
The continuity of linear physical systems

Mircea Ĉırnu

Abstract. In a short communication presented at the MENP-3 Collo-
quium in 2004, we provided several aspects of a rigorous mathematical
fundation of physical systems theory, based on the notion of Carleman
operator, introduced in its entire generallity by the author, both in the
linear and nonlinear cases. Various applications to different specific prob-
lems of systems, as time-invariance, causality, passivity and the systems
connectivity, were also considered. In the present work, we give some re-
sults based on the closed graph theorem, about the continuity of Carleman
operators, these being operators generated by some operator-valued func-
tions, named weighted (or admittance) functions. Several applications are
given, e.g., the set of hypotheses that assure the coincidence of the two
mathematical models for linear physical systems: Carleman operators and
linear continuous operators.
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1 Carleman operators

Definitions. Let E, F, G be separated topological vector spaces on the field K of
real or complex numbers, F being composed of functions defined on a set S, with
values in G, its topology being finer than the pointwise convergence topology. We
denote L(E, G) the vector space of linear continuous operators from E to G. In the
papers [4] and [6], the author defined the notion of Carleman operator as being the
operator Uϕ : E → F , where ϕ is an operator-valued function ϕ : S → L (E, G),
named weighted (admitance) function of the Carleman operator, such that

(Uϕ(e)) (s) = (ϕ(s)) (e),∀s ∈ S, ∀e ∈ E.(1.1)

Every Carleman operator is linear. We denote by C (E, F ) the vector space of
Carleman operators everywhere defined on E with values in F and FC (E, F ) the
vector space of the weighted functions that generate the Carleman operators from E
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to F . Consequently, the functions ϕ ∈ FC(E, F ) are the operator-valued functions
ϕ : S → L(E, G) satisfying the condition

(ϕ(.)) (e) ∈ F,∀e ∈ E.(1.2)

Examples of Carleman operators
Scalar case. If G = K, then the elements of F are scalar-valued functions and

the weighted function ϕ : S → E′ is a functional-valued function, having its values in
the dual E′ of E.

Hilbert space case. Consider G = K and let E be a Hilbert space. According to
the Riesz theorem, E is anti-isomorphic to its dual, hence the weighted function ϕ of
a Carleman operator from E to F has its values in E, the operator having the form

(Uϕ(e)) (s) = ϕ(S) · e, ∀e ∈ E, ∀s ∈ S,(1.3)

where the product from the right part of the above formula is the scalar product from
E.

Initial Carleman case. If E = F = L2(E, F ), the weighted function of a Car-
leman operator from E to F is a two variables scalar-valued function ϕ(s, t), which
satisfies the condition ϕ(s, ·) ∈ L2(a, b), for almost all s ∈ (a, b). In this case, the
Carleman operators have the integral form

(Uϕ(e(t))) (s) =
∫ b

a

ϕ(s, t)e(t)dt ∈ L2(a, b), ∀e(t) ∈ L2(a, b),(1.4)

for almost all s ∈ (a, b). This is the initial notion considered by T. Carleman in [2].
Finite dimensional case. Consider E = Kn and F = Km, the elements of this

last space being considered as scalar-valued functions, defined on the set {1, 2, ..., m}.
Every linear operator U : Kn → Km, U(e) = f , has the matriceal representation
A · e = f , where A ∈ Mm,n is a matrix with m rows and n columns associated to
the operator U , and e ∈ Mn,1

∼= Kn, f ∈ Mm,1
∼= Km, are column matrices. Such an

operator is Carleman, with the weighted function ϕ = A, because ϕ : S = {1, ..., m} →
(Kn)′ ∼= Kn ∼= M1,n and hence ϕ(s) = Ls ∈ M1,n, ∀s ∈ S, where L1, ..., Lm are the
rows of the matrix A.

