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Abstract. The problem of approximating unknown functions is discussed
for the case where approximation errors are evaluated by means of a gen-
eral cost-of-error (loss) function, not necessarily the squared-error one. To
ensure minimal overall loss, approximation is carried out by fitting under
the relevant loss function. Convergence results are provided in a general
framework, allowing among others for Taylor approximations, approxima-
tions with Hermite polynomials or approximations with Neural Networks
and for random measurement error.
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1 Introduction

Function approximation is a common task in many branches of applied science, e.g.
in control engineering or operations research. A specific response function is often
desired, say f (x) with x ∈ D ⊂ R, but, in many cases, the desired function is not
available in closed form or is not easily handled. Also, it may be that the function
is only known at some points (nodes) xt of its support, t = 1, 2, . . . , T, and needs
interpolation, resulting in the use of an approximating function, say f̃n (x) where f̃n

denotes the approximation of nth order in a family of approximating functions.
An important aspect of approximating a known or unknown function is the ap-

proximation error f (x)− f̃n (x) (sometimes called bias). While uniform upper bounds
for the approximation error in the domain D can be derived for many interpolation
methods, these are only a general indication of the precision of the method in cause.
In many practical applications, approximation errors can be identified as the source of
costs, e.g. in Taguchi’s approach to quality optimization. In time series analysis there
is a long tradition of evaluating forecast errors according to the costs these incur,
where the cost-of-error (loss) function is not necessarily the familiar squared-error
loss, see Granger [4].
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Should the function be observed only at some points of its support, or observed
with random measurement noise, fitting the desired function to the available, usually
experimental, data is the only way to obtain an approximation. Then, following Weiss
[7], this function should be fitted under the relevant loss function, i.e. by minimizing
mean loss due to approximation error evaluated at each node. Even if f is completely
known, and the parameters of an approximation can be computed analytically (e.g.
for a Taylor expansion), these will lead to higher mean loss than fitting.

The main contribution of this note is to study the asymptotic behavior of fitting
unknown functions under the relevant loss. We show that, if allowing the approxima-
tion order to grow to infinity (this is sometimes called sieve approximation), but at
a slower rate that the number of nodes, the fitted parameters converge to their true
values, allowing the desired function to be approximated with arbitrary accuracy. If
keeping the approximation order constant, the mean cost due to approximation error,
although higher than before, is minimized. This adds to a result due to White [8] for
the nonlinear least squares fitting procedure.

2 The fitting problem

We extend the studied problem to the case where the true value of the function is only
given with random additive noise. This allows us to use tools of mathematical statistics
that simplify our task, but comes at the cost that all convergence results are stated
in probability. However, this is not a serious restriction: the statistical framework
reduces to the stated interpolation problem if letting the probability distribution of
the noise degenerate to a constant. In this case, convergence in probability turns into
standard convergence.

Assumption 1. Let yt = f (xt)+ εt, where εt is independent and identically distrib-
uted.

The iid assumption is standard for controlled experiments. With observed data
(e.g. in social sciences), this may not be fulfilled and leads to complications, see
Christoffersen and Diebold [3].

Assumption 2. Let T → ∞ such that the empirical distribution function of the
nodes xt converges to a proper distribution function.

This ensures, for instance, that xt may be treated as stochastic iid, and, more
importantly, that xt is independent of εt, see Amemiya [1].

Denote now {θi}i∈N a sequence of parameters. To ease the exposition, let nθ =
(θ0, θ1, θ2, . . . , θn)′.

Assumption 3. There is a sequence
{

f̃n

}
n∈N

of approximating functions, f̃n : D ×
Rn+1 → R, such that a unique sequence of parameters

{
θ̃i

}
i∈N

exists for any function

f (x) : D → R in a given set with f̃n

(
x, nθ̃

)
→ f(x) as n → ∞ uniformly ∀x ∈ D.

Further, let f̃n

(
x, nθ̃

)
be Lipschitz continuous w.r.t. nθ̃.
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Taylor polynomials, Hermite polynomials, Tschebyscheff polynomials, Fourier se-
ries or Neural Networks can be checked to fulfill Assumption 3.

Granger [4] stated general conditions for loss functions. We require additional
regularity conditions, namely continuity and convexity:

Assumption 4. Let L be continuous and convex on R, increasing on R+ and de-
creasing on R− with L(0) = 0.

Convexity can be dropped at the cost of a more complicated proof, see Remark 1.

Assumption 5. Let E (L (εt − b)) < ∞, ∀b ∈ R, and assume further that
arg min

b∈R
E (L (εt − b)) = 0.

The parameters for the approximation are then estimated from

nθ̂ = arg min
nθ∈Rn+1

1
T

T∑
t=1

L
(
yt − f̃n (xt, nθ)

)
.

We address the question of convergence of nθ̂ to a limiting sequence {θ∗i }i∈N in the
following sense

∥∥∥nθ̂ − nθ∗
∥∥∥

1

p→ 0 as n, T →∞,

where ‖·‖1 denotes the L1 vector norm. If {θ∗i }i∈N ≡
{

θ̃i

}
i∈N

, this convergence

(stronger than elementwise convergence), together with Assumption 3, implies uni-
form convergence in probability of f̃n

(
x, nθ̂

)
to f(x).

3 Convergence result

We examine first the case where n → ∞, but slower than T , i.e. n/T → 0. We show
the estimated parameters to converge to the true values,

{
θ̃i

}
i∈N

.

