Symplectic classification of elliptic
Monge-Ampere operators

Alexei Kushner

Abstract. We construct an e-structure (absolute parallelism) for classical
Monge-Ampere operators of elliptic type. This allows us to solve the prob-
lem of local symplectic equivalence for Monge-Ampere operators. As an
example we consider non-linear Laplace operator and construct its func-
tional invariants.
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Let M be a smooth 2-dimensional manifold. Let w be a normed effective differential
2-form (i.e. Pfaffian Pf (w) = 1) on the cotangent bundles T*M of M. Let A be the
operator that corresponds to w [6]. Then A2 = —1 and the complexification of the
tangent space T, (T*M) at a point @ € T*M splits into the direct sum of two skew-
orthogonal complex symplectic planes:

T (T"M)° =V, ()& V_ (a),
where

Vi (a) = {X e T, (T*M)° | ATX = :ELX}.

The ith derivatives of the distributions V4 we denote by Vf). Let us assume that

Vi(i) are distributions also for i = 1,2. We get the following decomposition of the de
Rham complex [2]:

Qs (T*M)S = @ QPa(T*M),
ptq=s

d=dio®do1 Dda,—1 Dd_1p.
where QP4 (T*M) = QP(V,) @ Q4(V_), and

dij: QPYT* M) — QPFHaHF(T* ),
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Remark that d_; » and d2 _1 are the tensor invariants of the Monge-Ampere equa-
tion E,, [2].
The formula

W, | Q% = 2dw

uniquely determines the real vector field W,,. Let u, be the real differential 1-form

e def W, | Q.
Using decomposition (1), we get: W = W, + W_, where W, € D(V}) and
W_ € D(V_) are complex vector fields. Since the distributions V; and V_ are
skew-orthogonal, we see that the differential 1-forms W, |Q¢ and W_|QF belong to
QLO(T*M) and Q% (T* M) correspondingly. Denote them by

Ut def W, |QF, and L Lof W_|Q.

The 3-dimensional distributions ker 1y and ker yi— define 2-dimensional distrib-
ution ker py Nker u_. Note that puy (Wi) = py (W_) = p_ (W) = u_ (W-) =0,
therefore the distribution ker uy M ker u_ is generated by the vector fields W, and
W_:kerp, Nkerp_ = F (W, W_).

Let @ be their commutator: Q def [W,, W_]. Then using decomposition (1) again,
we get two vector fields Q4 € D (V4)® and Q_ € D (V_)® such that Q = Q4 + Q_.

Suppose now that the 3-dimensional distributions ker p and ker y_ are com-
pletely integrable.

Since this distribution F (W, W_) is completely integrable also, one can define
two functional invariants g4 and g_ of the form w by the following formula:

Wi, W_] =g Wy +g-W_.
Since the distributions ker pi4 and ker i are completely integrable, we see that p4 A

dpy = p— ANdp— = 0. Then py A (W ]dps) = Wi | (e Adpg) =0, ie. the 1-forms
w4+ and W |duy are linear dependent. Therefore

Wi ldpy = gops

for some complex-valued function gg.
This function is an invariant of w. Note also that

W_]du— = —gop—.
Since pu4 € QY0 we have:
dppy = diopiy +doapig +doqopy
By reason of dimension, p4 A djop4 = 0. Then
Py ANdpg = py Ndoapig + pip Nd—q2p04.

Since py Adpy =0, py Ado1py € Q2 and py Ad_quy € QY2 we see that
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py Ndo iy =0

and pi4 Ad_12py = 0. Since d_q op4 € Q%% and py € Q1Y) the last equality realized
if and only if d_q 2t = 0.
Then

dpt = dyopy + do1fit-

In the similar way we get

dp_ =dyop— +dop—.
From (2) it follows that
doafig = figp AV,

for some uniquely determined differential 1-form v_ € Q%! In the similar way we get
a uniquely determined differential 1-form v, € QY0 such that:

diopt— = fi— AV,
We denote by X, and X_ by the dual vector fields:
X | =1z
Lemma 1. v_(W_) =gy and v (Wy) = —g_.
Proof. Since formulas (3) and (4), and the fact that
W_|diopy = Wyldo1p— =0,
we get
W_ldpy = W_]dopq = W_] (pg Ay—) = =7 (W-) st
and
Wi ldp— =Wyldiop— = Wil (p- Avi) = =y (Wi)p-.
Using the formula ¢x,y] = [Lx, ty], we get:

Wy, W Q= [Lw,,ww_] (Q) =
— L, (W_]Q) - W_ | Lw, (©)
=Wy ldp— — W_]dp,
==+ (Wp)p— +v-(W-) g
On the other hand
Wi, W_Q = gypis +g-p—.

Therefore, g1 = v_(W_) and g_ = —y4+ (W4). O
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Note that the complex vector fields W, and W_ (@4 and Q_) are complex con-

jugate, i.e, W, = W_ and Q;, = Q_. Note also that W and V 4 AW are linear

independent at each point real vector fields.

Define a real vector field X: if Re@y+ # 0 we put X ' Re @+ and X 2 1 Q+
otherwise. Moreover, put:

z¥Ax, n € v]Q, ¢ ¥ x]0, r ¥ z]Q.

The table below indicates of values of the 1-forms £, 7, p, 7 on the vector fields X,
Z, W, V:

X Z |W |V
13 0 0 w v
T 0 0 v | —w
pwl—w|—-v| 0 0
nl|—-v| w 0 0
where v % O (X, V), w LN (X, W).