2 Carleman representation of linear continuous
operators

Linear continuous operators as Carleman operators. Every linear contin-
uous operator U : E → F is Carleman, hence

L(E, F ) ⊆ C(E, F ).(2.1)

The weighted function of the linear continuous operator U , considered as Carleman
operator, is given by the formula ϕ(s) = δs

F ◦ U, ∀s ∈ S where δs
F ∈ L(E, G) is the

Dirac operator concentrated at the element s ∈ S, defined on the space F by the
formula δs

F (f) = f(s), ∀f ∈ F .
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Carleman operators as closed or continuous operators. In the above men-
tioned hypotheses, every Carleman operator is closed.

The pair of spaces E and F is said to have the closed graph property, if for these
spaces takes place the closed graph theorem, hence every linear closed (with closed
graph) operator is continuous.

If S, G,E, F are as above and the pair of spaces E and F has the closed graph
property, then every Carleman operator from E to F is linear and continuous, hence
in these hypotheses, we have

L(E, F ) = C(E, F ).(2.2)

The adjoint U ′
ϕ : F ′ → E′ of the Carleman operator Uϕ is weak continuous and is

given by formula
(
U ′

ϕ(f ′)
)
(e) = f ′ (Uϕ(e)) = f ′ ((ϕ(·)) (e)) , ∀e ∈ E, ∀f ′ ∈ F ′.(2.3)

In the scalar case, G = K, the weighted function ϕ of the Carleman operator, is
given by the formula ϕ(s) = U ′

ϕ (δs
F ) , ∀s ∈ S , which justifies another denomination

for the weighted function ϕ, the one of impulse-response function.

Linear continuous operators as adjoint of Carleman operators. In addi-
tion to the above hypotheses, we suppose E and F to be locally convex spaces, the
first tonelate, the second semireflexive and we denote E′

b the dual of E endowed with
the strong topology. Then V : F ′b → E′

b is linear and continuous if and only if it is
the adjoint of a Carleman operator, V = U ′

ϕ. If G = K, then the weighted function
is given by the formula ϕ(s) = V (δs

F ) , ∀s ∈ S.

3 Particular cases of Carleman representations

Results about the continuity of some particular Carleman operators and hence about
Carleman representation of the linear continuous operators, that are special cases of
our above results, were given by many authors. In some of these cases, the authors
require hypotheses that are not necessary, some of them being dependent of their
particular context. Also, in many cases, the initial proofs are different of ours, being
not based on the closed graph theorem.

Banach spaces. If E and F are Banach spaces, from the above properties of
Carleman operators, there result the known theorems of Izumi and Sunouchi, [11],
Taylor, [17] and Jdanov [12].

Hilbert spaces. For E a Hilbert space, G = K and F = L2(S), where S is a
measure space, are obtained some results given by Weidmann [19] and for E = F =
L2(a, b) by Carleman [2], in connection with his integral operator above mentioned.
For E = Kn, F = Km it results the well known property that every linear operator
U : Kn → Km is continuous.

Locally convex spaces. If E and F are locally convex spaces, satisfying several
hypotheses, we obtain some results given by V.Ptak [15].

Distributional spaces. In the case S = Rn, G = K, E = D (Rm) and F =
D (Rn), from the above considerations it results that a linear operator from D (Rm)



The continuity of linear physical systems 49

to D (Rn) is continuous if and only if is Carleman, its weighted function being an
indefinite differentiable function ϕ : Rn → D′ (Rm), scalarly with compact support,
this meaning that the function (ϕ(s)) (e) has compact support in Rn , for every
e ∈ D (Rn).

These results was given by the author ([3]), by Pondelicek, ([14]) and by Dolezal,
([10]) and stay at the basis of the linear distributional physical systems theory. The
distribution-valued functions that are weighted functions of the Carleman operators
between spaces of distributions, was introduced by R.Cristescu ([8]) after the name of
composable famillies of distributions, they being particular cases of L.Schwartz kernels
(distributions of two multi-variables).

