Dilations on Hilbert C^* - modules for C^* - dynamical systems

Maria Joiţa, Tania-Luminiţa Costache and Mariana Zamfir

Abstract. In this paper we investigate the dilations of a contractive covariant representation of a C^* - dynamical system on Hilbert C^* - modules. We prove that if $\alpha \colon A \to A$ is an injective C^* - morphism of C^* - algebras which has a strict positive transfer operator τ , then any covariant representation (φ, T, E) of the pair (A, α) on the Hilbert C^* -module E admits a coisometric dilation (Φ, V, F) adapted to τ and an isometric dilation (Ψ, W, G). These extend some results of Muhly and Solel ([3]) in the context of Hilbert C^* - modules and without assuming that the C^* - algebra A is unital.

M.S.C. 2000: 46L05, 46L08, 46L55, 47L55.

Key words: completely positive linear map, strict transfer operator, contractive covariant representation, dilation, defect operator.

1 Introduction

Hilbert C^* -modules are generalizations of Hilbert spaces by allowing the inner- product to take values in a C^* - algebra rather than in the field of complex numbers, but there are some differences between these two classes. For example, each closed submodule of a Hilbert space is complemented, but a closed submodule of a Hilbert C^* -module is not complemented in general [1, chapter 3].

Definition 1.1. A pre-Hilbert A-module is a complex vector space E which is also a right A-module, compatible with the complex algebra structure, equipped with an A-valued inner product $\langle \cdot, \cdot \rangle : E \times E \to A$ which is \mathbb{C} -and A-linear in its second variable and satisfies the following relations:

- 1. $\langle \xi, \eta \rangle^* = \langle \eta, \xi \rangle$ for every $\xi, \eta \in E$;
- 2. $\langle \xi, \xi \rangle \ge 0$ for every $\xi \in E$;
- 3. $\langle \xi, \xi \rangle = 0$ if and only if $\xi = 0$.

Proceedings of The 4-th International Colloquium "Mathematics in Engineering and Numerical Physics" October 6-8, 2006, Bucharest, Romania, pp. 81-86.(c) Balkan Society of Geometers, Geometry Balkan Press 2007.

We say that E is a *Hilbert A-module* if E is complete with respect to the topology determined by the norm $\|\cdot\|$ given by $\|\xi\| = \sqrt{\|\langle \xi, \xi \rangle\|}$.

Given two Hilbert C^* - modules E and F over a C^* - algebra B, the Banach space of all bounded module homomorphisms from E to F is denoted by $\mathcal{B}_B(E, F)$. The subset of $\mathcal{B}_B(E, F)$ consisting of all adjointable module homomorphisms from E to F(that is, $T \in \mathcal{B}_B(E, F)$ such that there is $T^* \in \mathcal{B}_B(F, E)$ satisfying $\langle \eta, T\xi \rangle = \langle T^*\eta, \xi \rangle$ for all $\xi \in E$ and for all $\eta \in F$) is denoted by $\mathcal{L}_B(E, F)$. We will write $\mathcal{B}_B(E)$ for $\mathcal{B}_B(E, E)$ and $\mathcal{L}_B(E)$ for $\mathcal{L}_B(E, E)$.

In general $\mathcal{B}_B(E, F) \neq \mathcal{L}_B(E, F)$.

Given a countable family $\{E_n\}_n$ of Hilbert *B*-modules, the vector space $\bigoplus_n E_n =$

 $\{(\xi_n)_n/\xi_n \in E_n, \sum_n <\xi_n, \xi_n > \text{converges in } B\} \text{ becomes a Hilbert } B\text{- module with } \\ (\xi_n)_n \cdot a = (\xi_n a)_n \text{ and } < (\xi_n)_n, (\eta_n)_n > = \sum_n <\xi_n, \eta_n >.$

A submodule E_0 of E is complemented if $E_0 \oplus E_0^{\perp} = E$, where

 $E_0^{\perp} = \{ \eta \in E / < \eta, \xi >= 0, \forall \xi \in E_0 \}.$

A representation of a C^* - algebra A on a Hilbert C^* -module E over B is a *morphism Φ from A to $\mathcal{L}_B(E)$. The representation Φ is nondegenerate if $\Phi(A)E$ is dense in E.

