rfloor d\mu_+) = W_+ \rfloor (\mu_+ \wedge d\mu_+) = 0$, i.e. the 1-forms μ_+ and $W_+ \rfloor d\mu_+$ are linear dependent. Therefore

$$W_+ | d\mu_+ = g_0 \mu_+$$

for some complex-valued function g_0 .

This function is an invariant of ω . Note also that

$$W_{-} \rfloor d\mu_{-} = -g_0 \mu_{-}.$$

Since $\mu_+ \in \Omega^{1,0}$, we have:

$$d\mu_{+} = d_{1,0}\mu_{+} + d_{0,1}\mu_{+} + d_{-1,2}\mu_{+}$$

By reason of dimension, $\mu_+ \wedge d_{1,0}\mu_+ = 0$. Then

$$\mu_{+} \wedge d\mu_{+} = \mu_{+} \wedge d_{0,1}\mu_{+} + \mu_{+} \wedge d_{-1,2}\mu_{+}.$$

Since $\mu_+ \wedge d\mu_+ = 0$, $\mu_+ \wedge d_{0,1}\mu_+ \in \Omega^{2,1}$ and $\mu_+ \wedge d_{-1,2}\mu_+ \in \Omega^{1,2}$, we see that

$$\mu_+ \wedge d_{0,1}\mu_+ = 0$$

and $\mu_+ \wedge d_{-1,2}\mu_+ = 0$. Since $d_{-1,2}\mu_+ \in \Omega^{0,2}$ and $\mu_+ \in \Omega^{1,0}$, the last equality realized if and only if $d_{-1,2}\mu_+ = 0$.

Then

$$d\mu_{+} = d_{1,0}\mu_{+} + d_{0,1}\mu_{+}$$

In the similar way we get

$$d\mu_{-} = d_{1,0}\mu_{-} + d_{0,1}\mu_{-}.$$

From (2) it follows that

$$d_{0,1}\mu_+ = \mu_+ \wedge \gamma_-,$$

for some uniquely determined differential 1-form $\gamma_{-} \in \Omega^{0,1}$. In the similar way we get a uniquely determined differential 1-form $\gamma_{+} \in \Omega^{1,0}$ such that:

$$d_{1,0}\mu_- = \mu_- \wedge \gamma_+,$$

We denote by X_+ and X_- by the dual vector fields:

 $X_{\pm} \rfloor \Omega = \gamma_{\pm}.$

Lemma 1. $\gamma_{-}(W_{-}) = g_{+}$ and $\gamma_{+}(W_{+}) = -g_{-}$.

Proof. Since formulas (3) and (4), and the fact that

$$W_{-} \rfloor d_{1,0} \mu_{+} = W_{+} \rfloor d_{0,1} \mu_{-} = 0,$$

we get

$$W_{-} \rfloor d\mu_{+} = W_{-} \rfloor d_{0,1} \mu_{+} = W_{-} \rfloor (\mu_{+} \land \gamma_{-}) = -\gamma_{-} (W_{-}) \mu_{+}$$

and

$$W_{+} \rfloor d\mu_{-} = W_{+} \rfloor d_{1,0} \mu_{-} = W_{+} \rfloor (\mu_{-} \land \gamma_{+}) = -\gamma_{+} (W_{+}) \mu_{-}$$

Using the formula $\iota_{[X,Y]} = [L_X, \iota_Y]$, we get:

$$[W_{+}, W_{-}]]\Omega = [L_{W_{+}}, \iota_{W_{-}}] (\Omega) =$$

= $L_{W_{+}} (W_{-}]\Omega) - W_{-}]L_{W_{+}} (\Omega)$
= $W_{+}]d\mu_{-} - W_{-}]d\mu_{+}$
= $-\gamma_{+}(W_{+})\mu_{-} + \gamma_{-}(W_{-})\mu_{+}.$

On the other hand

$$[W_{+}, W_{-}] \rfloor \Omega = g_{+} \mu_{+} + g_{-} \mu_{-}$$

Therefore, $g_+ = \gamma_-(W_-)$ and $g_- = -\gamma_+(W_+)$.