Other cases of representation of linear continuous operators as Carleman operators
acting between several spaces from distributions theory, which are also particular cases
of our results, were give by Meidan [13] and Dolezal and Sanborn [10].

4 Applications

Using the results about the continuity of the Carleman operators presented above,
several old or new theorems can be obtained, in many cases with new and considerably
reduced proofs. Some of them will be presented below.

Gelfand-Dunford type theorems. N.Bourbaki’s Gelfand-Dunford theorem
states that if E is a separated locally convex space with the (GDF) property and
if ϕ : S → E′

σ is a scalar essential integrable function on a measure space (S, µ),
then the Radon integral

∫
ϕdµ is an element from the dual E′. Here the operator

Uϕ : E ∈ L1(S), defined by Uϕ(e) =
∫

ϕedµ,∀e ∈ E is Carleman hence continuous
and U ′

ϕ :
(
L1(S)

)′ ∼= L∞(S) → E′, which infers
∫

ϕdµ = U ′
ϕ(1) ∈ E′.

L.Schwartz’ Gelfand-Dunford theorem in vectorial distribution theory, states that
if E is a locally convex space having the (GDF) property, then every scalar locally
summable function ϕ : Rn → E′

σ, defines a vectorial distribution (of function type)
with values in E′

σ, namely the linear operator W defined by the formula

(W (α)) (e) =
∫

(ϕ(s)) (e)α(s)ds,∀α ∈ D (Rn) , ∀e ∈ E,(4.1)

is a continuous operator from D (Rn) to E′
σ.

Hellinger-Toeplitz type theorem. The linear operators generated by infinite
matrices that act between sequence spaces, being particular cases of Carleman op-
erators, are continuous if the spaces satisfy conditions of the type above mentioned.
This theorem has several particular settings: if E = F = l2, this result was given
by Hellinger and Toeplitz, if E, F are (FK) spaces by Zeller, [19], if E, F are Ba-
nach spaces of sequences by Taylor, [17]. Another extension of the Hellinger-Toeplitz
theorem given by Ptak, [15], is also particular case of our results.

Operators commuting with the translations. In case that E and F are both
composed of functions with values in G, defined on a semigroup S, having continuous
translations and their pair having the closed graph property, then U : E → F is a
linear continuous operator, commuting with the translations, i.e.

U (τse) = τs (U(e)) ,∀e ∈ E, ∀s ∈ S,(4.2)
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if and only if it is a convolution operator

U(e) = Uτ ·u(e) = u ? e, ∀e ∈ E,(4.3)

with a convolutor u, that is an operator u ∈ L(E,G) having the property (τ ·u) =
u (τ ·e) ∈ F,∀e ∈ E. If the semigroup has an unity s0 ∈ S, then u = δs0

F ◦U = U ′ (δs0
F ).

Particular cases of the convolution representation of the linear continuous opera-
tors that commute with the translations are for example the theorem S of L.Schwartz,
for E = F = D (Rn) and several results given by B.Brainerd and Edwards, [1].

5 Physical linear systems and Carleman operators

Physical systems. The mathematical model of a physical system is an operator
U : E → F and it is said that the system is governed by the operator U . The elements
e of the definition domain E are called the inputs of the system and the elements f
of the range F are called the outputs. Because the last ones must be measured, the
elements f from F are supposed to be functions defined on a set S with values in R.
The physical system is named linear if E, F, G are vector spaces and the operator U
is linear.

Linear physical systems as Carleman operators. We defined in [5] a physical
time-varying system as being a Carleman operator. In this case, the properties of the
system will be studied on the base of the weighted function ϕ associated with the
Carleman operator, which is usually called admittance function. In [8] were presented
several properties of the physical systems, both linear and non-linear were presented.
Time-invariant systems were particularly considered.

The continuity of the linear physical systems. Because several authors define
the linear physical systems as being linear continuous operators is of great interest to
compare the notions of Carleman with that of linear continuous operators, problem
that was addressed in the present communication.
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