Definition 1.2. Let A and B be two C^* -algebras and E a Hilbert B- module. Let $M_n(A)$ denote the *-algebra of all $n \times n$ matrices over A with the algebraic operations and the topology obtained by regarding it as a direct sum of n^2 copies of A. A completely positive linear map is a linear map $\rho : A \to \mathcal{L}_B(E)$ such that the linear map $\rho^{(n)} : M_n(A) \to M_n(\mathcal{L}_B(E))$ defined by

$$\rho^{(n)}\left([a_{ij}]_{i,j=1}^{n}\right) = [\rho(a_{ij})]_{i,j=1}^{n}$$

is positive for any positive integer n.

Definition 1.3. A completely positive linear map is *strict* if $(\rho(e_{\lambda}))_{\lambda}$ is strictly Cauchy in $\mathcal{L}_{B}(E)$, for some approximate unit $(e_{\lambda})_{\lambda}$ of A.

2 The main results

Definition 2.1. Let A be a C^* - algebra and let $\alpha \colon A \to A$ be an injective C^* morphism. A strict transfer operator for α is a strict completely positive linear map $\tau \colon A \to A$ such that $\tau \circ \alpha = \mathrm{id}_A$.

Proposition 2.1. Let A be a C^* - algebra, let $\varphi \colon A \to \mathcal{L}_B(E)$ be a nondegenerate representation of A on the Hilbert C^* - module E over a C^* - algebra B and let $\alpha \colon A \to A$ be an injective C^* - morphism which has a strict transfer operator τ .

1. There is a Hilbert B- module E_{τ} , a representation Φ_{τ} of A on E_{τ} and an adjointable operator $V_{\tau} \colon E \to E_{\tau}$ such that

(a)
$$\varphi(a) = V_{\tau}^* \Phi_{\tau}(\alpha(a)) V_{\tau}$$
, for all $a \in A$

Dilations on Hilbert C^* - modules

(b)
$$\varphi(\tau(a)) = V_{\tau}^* \Phi_{\tau}(a) V_{\tau}$$
, for all $a \in A$

(c) $\Phi_{\tau}(A)V_{\tau}E$ is dense in E_{τ}

2. If Φ is a representation of A on a Hilbert B- module F and V: $E \to F$ is an adjointable operator such that

- (a) $\varphi(a) = V^* \Phi(\alpha(a))V$, for all $a \in A$
- (b) $\varphi(\tau(a)) = V^* \Phi(a) V$, for all $a \in A$
- (c) $\Phi(A)VE$ is dense in F

then there is a unitary operator $U: E_{\tau} \to F$ such that

(i) $U\Phi_{\tau}(a) = \Phi(a)U$, for all $a \in A$ and

(*ii*)
$$UV_{\tau} = V$$
.

Proof. 1. Let $\rho = \varphi \circ \tau$. Since φ is a nondegenerate representation of A, there is a morphism $\overline{\varphi} \colon M(A) \to \mathcal{L}_B(E)$ which is strictly continuous on the unit ball and $\overline{\varphi}|_A = \varphi$ [1, Proposition 2.5], and since τ is strictly there is $\overline{\tau} \colon M(A) \to M(A)$ a completely positive linear map which is strictly continuous on the unit ball and $\overline{\tau}|_A = \tau$ [1, Corollary 5.7]. Then $\overline{\varphi} \circ \overline{\tau} \colon M(A) \to \mathcal{L}_B(E)$ is a completely positive map which is continuous on the unit ball and $\overline{\varphi} \circ \overline{\tau}|_A = \rho$. From these facts and [1, Corollary 5.7] we conclude that ρ is a strict completely positive linear map from A to $\mathcal{L}_B(E)$.

Let $(\Phi_{\tau}, V_{\tau}, E_{\tau})$ be the KSGNS representation of A associated with ρ [1, theorem 5.6]. Thus, we showed that there is a representation Φ_{τ} of A on a Hilbert B- module E_{τ} and an isometry $V_{\tau} \colon E \to E_{\tau}$ which verify the relations (b) and (c).