Note that the complex vector fields W_+ and W_- (Q_+ and Q_-) are complex conjugate, i.e, $W_+ = \overline{W_-}$ and $Q_+ = \overline{Q_-}$. Note also that W and $V \stackrel{\text{def}}{=} AW$ are linear independent at each point real vector fields.

Define a real vector field X: if $\operatorname{Re} Q_+ \neq 0$ we put $X \stackrel{\text{def}}{=} \operatorname{Re} Q_+$ and $X \stackrel{\text{def}}{=} \operatorname{Im} Q_+$ otherwise. Moreover, put:

$$Z \stackrel{\mathrm{def}}{=} AX, \ \eta \stackrel{\mathrm{def}}{=} V \rfloor \Omega, \ \xi \stackrel{\mathrm{def}}{=} X \rfloor \Omega, \ \tau \stackrel{\mathrm{def}}{=} Z \rfloor \Omega.$$

The table below indicates of values of the 1-forms ξ , τ , μ , η on the vector fields X, Z, W, V:

	X	Z	W	V
ξ	0	0	w	v
au	0	0	v	-w
μ	-w	-v	0	0
η	-v	w	0	0

where $v \stackrel{\text{def}}{=} \Omega(X, V), w \stackrel{\text{def}}{=} \Omega(X, W).$

Note that

$$\Omega^2(W, V, X, Z) = 2(v^2 + w^2)$$

and therefore the vector fields W, V, X, Z (and the differential 1-forms ξ, τ, μ, η) are linear independent if and only if $v^2 + w^2 \neq 0$.

As above we'll consider two cases:

Case 1. $v^2 + w^2 \neq 0$.

In this case the vector fields W, V, X, Z form a basis of the module $D(\mathcal{O}_a)$ in a some neighborhood \mathcal{O}_a of a.

Let

$$\begin{split} X_1 \stackrel{\text{def}}{=} & -\frac{1}{v^2 + w^2} \left(vV + wW \right), \\ X_2 \stackrel{\text{def}}{=} & X, \\ X_3 \stackrel{\text{def}}{=} & \frac{1}{v^2 + w^2} \left(vW - wV \right), \\ X_4 \stackrel{\text{def}}{=} & -Z, \end{split}$$

Then $X_3 = AX_1, X_4 = -AX_2$, and

$$\Omega(X_1, X_2) = \Omega(X_3, X_4) = 1, \Omega(X_1, X_3) = \Omega(X_1, X_4) = \Omega(X_2, X_3) = \Omega(X_2, X_4) = 0.$$

Let $(\theta_1, \ldots, \theta_4)$ be the dual basis for (X_1, \ldots, X_2) . Then we get

$$\Omega = \theta_1 \wedge \theta_2 + \theta_3 \wedge \theta_4$$

Calculating values of ω on the vector fields X_1, X_2, X_3, X_4 :

$\omega\left(\uparrow,\leftarrow\right)$	X_1	X_2	X_3	X_4
X_1	0	0	0	1
X_2	0	0	1	0
X_3	0	-1	0	0
X_4	-1	0	0	0

we get the following representation of the form ω :

$$\omega = \theta_1 \wedge \theta_4 + \theta_2 \wedge \theta_3.$$

Theorem 1. Let ω be an elliptic normed effective differential 2-form on T^*M and $a \in T^*M$. Suppose that $v^2(a) + w^2(a) \neq 0$. Then in a some neighborhood of a there exist an e-structure X_1, \ldots, X_4 such that we have the following representation of the forms Ω and ω :

$$\Omega = \theta_1 \wedge \theta_2 + \theta_3 \wedge \theta_4, \qquad \omega = \theta_1 \wedge \theta_4 + \theta_2 \wedge \theta_3.$$

Remark. Similar e-structures for hyperbolic and elliptic equations was obtained by B. Kruglikov in [1]. He used the Nijenhuis tensor of the operator field A.

Case 2. The 3-dimensional complex distributions ker μ_+ and ker μ_- are completely integrable in \mathcal{O}_a .

