Dilations on Hilbert C^{*} - modules for C^{*} - dynamical systems

Maria Joiţa, Tania-Luminiţa Costache and Mariana Zamfir

Abstract

In this paper we investigate the dilations of a contractive covariant representation of a C^{*} - dynamical system on Hilbert C^{*} - modules. We prove that if $\alpha: A \rightarrow A$ is an injective C^{*} - morphism of C^{*} - algebras which has a strict positive transfer operator τ, then any covariant representation (φ, T, E) of the pair (A, α) on the Hilbert C^{*}-module E admits a coisometric dilation (Φ, V, F) adapted to τ and an isometric dilation (Ψ, W, G). These extend some results of Muhly and Solel ([3]) in the context of Hilbert C^{*} - modules and without assuming that the C^{*} - algebra A is unital.

M.S.C. 2000: 46L05, 46L08, 46L55, 47L55.

Key words: completely positive linear map, strict transfer operator, contractive covariant representation, dilation, defect operator.

1 Introduction

Hilbert C^{*}-modules are generalizations of Hilbert spaces by allowing the inner- product to take values in a C^{*} - algebra rather than in the field of complex numbers, but there are some differences between these two classes. For example, each closed submodule of a Hilbert space is complemented, but a closed submodule of a Hilbert C^{*}-module is not complemented in general [1, chapter 3].
Definition 1.1. A pre-Hilbert A-module is a complex vector space E which is also a right A-module, compatible with the complex algebra structure, equipped with an A-valued inner product $\langle\cdot, \cdot\rangle: E \times E \rightarrow A$ which is \mathbb{C}-and A-linear in its second variable and satisfies the following relations:

1. $\langle\xi, \eta\rangle^{*}=\langle\eta, \xi\rangle$ for every $\xi, \eta \in E$;
2. $\langle\xi, \xi\rangle \geq 0$ for every $\xi \in E$;
3. $\langle\xi, \xi\rangle=0$ if and only if $\xi=0$.

Prớceedings of The 4-th International Colloquium "Mathematics in Engineering and Numerical Physics" October 6-8, 2006, Bucharest, Romania, pp. 81-86.
(C) Balkan Society of Geometers, Geometry Balkan Press 2007.

We say that E is a Hilbert A-module if E is complete with respect to the topology determined by the norm $\|\cdot\|$ given by $\|\xi\|=\sqrt{\|\langle\xi, \xi\rangle\|}$.

Given two Hilbert C^{*} - modules E and F over a C^{*} - algebra B, the Banach space of all bounded module homomorphisms from E to F is denoted by $\mathcal{B}_{B}(E, F)$. The subset of $\mathcal{B}_{B}(E, F)$ consisting of all adjointable module homomorphisms from E to F (that is, $T \in \mathcal{B}_{B}(E, F)$ such that there is $T^{*} \in \mathcal{B}_{B}(F, E)$ satisfying $\langle\eta, T \xi\rangle=\left\langle T^{*} \eta, \xi\right\rangle$ for all $\xi \in E$ and for all $\eta \in F)$ is denoted by $\mathcal{L}_{B}(E, F)$. We will write $\mathcal{B}_{B}(E)$ for $\mathcal{B}_{B}(E, E)$ and $\mathcal{L}_{B}(E)$ for $\mathcal{L}_{B}(E, E)$.

In general $\mathcal{B}_{B}(E, F) \neq \mathcal{L}_{B}(E, F)$.
Given a countable family $\left\{E_{n}\right\}_{n}$ of Hilbert B-modules, the vector space $\bigoplus_{n} E_{n}=$ $\left\{\left(\xi_{n}\right)_{n} / \xi_{n} \in E_{n}, \sum_{n}<\xi_{n}, \xi_{n}>\right.$ converges in $\left.B\right\}$ becomes a Hilbert B-module with $\left(\xi_{n}\right)_{n} \cdot a=\left(\xi_{n} a\right)_{n}$ and $<\left(\xi_{n}\right)_{n},\left(\eta_{n}\right)_{n}>=\sum_{n}<\xi_{n}, \eta_{n}>$.

