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Abstract. We construct an e-structure (absolute parallelism) for classical
Monge-Ampère operators of elliptic type. This allows us to solve the prob-
lem of local symplectic equivalence for Monge-Ampère operators. As an
example we consider non-linear Laplace operator and construct its func-
tional invariants.
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Let M be a smooth 2-dimensional manifold. Let ω be a normed effective differential
2-form (i.e. Pfaffian Pf (ω) = 1) on the cotangent bundles T ∗M of M . Let A be the
operator that corresponds to ω [6]. Then A2 = −1 and the complexification of the
tangent space Ta(T ∗M) at a point a ∈ T ∗M splits into the direct sum of two skew-
orthogonal complex symplectic planes:

Ta (T ∗M)C = V+ (a)⊕ V− (a) ,

where

V± (a) =
{

X ∈ Ta (T ∗M)C | ACaX = ±ιX
}

.

The ith derivatives of the distributions V± we denote by V
(i)
± . Let us assume that

V
(i)
± are distributions also for i = 1, 2. We get the following decomposition of the de

Rham complex [2]:

Ωs (T ∗M)C = ⊕
p+q=s

Ωp,q (T ∗M) ,

d = d1,0 ⊕ d0,1 ⊕ d2,−1 ⊕ d−1,2.

where Ωp,q (T ∗M) = Ωp(V+)⊗ Ωq(V−), and

di,j : Ωp,q(T ∗M) → Ωp+i,q+k(T ∗M).
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Remark that d−1,2 and d2,−1 are the tensor invariants of the Monge-Ampère equa-
tion Eω [2].

The formula

WωcΩ2 = 2dω

uniquely determines the real vector field Wω. Let µω be the real differential 1-form

µω
def= WωcΩ.

Using decomposition (1), we get: W = W+ + W−, where W+ ∈ D (V+) and
W− ∈ D (V−) are complex vector fields. Since the distributions V+ and V− are
skew-orthogonal, we see that the differential 1-forms W+cΩC and W−cΩC belong to
Ω1,0(T ∗M) and Ω0,1(T ∗M) correspondingly. Denote them by

µ+
def= W+cΩC, and µ−

def= W−cΩ.

The 3-dimensional distributions kerµ+ and kerµ− define 2-dimensional distrib-
ution kerµ+ ∩ kerµ−. Note that µ+ (W+) = µ+ (W−) = µ− (W+) = µ− (W−) = 0,
therefore the distribution kerµ+ ∩ kerµ− is generated by the vector fields W+ and
W−: kerµ+ ∩ kerµ− = F 〈W+, W−〉 .

Let Q be their commutator: Q
def= [W+,W−] . Then using decomposition (1) again,

we get two vector fields Q+ ∈ D (V+)C and Q− ∈ D (V−)C such that Q = Q+ + Q−.
Suppose now that the 3-dimensional distributions kerµ+ and kerµ− are com-

pletely integrable.
Since this distribution F 〈W+,W−〉 is completely integrable also, one can define

two functional invariants g+ and g− of the form ω by the following formula:

[W+,W−] = g+W+ + g−W−.

Since the distributions kerµ+ and ker µ− are completely integrable, we see that µ+ ∧
dµ+ = µ− ∧ dµ− = 0. Then µ+ ∧ (W+cdµ+) = W+c (µ+ ∧ dµ+) = 0, i.e. the 1-forms
µ+ and W+cdµ+ are linear dependent. Therefore

W+cdµ+ = g0µ+

for some complex-valued function g0.
This function is an invariant of ω. Note also that

W−cdµ− = −g0µ−.

Since µ+ ∈ Ω1,0, we have:

dµ+ = d1,0µ+ + d0,1µ+ + d−1,2µ+

By reason of dimension, µ+ ∧ d1,0µ+ = 0. Then

µ+ ∧ dµ+ = µ+ ∧ d0,1µ+ + µ+ ∧ d−1,2µ+.

Since µ+ ∧ dµ+ = 0, µ+ ∧ d0,1µ+ ∈ Ω2,1 and µ+ ∧ d−1,2µ+ ∈ Ω1,2, we see that
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µ+ ∧ d0,1µ+ = 0

and µ+ ∧ d−1,2µ+ = 0. Since d−1,2µ+ ∈ Ω0,2 and µ+ ∈ Ω1,0, the last equality realized
if and only if d−1,2µ+ = 0.

Then

dµ+ = d1,0µ+ + d0,1µ+.

In the similar way we get

dµ− = d1,0µ− + d0,1µ−.