Let $X \stackrel{\text{def}}{=} \operatorname{Re} X_{-}$ and $Z \stackrel{\text{def}}{=} AX$. These are real vector fields. As above we put

$$\eta \stackrel{\text{def}}{=} V |\Omega, \xi \stackrel{\text{def}}{=} X |\Omega, \tau \stackrel{\text{def}}{=} Z |\Omega|$$

Then we get the same table (6) of values of the 1-forms on the vector fields, where as above $v \stackrel{\text{def}}{=} \Omega(P, V)$, $w \stackrel{\text{def}}{=} \Omega(P, W)$.

We define the new basis $X_1, \ldots X_4$ of $D(O_a)$ by the same formulas (see Case 1) and get the same canonical representation (7) of the form Ω and ω .

Theorem 2. Let ω be an elliptic normed effective differential 2-form on T^*M and $a \in T^*M$. Suppose that the 3-dimensional complex distributions ker μ_+ and ker μ_- are completely integrable in \mathcal{O}_a . Then in a some neighborhood of a there exist an e-structure X_1, \ldots, X_4 such that we have the following representation of the forms Ω and ω :

$$\Omega = \theta_1 \wedge \theta_2 + \theta_3 \wedge \theta_4, \\ \omega = \theta_1 \wedge \theta_4 + \theta_2 \wedge \theta_3.$$

Example 1. As an example we consider the following non-linear Laplace operator

$$\Delta_{\omega} (v) = (v_{q_1q_1} + v_{q_2q_2} - f(q, p)) dq_1 \wedge dq_2,$$

which corresponds to the non-linear Laplace equation

$$v_{xx} + v_{yy} = f(x, y, v_x, v_y)$$

For this operator corresponding effective differential 2 form is

$$\omega = -f(q, p)dq_1 \wedge dq_2 + dq_1 \wedge dp_2 + dq_2 \wedge dp_1.$$

In the basis $\frac{\partial}{\partial q_1}, \frac{\partial}{\partial q_2}, \frac{\partial}{\partial p_1}, \frac{\partial}{\partial p_2}$ the operator A has the following matrix representation:

$$A = \left| \begin{array}{cccc} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & f & 0 & -1 \\ -f & 0 & 1 & 0 \end{array} \right|.$$

The complex distributions V_+ and V_- are

$$V_{+} = \left\langle \frac{\partial}{\partial q_{2}} + f \frac{\partial}{\partial p_{2}} + \iota \frac{\partial}{\partial q_{1}}, \frac{\partial}{\partial q_{1}} + f \frac{\partial}{\partial p_{1}} - \iota \frac{\partial}{\partial q_{2}} \right\rangle,$$
$$V_{-} = \left\langle \frac{\partial}{\partial q_{2}} + f \frac{\partial}{\partial p_{2}} - \iota \frac{\partial}{\partial q_{1}}, \frac{\partial}{\partial q_{1}} + f \frac{\partial}{\partial p_{1}} + \iota \frac{\partial}{\partial q_{2}} \right\rangle.$$

The vector field

$$W = -f_{p_2}\frac{\partial}{\partial p_1} + f_{p_1}\frac{\partial}{\partial p_2}$$

falls into two components

$$W_{\pm} = \frac{1}{2} \left(-f_{p_2} \frac{\partial}{\partial p_1} + f_{p_1} \frac{\partial}{\partial p_2} \mp \iota \left(f_{p_1} \frac{\partial}{\partial p_1} + f_{p_2} \frac{\partial}{\partial p_2} \right) \right).$$

Therefore,

$$\mu_{\pm} = \frac{1}{2} \left(f_{p_2} dq_1 - f_{p_1} dq_2 \pm \iota \left(f_{p_1} dq_1 + f_{p_2} dq_2 \right) \right).$$