A submodule E_{0} of E is complemented if $E_{0} \oplus E_{0}^{\perp}=E$, where

$$
E_{0}^{\perp}=\left\{\eta \in E /<\eta, \xi>=0, \forall \xi \in E_{0}\right\} .
$$

A representation of a C^{*} - algebra A on a Hilbert C^{*}-module E over B is a ${ }^{*}$ morphism Φ from A to $\mathcal{L}_{B}(E)$. The representation Φ is nondegenerate if $\Phi(A) E$ is dense in E.
Definition 1.2. Let A and B be two C^{*}-algebras and E a Hilbert B - module. Let $M_{n}(A)$ denote the $*$-algebra of all $n \times n$ matrices over A with the algebraic operations and the topology obtained by regarding it as a direct sum of n^{2} copies of A. A completely positive linear map is a linear map $\rho: A \rightarrow \mathcal{L}_{B}(E)$ such that the linear map $\rho^{(n)}: M_{n}(A) \rightarrow M_{n}\left(\mathcal{L}_{B}(E)\right)$ defined by

$$
\rho^{(n)}\left(\left[a_{i j}\right]_{i, j=1}^{n}\right)=\left[\rho\left(a_{i j}\right)\right]_{i, j=1}^{n}
$$

is positive for any positive integer n.
Definition 1.3. A completely positive linear map is strict if $\left(\rho\left(e_{\lambda}\right)\right)_{\lambda}$ is strictly Cauchy in $\mathcal{L}_{B}(E)$, for some approximate unit $\left(e_{\lambda}\right)_{\lambda}$ of A.

2 The main results

Definition 2.1. Let A be a C^{*} - algebra and let $\alpha: A \rightarrow A$ be an injective C^{*} morphism. A strict transfer operator for α is a strict completely positive linear map $\tau: A \rightarrow A$ such that $\tau \circ \alpha=\operatorname{id}_{A}$.

Proposition 2.1. Let A be a C^{*} - algebra, let $\varphi: A \rightarrow \mathcal{L}_{B}(E)$ be a nondegenerate representation of A on the Hilbert C^{*} - module E over a C^{*} - algebra B and let $\alpha: A \rightarrow$ A be an injective C^{*} - morphism which has a strict transfer operator τ.

1. There is a Hilbert B - module E_{τ}, a representation Φ_{τ} of A on E_{τ} and an adjointable operator $V_{\tau}: E \rightarrow E_{\tau}$ such that
(a) $\varphi(a)=V_{\tau}^{*} \Phi_{\tau}(\alpha(a)) V_{\tau}$, for all $a \in A$
(b) $\varphi(\tau(a))=V_{\tau}^{*} \Phi_{\tau}(a) V_{\tau}$, for all $a \in A$
(c) $\Phi_{\tau}(A) V_{\tau} E$ is dense in E_{τ}
2. If Φ is a representation of A on a Hilbert B - module F and $V: E \rightarrow F$ is an adjointable operator such that
(a) $\varphi(a)=V^{*} \Phi(\alpha(a)) V$, for all $a \in A$
(b) $\varphi(\tau(a))=V^{*} \Phi(a) V$, for all $a \in A$
(c) $\Phi(A) V E$ is dense in F
then there is a unitary operator $U: E_{\tau} \rightarrow F$ such that
(i) $U \Phi_{\tau}(a)=\Phi(a) U$, for all $a \in A$ and
(ii) $U V_{\tau}=V$.

Proof. 1. Let $\rho=\varphi \circ \tau$. Since φ is a nondegenerate representation of A, there is a morphism $\bar{\varphi}: M(A) \rightarrow \mathcal{L}_{B}(E)$ which is strictly continuous on the unit ball and $\left.\bar{\varphi}\right|_{A}=\varphi[1$, Proposition 2.5], and since τ is strictly there is $\bar{\tau}: M(A) \rightarrow M(A)$ a completely positive linear map which is strictly continuous on the unit ball and $\left.\bar{\tau}\right|_{A}=\tau$ [1, Corollary 5.7]. Then $\bar{\varphi} \circ \bar{\tau}: M(A) \rightarrow \mathcal{L}_{B}(E)$ is a completely positive map which is continuous on the unit ball and $\left.\bar{\varphi} \circ \bar{\tau}\right|_{A}=\rho$. From these facts and [1, Corollary 5.7] we conclude that ρ is a strict completely positive linear map from A to $\mathcal{L}_{B}(E)$.

Let $\left(\Phi_{\tau}, V_{\tau}, E_{\tau}\right)$ be the KSGNS representation of A associated with $\rho[1$, theorem 5.6]. Thus, we showed that there is a representation Φ_{τ} of A on a Hilbert B - module E_{τ} and an isometry $V_{\tau}: E \rightarrow E_{\tau}$ which verify the relations (b) and (c).

