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Abstract. In this paper we give a theorem of existence of critical points
for a third order competition model. This dynamical system is an approx-
imation of a general model considered for the analysis of cells competition
during the tumor-growth.
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1 Introduction

In recent years many different dynamical system were proposed to investigate the
evolution of large systems of particles undergoing classical or quantum interactions
(see e.g. [1],[2],[3]).

The system is assumed to be constituted by a large number of interacting enti-
ties (not classical particles) called active particles [4]. The microscopic state of active
particle may include not only geometrical and mechanical variables, but also an ad-
ditional variable, called activity suitable to describe their physical-chemical (shortly
biological) state additional to position and momentum (see e.g. [5],[6]). In particular,
this approach has been very useful in mathematical immunology [7], [8].

Recently has been proposed also some hybrid models [9],[10] in which the macro-
scopic evolution is influenced by the microscopic evolution, in other words the ordinar
differential equations, which describe the competing populations, contain a functional
solution of a partial differential system for some kind of distribution functions. Thus
the macroscopic evolution depends on the influence of the microscopic distribution.

In a recent paper [11] it has been proposed a dynamical system, for the tumor-
immune system competition, which can be considered a generalization of the mostly
known competition models and moreover it does not contain (biological) contradic-
tions. This model, however is too general and does not enable us to give an explicit
computation of the evoluion. Therefore in the following we will consider the third or-
der approximation (for the second approximation see [10]) and we will give a theorem
of existence for the critical points.
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2 Dynamical system for the Immune Competition
of cells

Let us consider a system of two interacting and competing populations. Each popu-
lation is constituted by a large number of individuals called active particles, their
microscopic state is called (biological) activity. This activity enable the particle to
organize a suitable response with respect to any information process. In absence of
prior informations, the activity reduces either to a minimal lost of energy or to a
random process.

In active particle competitions the simplest model of binary interaction is based on
proliferation-destructive competition. That is when, one of the population get aware
of the presence of the other competing population start to proliferate and destroy the
competing cells. However, in this process an important step is the ability of cells to
hide them selves and to learn about the activity of the competing population.

In details consider a physical system is constituted by two interacting populations
each constituted by a large number of active particles with sizes:

(2.1) ni = ni(t) , [0, T ] → IR+ ,

for i = 1, 2. Particles are homogeneously distributed in space, while each population
is characterized by a microscopic state, called activity, denoted by the variable u.
The physical meaning of the microscopic state may differ for each population.

Let us now restrict ourselves to the analysis of the macroscopic system only. The
modelling of the immune competition can be approached, at the macroscopic level,
by a system of ordinary differential equations describing the evolution of the number
of cells belonging to the two competing populations. Specifically we consider the
following model proposed by D’Onofrio [11], which generalizes most of the know
competition models, such as Gompertz, Hart-Schochat-Agur, von Bertanlaffy, Nani
and Freedmn etc..(see references there)

(2.2)





dn1

dt
= c1n1f(n1)− c2φ(n1)n1n2,

dn2

dt
= −c3ψ(n1)n2 + c4q(n1) .

n1 is the numerical density of tumor cells, n2, the numerical density of lymphocyte
population, under conditions n1 ≥ 0, n2 ≥ 0, while α’s and β’s are deterministic
parameters.

This simple model, might be considered a generalization of the Lotka-Volterra
model, which is obtained from (2.2) by assuming

f(n1) = Cnst. = 1 , φ(n1) = Cnst. = 1 , ψ(n1) = −n1 , q(n1) = −n1 .

System (2.2) is more suitable for the description of tumor-immune cells competi-
tion since is mainly based on the following hypotheses [11]

1. There not exist negative solutions of the numerical densities for non small n1,
which would be physically unacceptable.
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2. The death of lymphocytes depend on the function ψ(n1) which describe the
stimulatory effect on the immune cells. We can assume that this function is
positive (at least initially)

ψ(0) > 0

and might be negative only in a finite interval. It seems to be reasonable to
assume

|ψ′(0)| ≤ 1 ,

so that at least initially the death rate of lymphocytes is not greater than in
the linear model.

3. Tumor growth rate f(n1) is a positive function which summarizes the carrying
capacity (or malignancy) such that [11]

f(0) > 0 ,
d

dn1
f(n1) ≤ 0 , lim

n1→0
n1f(n1) = 0 .