We see that $\mu_+ \wedge d\mu_+ = 0$ and $\mu_- \wedge d\mu_- = 0$, therefore the distributions ker μ_+ and ker μ_- are completely integrable and the equation belongs to the class $H_{2,2}$. The vector field

$$Q = \iota \left(\left(2f_{p_1}f_{p_1p_2} + f_{p_2}\left(f_{p_2p_2} - f_{p_1p_1}\right)\right) \frac{\partial}{\partial p_1} + \left(-2f_{p_2}f_{p_1p_2} + f_{p_1}\left(f_{p_2p_2} - f_{p_1p_1}\right)\right) \frac{\partial}{\partial p_2} \right)$$

is a linear combination of the vector fields W_+ and W_- with coefficients

$$g_{+} = \frac{(f_{p_{2}} - \iota f_{p_{1}}) (2f_{p_{1}p_{2}} + \iota (f_{p_{1}p_{1}} - f_{p_{2}p_{2}}))}{2 (f_{p_{1}} - \iota f_{p_{2}})},$$

$$g_{-} = \frac{(f_{p_{1}} - \iota f_{p_{2}}) (f_{p_{2}p_{2}} - f_{p_{1}p_{1}} - \iota 2f_{p_{1}p_{2}})}{2 (f_{p_{2}} - \iota f_{p_{1}})}$$

respectively.

Example 2. Let us construct *e*-structure for the following case of the non-linear Laplace operator:

$$\Delta_{\omega}(v) = \left(v_{q_1q_1} + v_{q_2q_2} - v_{q_1}^2\right) dq_1 \wedge dq_2,$$

For this operator

$$W = 2p_1 \frac{\partial}{\partial p_2},$$

$$V = -2p_1 \frac{\partial}{\partial p_1},$$

$$W_{\pm} = p_1 \frac{\partial}{\partial p_2} \mp \iota p_1 \frac{\partial}{\partial p_1},$$

$$\gamma_{\pm} = \frac{1}{2p_1} \left(-dp_1 \pm \iota \left(p_1^2 dq_2 - dp_2 \right) \right),$$

$$v = 1,$$

$$w = 0.$$

Therefore we get the following e-structure:

$$\begin{split} X_1 &= 2p_1 \frac{\partial}{\partial p_1}, \\ X_2 &= -\frac{1}{2p_1} \frac{\partial}{\partial q_1}, \\ X_3 &= 2p_1 \frac{\partial}{\partial p_2}, \\ X_4 &= -\frac{1}{2p_1} \frac{\partial}{\partial q_2} - \frac{p_1}{2} \frac{\partial}{\partial p_2}. \end{split}$$

Indeed, the dual basis is:

$$\begin{aligned} \theta_1 &= \frac{1}{2p_1} dp_1, \\ \theta_2 &= -p_1 dq_1, \\ \theta_3 &= \frac{1}{2p_1} dp_2 - \frac{p_1}{2} dq_2, \\ \theta_4 &= -2p_1 dq_2. \end{aligned}$$

and we see that

$$\begin{aligned} \theta_1 \wedge \theta_2 + \theta_3 \wedge \theta_4 &= dq_1 \wedge dp_1 + dq_2 \wedge dp_2 = \Omega, \\ \theta_1 \wedge \theta_4 + \theta_2 \wedge \theta_3 &= -p_1^2 dq_1 \wedge dq_2 + dq_1 \wedge dp_2 + dq_2 \wedge dp_1 = \omega. \end{aligned}$$

References

- B. Kruglikov, Classification of Monge-Ampere equations with two variables, CAUSTICS '98 (Warsaw)", Polish Acad. Sci., Warsaw, 1999, 179–194.
- [2] A. Kushner, Almost product structures and Monge-Ampère equations, Lobachevskii Journal of Mathematics 23 (2006), 151(181); http://ljm.ksu.ru.
- [3] A. Kushner, *Classification of mixed type Monge-Ampre equations*, Geometry in Partial Differential Equations 1993, 173–188.
- [4] A. Kushner, Symplectic geometry of mixed type equations, Amer. Math. Soc. Transl. Ser. 2 (1995), 131-142.
- [5] A. Kushner, Monge-Ampre equations and e-structures, Dokl. Akad. Nauk 361 (5) (1998), 595-596.
- [6] V. Lychagin, Contact geometry and second-order nonlinear differential equations, Russian Math. Ser. 34 (1979), 137-165.

Author's address:

Alexei Kushner Department of Mathematics, Astrakhan State University, ul. Tatishcheva, 20A, 414056, Astrakhan, Russia. e-mail: kushnera@mail.ru

94