Let $a \in A$. Then

$$\varphi(a) = \varphi(\tau(\alpha(a))) = \rho(\alpha(a)) = V_{\tau}^* \Phi_{\tau}(\alpha(a)) V_{\tau}$$

and the assertion is proved.

2. By [1, Theorem 5.6], there is a unitary operator $U: E_{\tau} \to F$ which verifies the relations (i) and (ii).

Remark 2.1. Taking into account the definitions of τ and Φ_{τ} [see proof of Theorem 5.6, 1] it is not difficult to check that $V_{\tau}V_{\tau}^*$ commutes with $\Phi_{\tau}(\alpha(a))$.

Definition 2.2. The representation $(\Phi_{\tau}, V_{\tau}, E_{\tau})$ of A constructed above is called the extension of (φ, E) adapted to τ .

Remark 2.2. The extension of a representation φ adapted to τ is unique up to a unitary equivalence.

Definition 2.3. Let A be a C^* - algebra, let $\alpha \colon A \to A$ be an injective C^* - morphism. A contractive (resp. isometric, resp. coisometric, resp. unitary) covariant representation of the pair (A, α) on a Hilbert C^* - module is a triple (φ, T, E) consisting of a representation φ of A on a Hilbert C^* - module E over B and a contraction (resp. isometric, resp. coisometric, resp. unitary) operator T in $\mathcal{L}_B(E)$ such that

$$T\varphi(\alpha(a)) = \varphi(a)T$$

Definition 2.4. Let A be a C^* - algebra, let $\alpha \colon A \to A$ be an injective C^* - morphism and let (φ, T, E) be a contractive covariant representation of (A, α) . A coisometric (resp. *isometric*, resp. *unitary*) *dilation* is a coisometric (resp. isometric, resp. unitary) covariant representation (Φ, V, F) on a Hilbert C^{*}- module F over B containing E as a complemented submodule such that $\Phi(a)E \subseteq E$ and $\Phi(a)|_E = \varphi(a)$ for all $a \in A$, $VE \subseteq E$ and $P_E V^n|_E = T^n,$ where P_E is the projection of F on E .

Given a contractive covariant representation (φ, T, E) of a pair (A, α) such that α has a transfer operator τ , we construct a coisometric dilation of (φ, T, E) using the extension of φ adapted to τ .

The construction is done inductively and it is in the same manner as in [3, Theorem 1.2].

Given (φ, T, E) a contractive covariant representation of (A, α) , we can choose $(\Phi_{\tau}, V_{\tau}, E_{\tau})$ as in Proposition 2.1. and we will use the following notations:

$$\Delta_{T^*} = (I - TT^*)^{\frac{1}{2}}$$
$$\mathcal{D}_{T^*} = \overline{\Phi_{\tau}(A)V_{\tau}\Delta_{T^*}E} \subseteq E_{\tau}$$
$$D_{T^*} = \Delta_{T^*}V_{\tau}^*|_{\mathcal{D}_{T^*}}$$

 Δ_{T^*} is called the *defect operator* of T^* and \mathcal{D}_{T^*} is called the associated *defect* space.

Theorem 2.1. Let A be a C^* - algebra, let $\alpha \colon A \to A$ be an injective C^* - morphism which has a transfer operator τ and let (φ, T, E) be a nondegenerate contractive covariant representation of (A, α) on a Hilbert C^* -module E over a C^* - algebra B. Then (φ, T, E) has a coisometric dilation adapted to τ , (Φ, V, F) . Moreover, $VE \subseteq E$.

Proof. Let $(\Phi_{\tau}, V_{\tau}, E_{\tau})$ be the extension of φ adapted to τ constructed in Proposition 2.1. Clearly, $\Phi_{\tau}(A)\mathcal{D}_{T^*} \subseteq \mathcal{D}_{T^*}$ and $\widehat{\varphi} \colon A \to \mathcal{L}_B(\mathcal{D}_{T^*})$ defined by $\widehat{\varphi}(a) = \Phi_{\tau}(a)|_{\mathcal{D}_{T^*}}$ is a nondegenerate representation of A.