Proposition 1. Under Assumptions 1 through 5, it holds as n, T →∞ and n/T → 0
that

∥∥∥nθ̂ − nθ̃
∥∥∥

1

p→ 0.

Proof. The result is derived in two steps. In the first step, the target function
T−1

∑T
t=1 L

(
yt − f̃n (xt, nθ)

)
is shown to converge pointwise in probability as n, T →

∞ to a deterministic function minimized only at
{

θ̃i

}
i∈N

. In the second, pointwise

convergence is shown to imply uniform convergence. Then, using continuity of the
arg min operator w.r.t. ‖·‖1 and the supremum norm, the desired result is established.
To prove step 1, note that
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1
T

T∑
t=1

L
(
yt − f̃n (xt, nθ)

)
=

1
T

T∑
t=1

L
(
f (xt) + εt − f̃n (xt, nθ)

)

=
1
T

T∑
t=1

L
(
εt + f (xt)− f̃n (xt, nθ)

)
.

At nθ = nθ̃, we have f(xt) − f̃n

(
xt, nθ̃

)
= op (1) , with op (·) the correspondent of

the Landau symbol in probabilistic terms, and thus

L
(
εt + f(xt)− f̃n (xt, nθ)

)
= L (εt) + op (1) ,

so

1
T

T∑
t=1

L
(
yt − f̃n (xt, nθ)

)
=

1
T

T∑
t=1

L (εt) + op (1) .

A Law of Large Numbers for iid variables thus delivers

1
T

T∑
t=1

L
(
yt − f̃n (xt, nθ)

)
p→ E (L (εt)) .

At nθ 6= nθ̃, it follows that f̃n (x, nθ) → f∗ (x) , with |f∗ (x)− f(x)| > 0 ∀x ∈ D.
Hence,

1
T

T∑
t=1

L
(
yt − f̃n (xt, nθ)

)
=

1
T

T∑
t=1

L (εt + f(xt)− f∗ (xt)) + op (1)

p→ E (L (εt + f(xt)− f∗ (xt))) ,

where the expectation is taken w.r.t. the joint distribution of εt and xt. It was shown
by Heike and Demetrescu [5] that

E (L (εt)) < E (L (εt + ut)) ,

if ut is a random variable, independent of εt, and non-zero with probability 1, see
their Lemma 1. Since, due to Assumption 2, f(xt) − f∗ (xt) fulfills these conditions,
the limit of the target function is minimized at the true parameters alone. Step 2
is easily completed with the result of Andersen and Gill [2], who showed uniform
convergence to follow from pointwise convergence and convexity of the loss function,
see their Lemma II.1. The result follows.

Remark 1. Step 2 of the proof can also be completed by showing stochastic equicon-
tinuity of the sequence of target functions. Uniform convergence then follows due to
a result of Newey [6]. This, however, complicates the proof significantly.

Let us now consider the case where n is fixed. The estimated parameters will not
converge to the true values,

{
θ̃i

}
i∈N

, but to those parameter values nθ that minimize

the overall expected loss due to measurement noise and bias b (x) = f (x)− f̃n (x, nθ) ,
where the expectation is taken w.r.t. the distribution of xt and εt jointly.
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Proposition 2. Under Assumptions 1 through 5, it holds as T →∞ and n < ∞ that

nθ̂
p→ arg min

nθ∈Rn+1
E (L (εt + b (xt))) .

Proof. By arguments similar to those in the proof of Proposition 1, the target function
converges pointwise to E (L (εt + b (xt))). The result follows as before.

Remark 2. Should εt = 0 with probability 1, the fitted parameters converge to those
parameters minimizing the expected bias.

4 Concluding remarks

Asymptotic treatment of the problem of fitting a possibly unknown function under a
general cost-of-error (loss) function is provided. Even if analytical approximations are
available, fitting delivers better results in terms of overall loss due to approximation
error.

References

[1] T. Amemiya, Advanced Econometrics, Harvard University Press, 1985.
[2] P.K. Andersen and R.D. Gill, Cox’s regression model for counting processes: a

large sample study, The Annals of Statistics 10 (1982), 1100-1120.
[3] P.F. Christoffersen and F.X. Diebold, Optimal prediction under asymmetric loss,

Econometric Theory 13 (1997), 808-817.
[4] C.W.J. Granger, Prediction with a generalized cost of error function, Operational

Research Quarterly 20 (1969), 451-468.
[5] H.-D. Heike and M. Demetrescu (2006), Forecasting stationary processes under

asymmetric loss, mimeo.
[6] W.K. Newey, Uniform convergence in probability and stochastic equicontinuity,

Econometrica 59 (1991), 1161-1167.
[7] A.A. Weiss, Estimating time series models using the relevant cost function, Jour-

nal of Applied Econometrics 11 (1996), 539-560.
[8] H. White, Consequences and detection of misspecified nonlinear regression mod-

els, Journal of the American Statistical Association 76 (1981), 419-433.

Authors’ addresses:

Hans-Dieter Heike
Statistics and Econometrics, Technical University Darmstadt,
Residenzschloss, 64283 Darmstadt, Germany.
e-mail: heike@vwl.tu-darmstadt.de

Matei Demetrescu
Statistics and Econometric Methods, Goethe-University Frankfurt,
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