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Abstract. Section 1 relates the continuity, extrema and convexity to the
unidimensional constraints. Section 2 study the convexity of Monge hy-
persurfaces along parametrized curves.

M.S.C. 2000: 52A41, 52A40, 57N25.
Key words: free extrema, unidimensional constraints, convexity along curves.

1 Continuity, extrema and convexity by curves

This section develops some results of the authors [1]-[18] regarding the extrema con-
strained by curves and gives new and interesting results by Theorems 2.6, 2.7, 2.8. To
formulate these new results, we start with an open set D in Rp, a function f : D → R,
a point a ∈ D and a family Γa of parametrized curves α : I → D passing through the
point a = α(t0).

2.1. Definition. We say that a is a extremum point for f constrained by α, if t0
is an extremum point for f ◦ α. We say that a is a minimum (maximum) point for
f constrained by Γa, if a is a minimum (maximum) point for f constrained by each
α ∈ Γa.

2.2. Definition. We say that the point f(a) is a separator for the values of the
function f along α, if there exists ε > 0 such that f (α (t)) ≥ f (a) (f (α (t)) ≤ f (a)),
∀t ∈ (t0 − ε, t0] and f (α (t)) ≤ f (a) (f (α (t)) ≥ f (a)), ∀t ∈ [t0, t0 + ε).

2.3. Definition. We say that the function f is locally (strict) convex at a along
α, if f(α(tu+(1− t)t0) ≤ (<)tf(α(u))+ (1− t)f(a) for u in a neighborhood of t0 and
t ∈ (0, 1).

For the next theorems we suppose that, the family Γa is either the set of all
C1 parametrized curves passing through a and regular at a or the family of all C2

parametrized curves passing through a, such that either a is a regular point for α, or
a is a singular point of the second order for α.

2.4. Theorem ([9],[11]). Let (xn) be a sequence of distinct points in Rp such
that xn → a ∈ Rp. Then there exists a parametrized curve α : R → Rp from the
family Γa, a subsequence (xnk

) of (xn) and a strictly decreasing sequence (tk) of real
numbers such that
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1) α (0) = 0, and
2) tk → 0 and α (tk) = xnk

, ∀k ∈ N.
Consequently we get
2.5. Theorem. Let f : D → R and a ∈ D. The point a is a minimum (maximum)

point for f if and only if a is a minimum (maximum) point for f constrained by Γa.
To formulate a refined result we need
2.6. Theorem. Let f : D ⊂ Rp → R and a ∈ D. Suppose that for each α ∈ Γa

(α(t0) = a), f ◦ α is continuous at t0. Then f is continuous at a.
Proof. Suppose, per absurdum, that f is not continuous at a, i.e., there exists a

sequence (xn) from D with xn → a and f(xn) → l, with l 6= f(a). According to
theorem 2.4, there exists a parametrized curve α ∈ Γa, a subsequence (xnk

) and a
sequence of real numbers (tnk

), tnk
→ 0 such that α(tnk

) = xnk
and α(0) = a. From

the continuity of f ◦ α at 0, we obtain that f(xnk
) → f(a), which is a contradiction.

2.7. Theorem. Let f : D ⊂ Rp → R and a ∈ D. Suppose that f ◦α is continuous
for each α ∈ Γa, and a is a strict extremum point constrained by α. Then a is a strict
extremum point for f .

Proof. From the previous theorem it follows that f is continuous. Let suppose that
a is a strict extremum point for f constrained by each α ∈ Γa. We prove that a is a
strict extremum point for f constrained by Γa. In this way, according to theorem 2.5,
it follows that a is a point of strict extremum for f .

Suppose, per absurdum, that there exist two parametrized curves α : I → D
and β : J → D in Γa (a = α (t0) = β (u0)) such that a is a point of strict minimum
for f constrained by α, and in the same time a is a point of strict maximum for f
constrained by β.

Hence we can find two sequences of real numbers (tn) and (un), tn → t0 and
un → u0, such that f (α (tn)) > f (a) and f (β (un)) < f (a). From the continuity of
f it follows that on the segment [α (tn) , β (un)] in Rp we can find a point xn with
f (xn) = f (a). Applying theorem 2.4 to the sequence (xn), we get a parametrized
curve γ in Γa, a subsequence (xnk

) of (xn) and a sequence of real numbers (qk) such
that qk → 0, γ (0) = a and γ (qk) = xnk

. It follows f (γ (qk)) = f (a), ∀k ∈ N, i.e.,
the point a cannot be a strict extremum point for f constrained by γ. This result is
a contradiction.

Remark. The previous theorems hold for the case in which Rp is replaced by a
finite dimensional differentiable manifold.

2.8. Theorem. Let f : D → R and a ∈ D such that
i) f is differentiable
ii) For any α ∈ Γa the point f(a) is not a separator point along α.
iii) For any α ∈ Γa it follows that f or −f is locally strict convex at a along α. In

these conditions a is a point of strict extremum of f , and f or −f is locally convex
at a.

Proof. Let α ∈ Γa (α(t0) = a). Because f(a) is not a separator point along α, it
follows that there exists two sequences (un) and (vn) with un < t0 < vn having the
limit t0 such that f(α(un)) ≤ f(a), f(α(vn)) ≥ f(a) or f(α(un)) ≤ f(a), f(α(vn)) ≤
f(a), n ∈ N. Because ϕ(t) = f(α(t)) is differentiable, it follows that ϕ′(t0) = 0.
Because ϕ or −ϕ is locally convex at t0, it follows that t0 is a strict extremum point
of ϕ (minimum or maximum). Thus we get that a is a strict extremum point of f
constrained by each α ∈ Γa. In accordance with theorem 2.7 a is a strict extremum
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point of f . Thus, f is locally strict convex at a along any parametrized curve α ∈ Γa,
or −f is locally strict convex at a along any parametrized curve α ∈ Γa. It follows
that f or −f is locally strict convex at a.