Note that
P(W,V,X,Z) =2 (v* + w?)

and therefore the vector fields W, V, X, Z (and the differential 1-forms &, 7, u, 1) are
linear independent if and only if v? 4+ w? # 0.
As above we’ll consider two cases:

Case 1. v? +w? #0.
In this case the vector fields W, V, X, Z form a basis of the module D (O,) in a
some neighborhood O, of a.

Let
1 v ww
1iiv2+w2(v +ul),
XQdéfXa
def 1
3:m(UW_wv),
X4d§f_Za

Then X3 = AX;, X4y = —-AX5, and

0 (X1,X0) =0(X3,X4) =1,
Q(X1,X3) =0(X1,X4) =02(X2,X3) =02(X2,Xy4) =0.

Let (0y,...,64) be the dual basis for (X7,...,Xs). Then we get

Q=01 N0+ 03 N4
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Calculating values of w on the vector fields X7, Xo, X3, Xy4:

[w (o) [ X [ Xe [ X5 | Xy |
X, 0]0]0]1
X, |00 [1]0
Xs || 0| -1] 00
X, | -1] 000

we get the following representation of the form w:
w==01N0s4+ 05 N 0O5.

Theorem 1. Let w be an elliptic normed effective differential 2-form on T*M and
a € T*M. Suppose that v* (a) + w? (a) # 0. Then in a some neighborhood of a there
exist an e-structure Xq,... , X4 such that we have the following representation of the
forms Q and w:

Q =0, NbOy+ 03 A 0Oy, w==01N0s4+ 05 N 053.

Remark. Similar e-structures for hyperbolic and elliptic equations was obtained by
B. Kruglikov in [1]. He used the Nijenhuis tensor of the operator field A.

Case 2. The 3-dimensional complex distributions ker py and ker yu_ are completely

integrable in O, .

Let X © Re X_ and Z % AX. These are real vector fields. As above we put

def def

¥ v ¥ x0 ¥z

Then we get the same table (6) of values of the 1-forms on the vector fields, where as

above v < Q(P,V), w < Q(P,W).

We define the new basis Xi,... X of D (O,) by the same formulas (see Case 1)
and get the same canonical representation (7) of the form © and w.

Theorem 2. Let w be an elliptic normed effective differential 2-form on T*M and
a € T*M. Suppose that the 3-dimensional complex distributions ker py and ker p—
are completely integrable in O,. Then in a some neighborhood of a there exist an e-
structure Xq,... , X4 such that we have the following representation of the forms )
and w:

Q=0 N0+ 03 N0y,
w =01 N0y + 65 N0O5.

Example 1. As an example we consider the following non-linear Laplace operator

A, (v) = (Uqlql + Vgogo — f(q,p)) dq1 A dgo,
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which corresponds to the non-linear Laplace equation
VUgz + Vyy = [, ¥, vz, vy).
For this operator corresponding effective differential 2 form is
w = —f(g,p)da1 A dgz + dq1 A\ dps + dgz A dp1.

In the basis 8%1’ 6%, 8%1’ 6%2 the operator A has the following matrix representation:

0 1 0 0O
-1 00 0
A=l g f 0 21
~f 01 0

The complex distributions V. and V_ are

PO E VLIV R BT R
* g2 dp2  Oq’ O op1 Oq2/’

0 0 0 0 0 0
Vo=(a—+fa——t5- 5—+fa—+i15—)
<8qz fapz "0 oqr f3p1 L5q2>
The vector field
0 0
W——fpzaT)l‘FfplaT)z

falls into two components

1 0 0 0 0
Wa =3 (S gy T (B + ) )

Therefore,

1
Bt = 2 (fp2dq1 — fpidae £ 0 (fp,dqr + fp,dg2)) -

We see that puy Aduy = 0 and pu— A du— = 0, therefore the distributions ker py
and ker y_ are completely integrable and the equation belongs to the class Hs 3. The
vector field

0

Q= ((prlfplm + fm (fpm - fmm)) 8791+

(_pr2fp1p2 + fm (fp2p2 — fp1p1)) 5;)

is a linear combination of the vector fields W, and W_ with coefficients

gy = (fm - szn) (prﬂ?z ti (fmpl — fpzm))
2(fpr = tfp2) ’
(fpl — pr2) (fpzpz — fplpl — L2fp1p2)
2(fpo = thp:)
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Example 2. Let us construct e-structure for the following case of the non-linear

Laplace operator:

Aw (U> = (Ulhth + Vgaqa — Ugl) dfh A dfha

For this operator

0
W =2p;—
p16p27
0
V =-2p1—
p13p17
W 9
+ P1a jF}7181017
1
=5 (—dp1 £ ¢ (pldga — dp2)),
P1
v=1,
w = 0.

Therefore we get the following e-structure:

0
X1 =2p1—,
1 p18p1
1 0
Xo = — -_—,
? 2p1 O
0
X3 =2p1—,
3 p18p2
1 0 P1 0

Indeed, the dual basis is:

1
01 = —dp,
1 2 P1
02 = —p1dqy,

P1

03 = —dpy — —d
3 21 D2 B q2,
04 = —2p1dqo.

and we see that

01 AN by + 03 N0y = dg1 N dpr + dga N dpa = €,

01 A Oy + 02 A O3 = —pidgy Adgz + dgy A dpa + dga A dpy = w.
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