Let $a \in A$. Then

$$
\varphi(a)=\varphi(\tau(\alpha(a)))=\rho(\alpha(a))=V_{\tau}^{*} \Phi_{\tau}(\alpha(a)) V_{\tau}
$$

and the assertion is proved.
2. By [1, Theorem 5.6], there is a unitary operator $U: E_{\tau} \rightarrow F$ which verifies the relations (i) and (ii).

Remark 2.1. Taking into account the definitions of τ and Φ_{τ} [see proof of Theorem $5.6,1]$ it is not difficult to check that $V_{\tau} V_{\tau}^{*}$ commutes with $\Phi_{\tau}(\alpha(a))$.
Definition 2.2. The representation $\left(\Phi_{\tau}, V_{\tau}, E_{\tau}\right)$ of A constructed above is called the extension of (φ, E) adapted to τ.
Remark 2.2. The extension of a representation φ adapted to τ is unique up to a unitary equivalence.
Definition 2.3. Let A be a C^{*} - algebra, let $\alpha: A \rightarrow A$ be an injective C^{*} - morphism. A contractive (resp. isometric, resp. coisometric, resp. unitary) covariant representation of the pair (A, α) on a Hilbert C^{*} - module is a triple (φ, T, E) consisting of a representation φ of A on a Hilbert C^{*} - module E over B and a contraction (resp. isometric, resp. coisometric, resp. unitary) operator T in $\mathcal{L}_{B}(E)$ such that

$$
T \varphi(\alpha(a))=\varphi(a) T
$$

Definition 2.4. Let A be a C^{*} - algebra, let $\alpha: A \rightarrow A$ be an injective C^{*} - morphism and let (φ, T, E) be a contractive covariant representation of (A, α). A coisometric (resp. isometric, resp. unitary) dilation is a coisometric (resp. isometric, resp. unitary) covariant representation ($\Phi, V, F)$ on a Hilbert C^{*} - module F over B containing E as a complemented submodule such that $\Phi(a) E \subseteq E$ and $\left.\Phi(a)\right|_{E}=\varphi(a)$ for all $a \in A$, $V E \subseteq E$ and $\left.P_{E} V^{n}\right|_{E}=T^{n}$, where P_{E} is the projection of F on E.
Given a contractive covariant representation (φ, T, E) of a pair (A, α) such that α has a transfer operator τ, we construct a coisometric dilation of (φ, T, E) using the extension of φ adapted to τ.

The construction is done inductively and it is in the same manner as in [3, Theorem $1.2]$.

Given (φ, T, E) a contractive covariant representation of (A, α), we can choose $\left(\Phi_{\tau}, V_{\tau}, E_{\tau}\right)$ as in Proposition 2.1. and we will use the following notations:

$$
\begin{gathered}
\Delta_{T^{*}}=\left(I-T T^{*}\right)^{\frac{1}{2}} \\
\mathcal{D}_{T^{*}}=\overline{\Phi_{\tau}(A) V_{\tau} \Delta_{T^{*}} E} \subseteq E_{\tau} \\
D_{T^{*}}=\left.\Delta_{T^{*}} V_{\tau}^{*}\right|_{\mathcal{D}_{T^{*}}}
\end{gathered}
$$

$\Delta_{T^{*}}$ is called the defect operator of T^{*} and $\mathcal{D}_{T^{*}}$ is called the associated defect space.
Theorem 2.1. Let A be a C^{*} - algebra, let $\alpha: A \rightarrow A$ be an injective C^{*} - morphism which has a transfer operator τ and let (φ, T, E) be a nondegenerate contractive covariant representation of (A, α) on a Hilbert C^{*} - module E over a C^{*} - algebra B. Then (φ, T, E) has a coisometric dilation adapted to $\tau,(\Phi, V, F)$. Moreover, $V E \subseteq E$.

Proof. Let $\left(\Phi_{\tau}, V_{\tau}, E_{\tau}\right)$ be the extension of φ adapted to τ constructed in Proposition 2.1. Clearly, $\Phi_{\tau}(A) \mathcal{D}_{T^{*}} \subseteq \mathcal{D}_{T^{*}}$ and $\widehat{\varphi}: A \rightarrow \mathcal{L}_{B}\left(\mathcal{D}_{T^{*}}\right)$ defined by $\widehat{\varphi}(a)=\left.\Phi_{\tau}(a)\right|_{\mathcal{D}_{T^{*}}}$ is a nondegenerate representation of A.

In the same manner as in the proof of [Theorem 1.2, 3], we conclude that $\left(\left[\begin{array}{cc}\varphi & 0 \\ 0 & \widehat{\varphi}\end{array}\right],\left[\begin{array}{cc}T & D_{T^{*}} \\ 0 & 0\end{array}\right], E \oplus \mathcal{D}_{T^{*}}\right)$ is a contractive covariant representation of A such that $\left[\begin{array}{cc}T & D_{T^{*}} \\ 0 & 0\end{array}\right]$ is a partial isometry which restricted to E gives (φ, T, E).