In the same manner as in the proof of [Theorem 1.2, 3], we conclude that

 $\begin{pmatrix} \begin{bmatrix} \varphi & 0 \\ 0 & \widehat{\varphi} \end{bmatrix}, \begin{bmatrix} T & D_{T^*} \\ 0 & 0 \end{bmatrix}, E \oplus \mathcal{D}_{T^*} \end{pmatrix}$ is a contractive covariant representation of A such that $\begin{bmatrix} T & D_{T^*} \\ 0 & 0 \end{bmatrix}$ is a partial isometry which restricted to E gives (φ, T, E) .

This was the first step in the inductive construction.

Now, applying Proposition 2.1 to the representation $\hat{\varphi}$ of A on \mathcal{D}_{T^*} , we obtain a Hilbert C^* - module E_1 over B, an adjointable operator $V_1: \mathcal{D}_{T^*} \to E_1$ and a representation $\Phi_1: A \to \mathcal{L}_B(E_1)$ such that $V_1^* \Phi_1(\alpha(a)) V_1 = \widehat{\varphi}(a)$, for all $a \in A$. Set

$$\mathcal{D}_1 = \overline{\Phi_1(A)V_1\mathcal{D}_{T^*}} \subseteq E_1$$
$$D_1 = V_1^*|_{\mathcal{D}_1}$$

and

$$\Phi_1\colon A\to \mathcal{L}_B(\mathcal{D}_1),$$

defined by

Dilations on Hilbert C^* - modules

$$\Phi_1(a) = \Phi_1(a)|_{\mathcal{D}_1}$$

Inductively, we obtain the sequences $(\mathcal{D}_k)_{k\geq 1}$, $(E_k)_{k\geq 1}$, $(V_k)_{k\geq 1}$, $(\Phi_k)_{k\geq 1}$, $(\widehat{\Phi}_k)_{k\geq 1}$, $(D_k)_{k\geq 1}$, where for k > 1:

 $\begin{aligned} \mathcal{D}_{k} \text{ and } E_{k} \text{ are Hilbert } C^{*-} \text{ modules such that } \mathcal{D}_{k} = \overline{\Phi_{k}(A)V_{k}\mathcal{D}_{k-1}} \subseteq E_{k}, \\ V_{k} \colon \mathcal{D}_{k-1} \to E_{k} \text{ is an adjointable operator and } D_{k} = V_{k}^{*}|_{\mathcal{D}_{k}}, \\ \Phi_{k} \colon A \to \mathcal{L}_{B}(E_{k}) \text{ is a representation such that } V_{k}^{*}\Phi_{k}(\alpha(a))V_{k} = \Phi_{k-1}(a), \\ \widehat{\Phi}_{k} \colon A \to \mathcal{L}_{B}(\mathcal{D}_{k}) \text{ is a representation such that } \widehat{\Phi}_{k}(a) = \Phi_{k}(a)|_{\mathcal{D}_{k}}. \\ \text{Set } F = E \oplus \mathcal{D}_{T^{*}} \oplus \mathcal{D}_{1} \oplus \mathcal{D}_{2} \oplus \dots, \\ \Phi = \begin{bmatrix} \varphi & & \\ & \widehat{\Phi}_{1} & \\ & & \\ & & \widehat{\Phi}_{2} & \\ & & \\ & & & \\ \end{bmatrix} \text{ and } V = \begin{bmatrix} T & D_{T^{*}} & & \\ & 0 & D_{1} & \\ & & 0 & D_{2} & \\ & & & \\ &$

Clearly, F is a Hilbert B- module which contains E as a complemented submodule, Φ is a representation of A on F such that $\Phi(A)E \subseteq E$ and $\Phi(a)|_E = \varphi$ and V is an adjointable operator in $\mathcal{L}_B(F)$ such that $VE \subseteq E$ and $V|_E = T$.

Simple calculations show that $V\Phi(\alpha(a)) = \Phi(a)V$ for all $a \in A$, $VV^* =$ = id_F and $P_E V^n|_E = T^n$. Therefore (Φ, V, F) is a coisometric dilation adapted to τ of (φ, T, E) .

Proposition 2.2. Let A be a C^* - algebra, let $\alpha \colon A \to A$ be an injective C^* - morphism and let (φ, T, E) be a contractive covariant representation of (A, α) on a Hilbert C^* module E over a C^* - algebra B. Then (φ, T, E) has an isometric dilation (Ψ, W, F) . Further, if T is coisometric, then W is coisometric.