With this general assumption on f(n1) we can summarize many different models:
exponential, logistic, etc. We will assume that initially it is

f ′(0) = 0.

4. The loss of tumor cells depending on the competition with lymphocytes is rep-
resented by the function φ(n1) characterized by [11]

φ(n1) > 0 , φ(0) = 1 ,
d

dn1
φ(n1) ≤ 0 , lim

n1→∞
n1φ(n1) = ` < ∞ .

In other words, if the tumor growth tends to infinity the loss of tumor cells
would tend to a constant rate. It can be assumed that

φ′(0) = 0 .

5. Regarding the influx of immune cells q(x) we assume that q(0) = 1, as well as

|q′(0)| ≤ 1

so that, at least initially, the inlux of effector cells is not greater than in the
linear model.

By assuming
x = n1 , y =

n2

β2
, τ = β1t

and
a =

c1

c3
, b =

1
c3

, µ =
c2c4

c3

we get the non dimensional model

(2.3)





dx

dτ
= axf(x)− µφ(x)xy ,

dy

dτ
= −yψ(x) + bq(x) .
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3 First order approximation of D’Onofrio model
[11]

The equilibrium points of (2.3), given by




x (af(x)− µφ(x)y) = 0 ,

−yψ(x) + bq(x) = 0 ,

are P0 ≡ (x0, y0) and eventually P ≡ (x, y) with

x0 = 0 , y0 =
b

ψ(0)

af(x)ψ(x)− µbφ(x)q(x) = 0 , y = b
q(x)
ψ(x)

.

The Jacobian is(
af(x) + axf ′(x)− µφ′(x)xy − µφ(x)y −µφ(x)x

−yψ′(x) + bq′(x) −ψ(x)

)

which, taking into account the hypotheses on the functions, in P0 is



af(0)− µb
φ(0)
ψ(0)

0

−b
ψ′(0)
ψ(0)

+ bq′(0) −ψ(0)




The eigenvalues in P0 are

λ1 = −ψ(0) , λ2 = af(0)− µb
φ(0)
ψ(0)

.

Since ψ(0) > 0, we have that

1. P0 is a stable node if af(0) < µb
φ(0)
ψ(0)

2. P0 is an unstable saddle point if af(0) > µb
φ(0)
ψ(0)

3. P0 is a node (type II) point (stable or unstable) if λ1 = λ2 i.e. f(0) =
1
a

(
µb

φ(0)
ψ(0)

− ψ(0)
)

, with, according to the hypotheses, µb
φ(0)
ψ(0)

> ψ(0), i.e.

ψ(0)2 < µbφ(0).

The linearization in P0 gives the system

(3.1)





dx

dτ
=

[
af(0)− µb

φ(0)
ψ(0)

]
x

dy

dτ
= b

[
−ψ′(0)

ψ(0)
+ q′(0)

]
x− ψ(0)y + b
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4 Third order approximation of D’Onofrio model
[11]

In this section we consider the third order Taylor expansion of system (2.3) around the
initial (equilibrium) state x0 = 0, y0 = b/ψ(0) (for the second order approximation
see [10]). From (2.3) it is

(4.1)





dx

dτ
= af(0)x + af ′(0)x2 − µ

[
x + φ′(0)x2

]
y +

1

2

[
af ′′(0)− µφ′′(0)y

]
x3,

dy

dτ
= bq′(0)x− ψ(0)y + b +

1

2
bq′′(0)x2 −

[
ψ′(0)x +

1

2
ψ′′(0)x2

]
y−

−1

6

[
ψ′′′(0)y − bq′′′(0)

]
x3 .

We assume

f ′(0) = 0 , φ′(0) = 0 , φ′′(0) = 0 , q′′(0) = 0 , q′′′(0) = 0

so that by defining,
(4.2)

α1 = af(0) , α2 =
1
2
af ′′(0) ,

β1 = ψ′(0) , β2 = ψ(0) , β3 = bq′(0) , β4 = b , β5 =
1
2
ψ′′(0) , β6 =

1
6
ψ′′′(0)

we have

(4.3)





dx

dτ
= α1x− µxy + α2x

3 ,

dy

dτ
= −β1xy − β2y + β3x + β4 − β5yx2 − β6yx3 .