From (2) it follows that

d0,1µ+ = µ+ ∧ γ−,

for some uniquely determined differential 1-form γ− ∈ Ω0,1. In the similar way we get
a uniquely determined differential 1-form γ+ ∈ Ω1,0 such that:

d1,0µ− = µ− ∧ γ+,

We denote by X+ and X− by the dual vector fields:

X±cΩ = γ±.

Lemma 1. γ−(W−) = g+ and γ+(W+) = −g−.

Proof. Since formulas (3) and (4), and the fact that

W−cd1,0µ+ = W+cd0,1µ− = 0,

we get

W−cdµ+ = W−cd0,1µ+ = W−c (µ+ ∧ γ−) = −γ−(W−)µ+

and

W+cdµ− = W+cd1,0µ− = W+c (µ− ∧ γ+) = −γ+(W+)µ−.

Using the formula ι[X,Y ] = [LX , ιY ], we get:

[W+,W−]cΩ =
[
LW+ , ιW−

]
(Ω) =

= LW+ (W−cΩ)−W−cLW+ (Ω)
= W+cdµ− −W−cdµ+

= −γ+(W+)µ− + γ−(W−)µ+.

On the other hand

[W+,W−]cΩ = g+µ+ + g−µ−.

Therefore, g+ = γ−(W−) and g− = −γ+(W+).
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Note that the complex vector fields W+ and W− (Q+ and Q−) are complex con-
jugate, i.e, W+ = W− and Q+ = Q−. Note also that W and V

def= AW are linear
independent at each point real vector fields.

Define a real vector field X: if Re Q+ 6= 0 we put X
def= Re Q+ and X

def= Im Q+

otherwise. Moreover, put:

Z
def= AX, η

def= V cΩ, ξ
def= XcΩ, τ

def= ZcΩ.

The table below indicates of values of the 1-forms ξ, τ , µ, η on the vector fields X,
Z, W, V :

X Z W V
ξ 0 0 w υ
τ 0 0 υ −w
µ −w −υ 0 0
η −υ w 0 0

where v
def= Ω (X,V ), w

def= Ω (X, W ).
Note that

Ω2(W,V,X, Z) = 2
(
v2 + w2

)

and therefore the vector fields W,V,X, Z (and the differential 1-forms ξ, τ , µ, η) are
linear independent if and only if v2 + w2 6= 0.

As above we’ll consider two cases:

Case 1. v2 + w2 6= 0.
In this case the vector fields W,V, X,Z form a basis of the module D (Oa) in a

some neighborhood Oa of a.
Let

X1
def= − 1

v2 + w2
(υV + wW ) ,

X2
def= X,

X3
def=

1
v2 + w2

(υW − wV ) ,

X4
def= −Z,

Then X3 = AX1, X4 = −AX2, and

Ω (X1, X2) = Ω (X3, X4) = 1,

Ω(X1, X3) = Ω (X1, X4) = Ω (X2, X3) = Ω (X2, X4) = 0.

Let (θ1, . . . , θ4) be the dual basis for (X1, . . . , X2). Then we get

Ω = θ1 ∧ θ2 + θ3 ∧ θ4.
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Calculating values of ω on the vector fields X1, X2, X3, X4:

ω (↑,←) X1 X2 X3 X4

X1 0 0 0 1
X2 0 0 1 0
X3 0 −1 0 0
X4 −1 0 0 0

.

we get the following representation of the form ω:

ω = θ1 ∧ θ4 + θ2 ∧ θ3.

Theorem 1. Let ω be an elliptic normed effective differential 2-form on T ∗M and
a ∈ T ∗M . Suppose that v2 (a) + w2 (a) 6= 0. Then in a some neighborhood of a there
exist an e-structure X1, . . . , X4 such that we have the following representation of the
forms Ω and ω:

Ω = θ1 ∧ θ2 + θ3 ∧ θ4, ω = θ1 ∧ θ4 + θ2 ∧ θ3.

Remark. Similar e-structures for hyperbolic and elliptic equations was obtained by
B. Kruglikov in [1]. He used the Nijenhuis tensor of the operator field A.

Case 2. The 3-dimensional complex distributions kerµ+ and kerµ− are completely
integrable in Oa.

Let X
def= Re X− and Z

def= AX. These are real vector fields. As above we put

η
def= V cΩ, ξ

def= XcΩ, τ
def= ZcΩ.

Then we get the same table (6) of values of the 1-forms on the vector fields, where as
above v

def= Ω (P, V ), w
def= Ω (P,W ).