This was the first step in the inductive construction.
Now, applying Proposition 2.1 to the representation $\widehat{\varphi}$ of A on $\mathcal{D}_{T^{*}}$, we obtain a Hilbert C^{*} - module E_{1} over B, an adjointable operator $V_{1}: \mathcal{D}_{T^{*}} \rightarrow E_{1}$ and a representation $\Phi_{1}: A \rightarrow \mathcal{L}_{B}\left(E_{1}\right)$ such that $V_{1}^{*} \Phi_{1}(\alpha(a)) V_{1}=\widehat{\varphi}(a)$, for all $a \in A$.

Set :

$$
\begin{gathered}
\mathcal{D}_{1}=\overline{\Phi_{1}(A) V_{1} \mathcal{D}_{T^{*}}} \subseteq E_{1} \\
D_{1}=\left.V_{1}^{*}\right|_{\mathcal{D}_{1}}
\end{gathered}
$$

and

$$
\widehat{\Phi}_{1}: A \rightarrow \mathcal{L}_{B}\left(\mathcal{D}_{1}\right)
$$

defined by

$$
\widehat{\Phi}_{1}(a)=\left.\Phi_{1}(a)\right|_{\mathcal{D}_{1}}
$$

Inductively, we obtain the sequences $\left(\mathcal{D}_{k}\right)_{k \geq 1},\left(E_{k}\right)_{k \geq 1},\left(V_{k}\right)_{k \geq 1},\left(\Phi_{k}\right)_{k \geq 1},\left(\widehat{\Phi}_{k}\right)_{k \geq 1}$, $\left(D_{k}\right)_{k \geq 1}$, where for $k>1$:
\mathcal{D}_{k} and E_{k} are Hilbert C^{*} - modules such that $\mathcal{D}_{k}=\overline{\Phi_{k}(A) V_{k} \mathcal{D}_{k-1}} \subseteq E_{k}$,
$V_{k}: \mathcal{D}_{k-1} \rightarrow E_{k}$ is an adjointable operator and $D_{k}=\left.V_{k}^{*}\right|_{\mathcal{D}_{k}}$,
$\Phi_{k}: A \rightarrow \mathcal{L}_{B}\left(E_{k}\right)$ is a representation such that $V_{k}^{*} \Phi_{k}(\alpha(a)) V_{k}=\Phi_{k-1}(a)$,
$\widehat{\Phi}_{k}: A \rightarrow \mathcal{L}_{B}\left(\mathcal{D}_{k}\right)$ is a representation such that $\widehat{\Phi}_{k}(a)=\left.\Phi_{k}(a)\right|_{\mathcal{D}_{k}}$.
Set $F=E \oplus \mathcal{D}_{T^{*}} \oplus \mathcal{D}_{1} \oplus \mathcal{D}_{2} \oplus \ldots$,

$$
\Phi=\left[\begin{array}{lllll}
\varphi & & & & \\
& \widehat{\varphi} & & & \\
& & \widehat{\Phi}_{1} & & \\
& & & \widehat{\Phi}_{2} & \\
& & & & \ddots
\end{array}\right] \text { and } V=\left[\begin{array}{ccccc}
T & D_{T^{*}} & & & \\
& 0 & D_{1} & & \\
& & 0 & D_{2} & \\
& & & 0 & \ddots \\
& & & & \ddots
\end{array}\right]
$$

Clearly, F is a Hilbert B - module which contains E as a complemented submodule, Φ is a representation of A on F such that $\Phi(A) E \subseteq E$ and $\left.\Phi(a)\right|_{E}=\varphi$ and V is an adjointable operator in $\mathcal{L}_{B}(F)$ such that $V E \subseteq E$ and $\left.V\right|_{E}=T$.

Simple calculations show that $V \Phi(\alpha(a))=\Phi(a) V$ for all $a \in A, V V^{*}=$ $=\operatorname{id}_{F}$ and $\left.P_{E} V^{n}\right|_{E}=T^{n}$. Therefore (Φ, V, F) is a coisometric dilation adapted to τ of (φ, T, E).

Proposition 2.2. Let A be a C^{*} - algebra, let $\alpha: A \rightarrow A$ be an injective \mathcal{C}^{*} - morphism and let (φ, T, E) be a contractive covariant representation of (A, α) on a Hilbert C^{*} module E over a C^{*} - algebra B. Then (φ, T, E) has an isometric dilation (Ψ, W, F). Further, if T is coisometric, then W is coisometric.