2 Convexity of Monge hypersurfaces

Let f : D ⊂ Rp−1 → R be a function of reasonable class, and Σ : xp = f(x1, ..., xp−1)
a Monge hypersurface in Rp. Let a ∈ D and Γa the family of parametrized curves
specified in the previous section.

3.1. Theorem. Suppose that for any α ∈ Γa, the point a is a strict extremum
point restricted by α. Then the hyperplane xp = f(a) is tangent to Σ at (a, f(a)), and
Σ is locally strict convex at (a, f(a)), i.e., around (a, f(a)) the Monge hypersurface Σ
rests strictly on the same side of the tangent hyperplane.

This theorem follows from theorem 2.7.
3.2. Theorem. Suppose that f or −f is locally strict convex at a along any α ∈ Γa

and f(a) is not a separator point of f along α. In these conditions the hyperplane
xp = f(a) is a tangent hyperplane to Σ at (a, f(a)), and Σ is locally strict convex at
a.

This theorem follows directly from theorem 2.8.
In the sequel we suppose that xp = f(a) is the tangent hyperplane to Σ at (a, f(a)).

This hyperplane can be identified with Rp−1, and the point (a, f(a)) with a. Let Γ∗a
be the family of all parametrized curves passing through a and contained in Σ, having
the same properties as those for the family Γa.

3.3. Lemma. The following statements hold true:
i) Let α be a parametrized curve passing through a and contained in the tangent

hyperplane at a. Then α ∈ Γa if and only if (α, f ◦ α) ∈ Γ∗a.
ii) The association α → (α, f ◦ α) is a bijective correspondence between Γa and

Γ∗a.
iii) a is a strict extremum point of f constrained by α if and only if the parametrized

curve (α, f ◦ α) rests, around a, on the same side of the tangent hyperplane at a.
Proof. We prove the sentence ii). It is obvious that the association α → (α, f ◦ α)

is one-to-one. Let β ∈ Γ∗a (β(0) = α). It follows that β(t) = (α(t), (f ◦α)(t)), where α
is the projection of β on the tangent hyperplane. Let us prove that α ∈ Γa. We have

β′(t) =

(
α′(t),

p−1∑

i=1

∂f

∂xi
(α(t))

dxi

dt
(t)

)

and

β′′(t) =


α′′(t),

p−1∑

i=1

∂f

∂xi
(α(t))

d2xi

dt2
(t) +

p−1∑

i,j=1

∂2f

∂xi∂xj
(α(t))

dxi

dt
(t)

dxj

dt
(t)


 .

Because ∂f
∂xi (α(0)) = 0, we obtain β′(0) = (α′(0), 0) and

β′′(0) =


α′′(0),

p−1∑

i,j=1

∂2f

∂xi∂xj
(α(0))

dxi

dt
(0)

dxj

dt
(0)


 .
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If α′(0) = 0 we obtain β′(0) = 0 and thus β′′(0) = (α′′(0), 0). As β′′(0) 6= 0 we have
α′′(0) 6= 0.

3.4. Definition. We say that the hypersurface Σ is (strictly) convex at a along
a parametrized curve α ∈ Γa if a is a point of (strict) extremum for f restricted by
α. Also, we say that Σ is (strictly) convex at a with respect to the family Γa if a is a
(strict) extremum point of f constrained by Γa.

3.5. Theorem. The hypersurface Σ is strictly convex at a with respect to the
family Γa if and only if Σ is strictly convex at a along any parametrized curve α in
Γa.

This theorem is a direct consequence of theorem 2.5.
In the sequel let suppose that the hypersurface Σ is defined by the Cartesian

implicit equation F (x1, ..., xp) = 0. Let

g(x) =
p∑

i=1

∂F

∂xi
(a)(xi − ai)

be the linear approximation of F around the point a.
3.6. Definition. We say that the hypersurface Σ is (strictly) convex at a along

the parametrized curve α ∈ Γ∗a if a is a (strict) extremum point for g restricted by α.
Also, we say that Σ is (strictly) convex at a with respect to the family Γ∗a if a is a
(strict) extremum point of g restricted by the family Γ∗a.

Summing the previous results, we obtain:
3.7. Theorem. The following statements are equivalent:
a) Σ is strictly convex at a along any parametrized curve in Γa;
b) Σ is strictly convex at a along any parametrized curve in Γ∗a;
c) Σ is strictly convex at a with respect to the family Γa;
d) Σ is strictly convex at a with respect to the family Γ∗a;
e) The point a is a strict extremum point of the function g restricted to Σ.
Reformulating:
3.8. Theorem. The following statements are equivalent:
a) Each parametrized curve in the family Γ∗a rests, around a, strictly on the same

side of the tangent hyperplane to Σ at a.
b) All the parametrized curves in the family Γ∗a rest, around a, strictly on the same

side of the tangent hyperplane to Σ at a.
c) The hypersurface Σ rests, around a, on the same side of the tangent hyperplane

to Σ at a.
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and/or Velocities, Balkan Journal of Geometry and Its Applications, 8, 1 (2003),
115-123.
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