From curves to extrema, continuity and convexity

Oltin Dogaru, Constantin Udrişte and Cristina Ştefania Stamin

Abstract. Section 1 relates the continuity, extrema and convexity to the unidimensional constraints. Section 2 study the convexity of Monge hypersurfaces along parametrized curves.

M.S.C. 2000: 52A41, 52A40, 57N25.

Key words: free extrema, unidimensional constraints, convexity along curves.

1 Continuity, extrema and convexity by curves

This section develops some results of the authors [1]-[18] regarding the extrema constrained by curves and gives new and interesting results by Theorems 2.6, 2.7, 2.8. To formulate these new results, we start with an open set D in \mathbf{R}^p , a function $f: D \to \mathbf{R}$, a point $a \in D$ and a family Γ_a of parametrized curves $\alpha: I \to D$ passing through the point $a = \alpha(t_0)$.

2.1. Definition. We say that a is a extremum point for f constrained by α , if t_0 is an extremum point for $f \circ \alpha$. We say that a is a minimum (maximum) point for f constrained by Γ_a , if a is a minimum (maximum) point for f constrained by each $\alpha \in \Gamma_a$.

2.2. Definition. We say that the point f(a) is a separator for the values of the function f along α , if there exists $\varepsilon > 0$ such that $f(\alpha(t)) \ge f(a)$ ($f(\alpha(t)) \le f(a)$), $\forall t \in (t_0 - \varepsilon, t_0]$ and $f(\alpha(t)) \le f(a)$ ($f(\alpha(t)) \ge f(a)$), $\forall t \in [t_0, t_0 + \varepsilon)$.

2.3. Definition. We say that the function f is locally (strict) convex at a along α , if $f(\alpha(tu+(1-t)t_0) \leq (<)tf(\alpha(u))+(1-t)f(a)$ for u in a neighborhood of t_0 and $t \in (0,1)$.

For the next theorems we suppose that, the family Γ_a is either the set of all C^1 parametrized curves passing through a and regular at a or the family of all C^2 parametrized curves passing through a, such that either a is a regular point for α , or a is a singular point of the second order for α .

2.4. Theorem ([9],[11]). Let (x_n) be a sequence of distinct points in \mathbb{R}^p such that $x_n \to a \in \mathbb{R}^p$. Then there exists a parametrized curve $\alpha : \mathbb{R} \to \mathbb{R}^p$ from the family Γ_a , a subsequence (x_{n_k}) of (x_n) and a strictly decreasing sequence (t_k) of real numbers such that

Proceedings of The 4-th International Colloquium "Mathematics in Engineering and Numerical Physics" October 6-8, 2006, Bucharest, Romania, pp. 58-62.(c) Balkan Society of Geometers, Geometry Balkan Press 2007.

From curves to extrema, continuity and convexity

1) $\alpha(0) = 0$, and

2) $t_k \to 0$ and $\alpha(t_k) = x_{n_k}, \forall k \in \mathbf{N}.$

Consequently we get

2.5. Theorem. Let $f: D \to \mathbf{R}$ and $a \in D$. The point a is a minimum (maximum) point for f if and only if a is a minimum (maximum) point for f constrained by Γ_a . To formulate a refined result we need

2.6. Theorem. Let $f : D \subset \mathbf{R}^p \to \mathbf{R}$ and $a \in D$. Suppose that for each $\alpha \in \Gamma_a$ $(\alpha(t_0) = a), f \circ \alpha$ is continuous at t_0 . Then f is continuous at a.

Proof. Suppose, per absurdum, that f is not continuous at a, i.e., there exists a sequence (x_n) from D with $x_n \to a$ and $f(x_n) \to l$, with $l \neq f(a)$. According to theorem 2.4, there exists a parametrized curve $\alpha \in \Gamma_a$, a subsequence (x_{n_k}) and a sequence of real numbers (t_{n_k}) , $t_{n_k} \to 0$ such that $\alpha(t_{n_k}) = x_{n_k}$ and $\alpha(0) = a$. From the continuity of $f \circ \alpha$ at 0, we obtain that $f(x_{n_k}) \to f(a)$, which is a contradiction.

2.7. Theorem. Let $f: D \subset \mathbb{R}^p \to \mathbb{R}$ and $a \in D$. Suppose that $f \circ \alpha$ is continuous for each $\alpha \in \Gamma_a$, and a is a strict extremum point constrained by α . Then a is a strict extremum point for f.