The parameters (4.2) according to the hypotheses on functions, are such that,

(4.4) α1 > 0 , |β1| ≤ 1 , β2 > 0 , |β3| < 1 , 0 ≤ β4 ≤ 1

A critical point is

P1 =
(

0,
β4

β2

)

which, according to (4.2) is

P1 =
(

0,
b

ψ′(0)

)

the other points are given by the intersection of the null clines. Assuming µ 6= 0, we
define

A =
α2

µ
, B =

α1

µ
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Figure 1: Null clines of the system (4.3), intersection of
(4.5) with y′(0) < 0.

so that the critical points of the system (4.3) are given by the intersection of

(4.5)





y = Ax2 + B

y =
β4 + β3x

β6x3 + β5x2 + β1x + β2

Thus the critical points are on the intersection of the family (depending on µ) of
parables (parallel to the y-axis) and the fixed curve

y =
β4 + β3x

β6x3 + β5x2 + β1x + β2
.

It can be easily seen that, for x > 0,

lim
x→0+

β4 + β3x

β6x3 + β5x2 + β1x + β2
=

β4

β2
≥ 0 , lim

x→+∞
β4 + β3x

β6x3 + β5x2 + β1x + β2
= 0 .

The intersection with the x-axis is the point

P2(−β4

β3
, 0)

We are interested mainly on the number of critical points which belongs to the
positive sector of x , y. Thus we should first analize the function (4.5)2 in order to
focus on the singular points. It can be easily shown that

Theorem 1 When
−β4

β3
> 0

for x > 0, and
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Figure 2: Null clines of the system (4.3), intersection of
(4.5) with y′(0) > 0.

1. β3β2 ≤ β4β1 , there exists only one critical point of (4.5)2, for (Fig. 1)

0 ≤ α1

µ
≤ β4

β2

2. β3β2 > β4β1 , there exists only one critical point of (4.5)2, for (Fig. 2)

0 ≤ α1

µ
≤ β4

β2

and two critical points for

β4

β2
≤ α1

µ
< y∗ − α2

µ
x2
∗

being (x∗, y∗) the tangent point of the two null clines, given as solution of the
system





y = Ax2 + B

2Ax =
β2β3 − β1β4 − x [β3x (β5 + 2β6x) + β4 (2β5 + 3β6x)]

[β2 + x (β5 + β6x)]2
.

Proof. The existence of one critical point immediately follows by observing that
the intersection of parable family with y-axis is B =

α1

µ
(see Figg. 1,2). We have,

instead two intersection only when B ranges from β4/β2 and the value of B which
corresponds to the common tangent line. Thus by equating the first derivatives of the
null clines there follows tha last part of theorem.
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[5] C. Cattani, A. Ciancio, Hybrid Model for tumor-immune system competition with
Learning Hiding Dynamics, submitted to Mathematical Models and Methods in
Applied Sciences, (2007).

[6] C. Cattani, A. Ciancio, Hybrid Two Scales Mathematical Tools for Active Parti-
cles Modelling Complex Systems with Learning Hiding Dynamics, Mathematical
Models and Methods in Applied Sciences 2, 17 (2007).

[7] C. Cercignani, R. Illner, and M. Pulvirenti, Theory and Application of the Boltz-
mann Equation, Springer, Heidelberg, 1993.

[8] A. D’Onofrio, A general framework for modeling tumor-immune system com-
petition and immunotherapy: Mathematical analysis and biomedical inferences,
Physica D. 2008 (2005), 220–235.

[9] B. Perthame, Mathematical tools for kinetic equations, Bull. Am. Math. Society
41 (2004), 205-244.

[10] F. Schweitzer, Brownian Agents and Active Particles, Springer, Berlin, 2003.
[11] C. Villani, Recent advances in the theory and applications of mass transport,

Contemp. Math. Amer. Math. Soc. 353 (2004), 95–109.

Authors’ addresses:

C. Cattani
DiFarma, University of Salerno,
Via Ponte Don Melillo, 84084 I-Fisciano (SA), Italy.
e-mail: ccattani@unisa.it

A. Ciancio
Dept. of Mathematics, University of Messina,
Salita Sperone 31, 98166 I-Messina, Italy.
e-mail: aciancio@unime.it