We define the new basis X1, . . . X4 of D (Oa) by the same formulas (see Case 1)
and get the same canonical representation (7) of the form Ω and ω.

Theorem 2. Let ω be an elliptic normed effective differential 2-form on T ∗M and
a ∈ T ∗M . Suppose that the 3-dimensional complex distributions kerµ+ and kerµ−
are completely integrable in Oa. Then in a some neighborhood of a there exist an e-
structure X1, . . . , X4 such that we have the following representation of the forms Ω
and ω:

Ω = θ1 ∧ θ2 + θ3 ∧ θ4,

ω = θ1 ∧ θ4 + θ2 ∧ θ3.

Example 1. As an example we consider the following non-linear Laplace operator

∆ω (v) = (vq1q1 + vq2q2 − f(q, p)) dq1 ∧ dq2,
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which corresponds to the non-linear Laplace equation

vxx + vyy = f(x, y, vx, vy).

For this operator corresponding effective differential 2 form is

ω = −f(q, p)dq1 ∧ dq2 + dq1 ∧ dp2 + dq2 ∧ dp1.

In the basis ∂
∂q1

, ∂
∂q2

, ∂
∂p1

, ∂
∂p2

the operator A has the following matrix representation:

A =

∥∥∥∥∥∥∥∥

0 1 0 0
−1 0 0 0
0 f 0 −1
−f 0 1 0

∥∥∥∥∥∥∥∥
.

The complex distributions V+ and V− are

V+ =
〈

∂

∂q2
+ f

∂

∂p2
+ ι

∂

∂q1
,

∂

∂q1
+ f

∂

∂p1
− ι

∂

∂q2

〉
,

V− =
〈

∂

∂q2
+ f

∂

∂p2
− ι

∂

∂q1
,

∂

∂q1
+ f

∂

∂p1
+ ι

∂

∂q2

〉
.

The vector field

W = −fp2

∂

∂p1
+ fp1

∂

∂p2

falls into two components

W± =
1
2

(
−fp2

∂

∂p1
+ fp1

∂

∂p2
∓ ι

(
fp1

∂

∂p1
+ fp2

∂

∂p2

))
.

Therefore,

µ± =
1
2

(fp2dq1 − fp1dq2 ± ι (fp1dq1 + fp2dq2)) .

We see that µ+ ∧ dµ+ = 0 and µ− ∧ dµ− = 0, therefore the distributions kerµ+

and kerµ− are completely integrable and the equation belongs to the class H2,2. The
vector field

Q =ι

(
(2fp1fp1p2 + fp2 (fp2p2 − fp1p1))

∂

∂p1
+

(−2fp2fp1p2 + fp1 (fp2p2 − fp1p1))
∂

∂p2

)

is a linear combination of the vector fields W+ and W− with coefficients

g+ =
(fp2 − ιfp1) (2fp1p2 + ι (fp1p1 − fp2p2))

2 (fp1 − ιfp2)
,

g− =
(fp1 − ιfp2) (fp2p2 − fp1p1 − ι2fp1p2)

2 (fp2 − ιfp1)
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respectively.

Example 2. Let us construct e-structure for the following case of the non-linear
Laplace operator:

∆ω (v) =
(
vq1q1 + vq2q2 − v2

q1

)
dq1 ∧ dq2,

For this operator

W = 2p1
∂

∂p2
,

V = −2p1
∂

∂p1
,

W± = p1
∂

∂p2
∓ ιp1

∂

∂p1
,

γ± =
1

2p1

(−dp1 ± ι
(
p2
1dq2 − dp2

))
,

v = 1,

w = 0.

Therefore we get the following e-structure:

X1 = 2p1
∂

∂p1
,

X2 = − 1
2p1

∂

∂q1
,

X3 = 2p1
∂

∂p2
,

X4 = − 1
2p1

∂

∂q2
− p1

2
∂

∂p2
.

Indeed, the dual basis is:

θ1 =
1

2p1
dp1,

θ2 = −p1dq1,

θ3 =
1

2p1
dp2 − p1

2
dq2,

θ4 = −2p1dq2.

and we see that

θ1 ∧ θ2 + θ3 ∧ θ4 = dq1 ∧ dp1 + dq2 ∧ dp2 = Ω,

θ1 ∧ θ4 + θ2 ∧ θ3 = −p2
1dq1 ∧ dq2 + dq1 ∧ dp2 + dq2 ∧ dp1 = ω.
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