Proof. From the previous theorem it follows that f is continuous. Let suppose that a is a strict extremum point for f constrained by each $\alpha \in \Gamma_a$. We prove that a is a strict extremum point for f constrained by Γ_a . In this way, according to theorem 2.5, it follows that a is a point of strict extremum for f.

Suppose, per absurdum, that there exist two parametrized curves $\alpha : I \to D$ and $\beta : J \to D$ in $\Gamma_a (a = \alpha (t_0) = \beta (u_0))$ such that *a* is a point of strict minimum for *f* constrained by α , and in the same time *a* is a point of strict maximum for *f* constrained by β .

Hence we can find two sequences of real numbers (t_n) and (u_n) , $t_n \to t_0$ and $u_n \to u_0$, such that $f(\alpha(t_n)) > f(a)$ and $f(\beta(u_n)) < f(a)$. From the continuity of f it follows that on the segment $[\alpha(t_n), \beta(u_n)]$ in \mathbf{R}^p we can find a point x_n with $f(x_n) = f(a)$. Applying theorem 2.4 to the sequence (x_n) , we get a parametrized curve γ in Γ_a , a subsequence (x_{n_k}) of (x_n) and a sequence of real numbers (q_k) such that $q_k \to 0$, $\gamma(0) = a$ and $\gamma(q_k) = x_{n_k}$. It follows $f(\gamma(q_k)) = f(a)$, $\forall k \in \mathbf{N}$, i.e., the point a cannot be a strict extremum point for f constrained by γ . This result is a contradiction.

Remark. The previous theorems hold for the case in which \mathbf{R}^{p} is replaced by a finite dimensional differentiable manifold.

2.8. Theorem. Let $f: D \to R$ and $a \in D$ such that

i) f is differentiable

ii) For any $\alpha \in \Gamma_a$ the point f(a) is not a separator point along α .

iii) For any $\alpha \in \Gamma_a$ it follows that f or -f is locally strict convex at a along α . In these conditions a is a point of strict extremum of f, and f or -f is locally convex at a.

Proof. Let $\alpha \in \Gamma_a$ $(\alpha(t_0) = a)$. Because f(a) is not a separator point along α , it follows that there exists two sequences (u_n) and (v_n) with $u_n < t_0 < v_n$ having the limit t_0 such that $f(\alpha(u_n)) \leq f(a), f(\alpha(v_n)) \geq f(a)$ or $f(\alpha(u_n)) \leq f(a), f(\alpha(v_n)) \leq$ $f(a), n \in \mathbb{N}$. Because $\varphi(t) = f(\alpha(t))$ is differentiable, it follows that $\varphi'(t_0) = 0$. Because φ or $-\varphi$ is locally convex at t_0 , it follows that t_0 is a strict extremum point of φ (minimum or maximum). Thus we get that a is a strict extremum point of fconstrained by each $\alpha \in \Gamma_a$. In accordance with theorem 2.7 a is a strict extremum point of f. Thus, f is locally strict convex at a along any parametrized curve $\alpha \in \Gamma_a$, or -f is locally strict convex at a along any parametrized curve $\alpha \in \Gamma_a$. It follows that f or -f is locally strict convex at a.

2 Convexity of Monge hypersurfaces

Let $f: D \subset \mathbf{R}^{p-1} \to \mathbf{R}$ be a function of reasonable class, and $\Sigma: x^p = f(x_1, ..., x_{p-1})$ a Monge hypersurface in \mathbf{R}^p . Let $a \in D$ and Γ_a the family of parametrized curves specified in the previous section.

3.1. Theorem. Suppose that for any $\alpha \in \Gamma_a$, the point a is a strict extremum point restricted by α . Then the hyperplane $x^p = f(a)$ is tangent to Σ at (a, f(a)), and Σ is locally strict convex at (a, f(a)), i.e., around (a, f(a)) the Monge hypersurface Σ rests strictly on the same side of the tangent hyperplane.

This theorem follows from theorem 2.7.

3.2. Theorem. Suppose that f or -f is locally strict convex at a along any $\alpha \in \Gamma_a$ and f(a) is not a separator point of f along α . In these conditions the hyperplane $x^p = f(a)$ is a tangent hyperplane to Σ at (a, f(a)), and Σ is locally strict convex at a.

This theorem follows directly from theorem 2.8.

In the sequel we suppose that $x^p = f(a)$ is the tangent hyperplane to Σ at (a, f(a)). This hyperplane can be identified with \mathbf{R}^{p-1} , and the point (a, f(a)) with a. Let Γ_a^* be the family of all parametrized curves passing through a and contained in Σ , having the same properties as those for the family Γ_a .