Proof. Let $\Delta_T = (I - T^*T)^{\frac{1}{2}}$, the defect operator of T.

From $T\varphi(\alpha(a)) = \varphi(a)T$, for all $a \in A$ and taking into account that φ and α are C^* -morphisms, we deduce that $T^*T\varphi(\alpha(a)) = \varphi(\alpha(a))T^*T$ for all $a \in A$ and so $\Delta_T\varphi(\alpha(a)) = \varphi(\alpha(a))\Delta_T$ for all $a \in A$. Hence $(\varphi \circ \alpha)(A)\mathcal{D}_T \subseteq C$

 $\subseteq \mathcal{D}_T$, where \mathcal{D}_T is the defect space of T.

Let $F = E \oplus \mathcal{D}_T \oplus \mathcal{D}_T \oplus \ldots$ The map $\Psi \colon A \to \mathcal{L}_B(E)$ defined by

$$\Psi = \begin{bmatrix} \varphi & & & \\ & \varphi \circ \alpha |_{\mathcal{D}_T} & & \\ & & \varphi \circ \alpha^2 |_{\mathcal{D}_T} & & \\ & & & \varphi \circ \alpha^3 |_{\mathcal{D}_T} & & \\ & & & \ddots \end{bmatrix}$$

is a representation of A on F. Clearly, $\Psi(A)E \subseteq E$ and $\Psi(a)|_E = \varphi(a)$ for all $a \in A$. Let

$$W = \begin{bmatrix} T \\ \Delta_T & 0 \\ & I_{\mathcal{D}_T} & 0 \\ & & I_{\mathcal{D}_T} \\ & & & \ddots & \ddots \end{bmatrix}$$

Clearly, $P_E W^n|_E = T^n$ for all positive integer n.

A simple calculation shows that W is an isometry and moreover if T is a coisometry, W is a unitary.

It is not difficult to check that $W\Psi(\alpha(a)) = \Psi(a)W$ for all $a \in A$ and the proposition is proved. \Box

As in the case of dilation on Hilbert space [3, Corollary 1.3] we obtain the following corollary.

Corollary 2.1. Let A be a C^* - algebra, let $\alpha \colon A \to A$ be an injective C^* - morphism which has a strict transfer operator τ and let (φ, T, E) be a contractive covariant representation of (A, α) . Then (φ, T, E) has a unitary dilation (Ψ, W, F) adapted to τ .

Proof. By Theorem 2.1, (φ, T, E) has a coisometric dilation (Φ, V, F) adapted to τ . Applying Proposition 2.2 to coisometric covariant representation (Φ, V, F) of (A, α) , we obtain a unitary dilation (Ψ, U, G) of (Φ, V, F) . It is not difficult to check that (Ψ, U, G) is a unitary dilation adapted to τ of (φ, T, E) .

Acknowledgement. This research was supported by grant CNCSIS code A 1065/2006.

References

- E. C. Lance, Hilbert C*- modules. A Toolkit for Operator Algebraists, London Mathematical Society Lecture Note Series 210, Cambridge University Press, Cambridge, 1995.
- [2] M. McAsey, P. Muhly, Representations of nonselfadjoint crossed products, Proc. London Math. Soc. (3), 47 (1983), 128-144.
- [3] P. Muhly, B. Solel, Extensions and dilations for C^{*}- dynamical systems, arXIV:math.OA/0509506 V1/22 sept 2005.
- [4] P. Muhly, B. Solel, Tensor algebras over C^{*}-correspondences: representations, dilations and C^{*}- envelopes, J. Funct. Anal. 158 (1998), 389-457.

Authors' addresses:

Maria Joita Department of Mathematics, Faculty of Chemistry, University of Bucharest, Bucharest, Romania. e-mail: mjoita@fmi.unibuc.ro

Tania-Luminita Costache, Department of Mathematics, University "Politehnica" of Bucharest, Bucharest, Romania. e-mail: lumycos@yahoo.com

Mariana Zamfir Department of Mathematics and Informatics, Technical University of Civil Engineering Bucharest, Bucharest, Romania. e-mail: zacos@k.ro

86