Proof. Let $\Delta_{T}=\left(I-T^{*} T\right)^{\frac{1}{2}}$, the defect operator of T.
From $T \varphi(\alpha(a))=\varphi(a) T$, for all $a \in A$ and taking into account that φ and α are C^{*} - morphisms, we deduce that $T^{*} T \varphi(\alpha(a))=\varphi(\alpha(a)) T^{*} T$ for all $a \in A$ and so $\Delta_{T} \varphi(\alpha(a))=\varphi(\alpha(a)) \Delta_{T}$ for all $a \in A$. Hence $(\varphi \circ \alpha)(A) \mathcal{D}_{T} \subseteq$ $\subseteq \mathcal{D}_{T}$, where \mathcal{D}_{T} is the defect space of T.

Let $F=E \oplus \mathcal{D}_{T} \oplus \mathcal{D}_{T} \oplus \ldots$ The map $\Psi: A \rightarrow \mathcal{L}_{B}(E)$ defined by

$$
\Psi=\left[\begin{array}{lllll}
\varphi & & & & \\
& \left.\varphi \circ \alpha\right|_{\mathcal{D}_{T}} & & & \\
& & \left.\varphi \circ \alpha^{2}\right|_{\mathcal{D}_{T}} & & \\
& & & & \\
& & & & \left.\ddots \alpha^{3}\right|_{\mathcal{D}_{T}} \\
\end{array}\right]
$$

is a representation of A on F. Clearly, $\Psi(A) E \subseteq E$ and $\left.\Psi(a)\right|_{E}=\varphi(a)$ for all $a \in A$.
Let

$$
W=\left[\begin{array}{ccccc}
T & & & & \\
\Delta_{T} & 0 & & & \\
& I_{\mathcal{D}_{T}} & 0 & & \\
& & I_{\mathcal{D}_{T}} & & \\
& & & \ddots & \ddots
\end{array}\right]
$$

Clearly, $\left.P_{E} W^{n}\right|_{E}=T^{n}$ for all positive integer n.
A simple calculation shows that W is an isometry and moreover if T is a coisometry, W is a unitary.

It is not difficult to check that $W \Psi(\alpha(a))=\Psi(a) W$ for all $a \in A$ and the proposition is proved.

As in the case of dilation on Hilbert space [3, Corollary 1.3] we obtain the following corollary.

Corollary 2.1. Let A be a C^{*} - algebra, let $\alpha: A \rightarrow A$ be an injective C^{*} - morphism which has a strict transfer operator τ and let (φ, T, E) be a contractive covariant representation of (A, α). Then (φ, T, E) has a unitary dilation (Ψ, W, F) adapted to τ.

Proof. By Theorem 2.1, (φ, T, E) has a coisometric dilation (Φ, V, F) adapted to τ. Applying Proposition 2.2 to coisometric covariant representation (Φ, V, F) of (A, α), we obtain a unitary dilation (Ψ, U, G) of (Φ, V, F). It is not difficult to check that (Ψ, U, G) is a unitary dilation adapted to τ of (φ, T, E).

Acknowledgement. This research was supported by grant CNCSIS code A 1065/2006.

References

[1] E. C. Lance, Hilbert \mathcal{C}^{*} - modules. A Toolkit for Operator Algebraists, London Mathematical Society Lecture Note Series 210, Cambridge University Press, Cambridge, 1995.
[2] M. McAsey, P. Muhly, Representations of nonselfadjoint crossed products, Proc. London Math. Soc. (3), 47 (1983), 128-144.
[3] P. Muhly, B. Solel, Extensions and dilations for C^{*} - dynamical systems, arXIV:math.OA/0509506 V1/22 sept 2005.
[4] P. Muhly, B. Solel, Tensor algebras over C^{*}-correspondences: representations, dilations and C^{*} - envelopes, J. Funct. Anal. 158 (1998), 389-457.

Authors' addresses:
Maria Joita
Department of Mathematics, Faculty of Chemistry,
University of Bucharest, Bucharest, Romania.
e-mail: mjoita@fmi.unibuc.ro
Tania-Luminita Costache, Department of Mathematics, University "Politehnica" of Bucharest, Bucharest, Romania.
e-mail: lumycos@yahoo.com
Mariana Zamfir
Department of Mathematics and Informatics,
Technical University of Civil Engineering Bucharest, Bucharest, Romania.
e-mail: zacos@k.ro