3.3. Lemma. The following statements hold true:

i) Let α be a parametrized curve passing through a and contained in the tangent hyperplane at a. Then $\alpha \in \Gamma_a$ if and only if $(\alpha, f \circ \alpha) \in \Gamma_a^*$.

ii) The association $\alpha \to (\alpha, f \circ \alpha)$ is a bijective correspondence between Γ_a and Γ_a^* .

iii) a is a strict extremum point of f constrained by α if and only if the parametrized curve $(\alpha, f \circ \alpha)$ rests, around a, on the same side of the tangent hyperplane at a.

Proof. We prove the sentence ii). It is obvious that the association $\alpha \to (\alpha, f \circ \alpha)$ is one-to-one. Let $\beta \in \Gamma_a^*$ ($\beta(0) = \alpha$). It follows that $\beta(t) = (\alpha(t), (f \circ \alpha)(t))$, where α is the projection of β on the tangent hyperplane. Let us prove that $\alpha \in \Gamma_a$. We have

$$\beta'(t) = \left(\alpha'(t), \sum_{i=1}^{p-1} \frac{\partial f}{\partial x^i}(\alpha(t)) \frac{dx^i}{dt}(t)\right)$$

and

$$\beta''(t) = \left(\alpha''(t), \sum_{i=1}^{p-1} \frac{\partial f}{\partial x^i}(\alpha(t)) \frac{d^2 x^i}{dt^2}(t) + \sum_{i,j=1}^{p-1} \frac{\partial^2 f}{\partial x^i \partial x^j}(\alpha(t)) \frac{dx^i}{dt}(t) \frac{dx^j}{dt}(t)\right).$$

Because $\frac{\partial f}{\partial x^i}(\alpha(0)) = 0$, we obtain $\beta'(0) = (\alpha'(0), 0)$ and

$$\beta''(0) = \left(\alpha''(0), \sum_{i,j=1}^{p-1} \frac{\partial^2 f}{\partial x^i \partial x^j}(\alpha(0)) \frac{dx^i}{dt}(0) \frac{dx^j}{dt}(0)\right).$$

From curves to extrema, continuity and convexity

If $\alpha'(0) = 0$ we obtain $\beta'(0) = 0$ and thus $\beta''(0) = (\alpha''(0), 0)$. As $\beta''(0) \neq 0$ we have $\alpha''(0) \neq 0$.

3.4. Definition. We say that the hypersurface Σ is (strictly) convex at a along a parametrized curve $\alpha \in \Gamma_a$ if a is a point of (strict) extremum for f restricted by α . Also, we say that Σ is (strictly) convex at a with respect to the family Γ_a if a is a (strict) extremum point of f constrained by Γ_a .

3.5. Theorem. The hypersurface Σ is strictly convex at a with respect to the family Γ_a if and only if Σ is strictly convex at a along any parametrized curve α in Γ_a .

This theorem is a direct consequence of theorem 2.5.

In the sequel let suppose that the hypersurface Σ is defined by the Cartesian implicit equation $F(x_1, ..., x_p) = 0$. Let

$$g(x) = \sum_{i=1}^{p} \frac{\partial F}{\partial x^{i}}(a)(x^{i} - a^{i})$$

be the linear approximation of F around the point a.

3.6. Definition. We say that the hypersurface Σ is (strictly) convex at a along the parametrized curve $\alpha \in \Gamma_a^*$ if a is a (strict) extremum point for g restricted by α . Also, we say that Σ is (strictly) convex at a with respect to the family Γ_a^* if a is a (strict) extremum point of g restricted by the family Γ_a^* .

Summing the previous results, we obtain:

3.7. Theorem. The following statements are equivalent:

a) Σ is strictly convex at a along any parametrized curve in Γ_a ;

b) Σ is strictly convex at a along any parametrized curve in Γ_a^* ;

c) Σ is strictly convex at a with respect to the family Γ_a ;

d) Σ is strictly convex at a with respect to the family Γ_a^* ;

e) The point a is a strict extremum point of the function g restricted to Σ . Reformulating:

3.8. Theorem. The following statements are equivalent:

a) Each parametrized curve in the family Γ_a^* rests, around a, strictly on the same side of the tangent hyperplane to Σ at a.

b) All the parametrized curves in the family Γ_a^* rest, around a, strictly on the same side of the tangent hyperplane to Σ at a.

c) The hypersurface Σ rests, around a, on the same side of the tangent hyperplane to Σ at a.

References

- C. Udrişte and O. Dogaru, Mathematical Programming Problems with Nonholonomic Constraints, Seminarul de Mecanică, Univ. of Timişoara, Facultatea de Ştiinţe ale Naturii, vol. 14, 1988.
- [2] C. Udrişte and O. Dogaru, Extrema with Nonholonomic Constraints, Buletinul Institutului Politehnic Bucureşti, Seria Energetică, 50 (1988), 3-8.
- [3] C. Udrişte and O. Dogaru, Extreme condiționate pe orbite, Sci. Bull., 51 (1991), 3-9.

- [4] C. Udrişte and O. Dogaru, Convex Nonholonomic Hypersurfaces, Math. Heritage of C.F. Gauss, 769-784, Ed. G. Rassias, World Scientific, 1991.
- [5] V. Radcenco, C. Udrişte, D. Udrişte, Thermodynamic Systems and Their Interaction, Sci. Bull. P.I.B., Electrical Engineering, vol. 53, no. 3-4 (1991), 285-294.
- [6] C. Udrişte, O. Dogaru and I. Ţevy, Sufficient Conditions for Extremum on Differentiable Manifolds, Sci. Bull. P.I.B., Electrical Engineering 53, 3-4 (1991), 341-344.
- [7] C. Udrişte, O. Dogaru and I. Ţevy, Extremum Points Associated with Pfaff Forms, Presented at the 90th Anniversary Conference of Akitsugu KAWAGUCHI's Birth, Bucharest, Aug. 24-29, 1992; Tensor, N.S. 54 (1993), 115-121.
- [8] C. Udrişte, O. Dogaru and I. Ţevy, Open Problems in Extrema Theory, Sci. Bull. P.U.B., Series A, 55, 3-4 (1993), 273-277.
- [9] O. Dogaru, I. Ţevy and C. Udrişte, Extrema Constrained by a Family of Curves and Local Extrema, JOTA 97, 3 (1998), 605-621.
- [10] C. Udrişte, O. Dogaru and I. Ţevy, Extrema Constrained by a Pfaff system, Fundamental open problems in science at the end of millenium, vol. I-III, Proceedings of the International Workshop on Fundamamental Open Problems in Science, held in Beijing, August 23-31, 1997, edited by Tepper Gill, Kexi Liu, Erik Trell, Hadronic Press, Inc., Palm Harbor, FL, 1999, 559-573.
- [11] O. Dogaru and I. Ţevy, Extrema Constrained by a Family of Curves, Proceedings of Workshop on Global Analysis, Differential Geometry and Lie Algebras, 1996, Ed. Gr. Tsagas, Geometry Balkan Press, 1999, 185-195.
- [12] O. Dogaru and V. Dogaru, *Extrema Constrained by* C^k *Curves*, Balkan Journal of Geometry and Its Applications, 4, 1 (1999), 45-52.
- [13] C. Udrişte, I. Ţevy, M. Ferrara, Nonholonomic Economic Systems, see [15], 139-150.
- [14] C. Udrişte, I. Ţevy, Geometry of Test Functions and Pfaff Equations, see [15], 151-165.
- [15] C. Udrişte, O. Dogaru and I. Ţevy, Extrema with Nonholonomic Constraints, Monographs and Textbooks 4, Geometry Balkan Press, 2002.
- [16] C. Udrişte, O. Dogaru, M. Ferrara, I. Ţevy, *Pfaff Inequalities and Semi-curves in Optimum Problems*, Recent Advances in Optimization, pp.191-202, Proceedings of the Workshop held in Varese, Italy, June 13/14th 2002, Ed. G. P. Crespi, A. Guerragio, E. Miglierina, M. Rocca, DATANOVA, 2003.
- [17] C. Udrişte, O. Dogaru, M. Ferrara, I. Ţevy, Extrema with Constraints on Points and/or Velocities, Balkan Journal of Geometry and Its Applications, 8, 1 (2003), 115-123.
- [18] O. Dogaru, C. Udrişte, C. Stamin, *Extremum problems with unidimensional con*straints, manuscript.

Authors' address:

Oltin Dogaru, Constantin Udrişte, Cristina Stamin University Politehnica of Bucharest, Faculty of Applied Sciences, Department Mathematics I, Splaiul Independentei 313, RO-060042, Bucahrest, Romania. e-mail: oltin.horia@yahoo.com, udriste@mathem.pub.ro, criset@yahoo.com