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Abstract

A gauge theory of gravitation having the de-Sitter group SO (1, 4) as local sym-
metry is presented. The strength tensor field of the gravitational gauge potentials
is obtained and then the field equations are written. In order to obtain an uni-
fied model of the gravitation with other interactions we will consider the group
SU (2) × SO (1, 4) as gauge symmetry. Some analytical solutions of the field
equations are obtained and a comparison with the General Relativity is made.
An analytical computing program based on MAPLE Platform, with emphasis
on the application to the gauge theories, is also presented.
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1 Introduction

The gauge theory of gravitation has been considered by many authors in order to
describe the gravity in a similar way with other interactions (electromagnetic, weak
or strong)[1]. Some authors consider the Poincairé group (PG) or de-Sitter (DS)
group as ”active” symmetry groups, i.e. acting on the space time coordinates [2].
Others adopt the ”passive” point of view when the space-time coordinates are not
affected by group transformations [3,4]. Only the fields change under the action of
the symmetry group.

Although the Poincaré gauge theory leads to a satisfactory classical theory of
gravity, the analogy with gauge theories of internal symmetries is not a satisfactory
one because of the specific treatment of translations [5]. It is possible, however, to
formulate the gauge theory of gravity in a way that treats the whole PG in a more
unified framework. The approach is based on the DS group and the Lorentz and
translation parts are distinguished through a mechanism of spontaneous symmetry
breaking [6]. An immediate consequence of replacing PG by the DS group as the
symmetry underlying the Universe is the appearance of a non-vanishing cosmological
constant Λ, which is determined by a real parameter λ of deformation. When we
consider the limit λ −→ 0, i.e. the group contraction process, the DS group reduces
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to the PG, and the corresponding gravitation theory can not describe the cosmological
constant [7]. The matter fields are described by an action that is invariant under the
global DS symmetry and the gravity is introduced as a gauge field in the process of
localization of this symmetry.

In this work, we adopt the ”passive” point of view for the symmetry group in order
to develop a DS gauge theory of gravitation over a spherical symmetric Minkowski
space-time. Therefore, we restrict ourselves to recast DS symmetry and its conse-
quences used to specify the space-time events is no longer affected by DS transforma-
tions. In order to obtain an unified model of the gravitation with other interactions
we will consider the group SU (2) × SO (1, 4) as gauge symmetry, where SO (1, 4)
denotes the DS group.

2 The gauge theory

The DS group has the dimension equal to ten and the SU(2) group is non-abelian,
three-dimensional. The infinitesimal generators of the DS group are denoted by Mab,
a, b = 0, 1, 2, 3, 5 and those of SU(2) group by Tα, α = 1, 2, 3. The equations of
structure have the form [4,6]:

2.1a [Mab,Mcd] = ηbcMad − ηacMbd − ηbdMac + ηadMbc,

2.1b [Tα, Tβ ] = εαβγTγ ,

2.1c [Mab, Tα] = 0,

where ηab = (1,−1,−1,−1,−1) is the five-dimensional Lorentz metric. A matter field
φ (x) is always referred to a local frame L of the Minkowski space-time. In general, it
is a multicomponent object which can be represented as a vector-column. The action
of the global de-Sitter group, in the tangent space, transforms an L frame into another
L frame and determine an appropriate transformation of the field φ (x) [4]:

2.2 φ′ (x′) =
(

1 +
1
2
λabΣab

)
φ (x′) .

Here Σab is the spin matrix related to the multicomponent structure of φ (x).
We define now the gauge covariant derivative, associated to the local group of

symmetry SU(2)× SO(1, 4):

2.3 ∇µφ (x) =
(

∂µ +
g′

2
Aab

µ Σab + g′′Aα
µTα

)
φ (x) ,

where Aab
µ (x) = − Aba

µ (x) are the gauge potentials describing the gravitational field
and Aα

µ (x) are the internal gauge potentials associated to the group SU (2). The
quantities g′ and g′′ denote the coupling constants of the gravitational and respectively
internal SU(2) gauge fields. Now, we calculate the commutator [∇µ,∇ν ] in order to
obtain the expressions of the strength tensors. We have:
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2.4 [∇µ,∇ν ] φ (x) = { g′

2

[
∂µAab

ν − ∂νAab
µ + g′(Aa

cµAcb
ν −Aa

cνAcb
µ )

]
Σab

+
(
∂µAα

ν − ∂νAα
µ + g′′εαβγAβ

µAγ
ν

)
Tα}φ (x) .

If we use the general definition

2.5 [∇µ,∇ν ] φ (x) =
(

g′

2
F ab

µνΣab + g′′Gα
µνTα

)
φ (x)

and identify the Eqs. (2.4) and (2.5), we obtain:

2.6 F ab
µν = ∂µAab

ν − ∂νAab
µ + g′

(
Aa

cµAcb
ν −Aa

cνAcb
µ

)
,

2.7 Gα
µν = ∂µAα

ν − ∂νAα
µ + g′′εαβγAβ

µAγ
ν .

If we chose a = i, 5, b = j, 5, c = m, 5 with i, j,m = 0, 1, 2, 3, and denotes
Ai5

µ = 2λei
µ, then the Eq. (2.6) becomes:

2.8 F ij
µν = ∂µAij

ν − ∂νAij
µ + g′

(
Ai

sµAsj
ν −Ai

sνAsj
µ

)− 4λ2g′
(
ei
µej

ν − ei
νej

µ

)
,

2.9 F i
µν = ∂µei

ν − ∂νei
µ + g′

(
Ai

sµes
ν −Ai

sνes
µ

)
,

In a Riemann-Cartan model the quantities F i
µν are interpreted as the components of

the torsion tensor, and F ij
µν as the components of the curvature tensor associated to

the gravitational field whose gauge potentials are ei
µ (x) and Aij

µ (x).

3 Model with spherical symmetry

We consider now a particular form of spherically gauge fields of the SU(2)×SO(1, 4)
group given by the following ansatz:

3.1 e0
µ = (A, 0, 0, 0) , e1

µ = (0, B, 0, 0) , e2
µ = (0, 0, rC, 0) , e3

µ = (0, 0, 0, rC sin θ) ,

and

3.2a A01
µ = (U, 0, 0, 0) , A12

µ = (0, 0,W, 0) , A13
µ = (0, 0, 0, Z sin θ) ,

3.2b A23
µ = (0, 0, 0, V cos θ) , A02

µ = ω03
µ = 0,

where A,B, C,U, V, Zand W are functions only of the three-dimensional radius r.
In addition, the spherically symmetric SU(2) gauge fields will be parametrized as
(Witten ansatz):

3.3 A = uT3dt + w (T2dθ − T1 sin θdϕ) + T3 cos θdϕ,

where u and w are functions also depending only on r.
We use the above expressions to compute the components of the tensors F i

µν and
F ij

µν . Their’s non-null components are:
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3.3a F 0
10 = A′ + g′UB, F 2

12 = C + rC ′ − g′WB,

3.3b F 3
13 = (C + rC ′ − g′ZB) sin θ, F 3

23 = rC cos θ (1− g′V ) ,

and respectively:

3.4a F 01
10 = U ′ + 4g′λ2AB, F 02

20 = g′(UW + 4λ2rAC),

3.4b F 03
30 = g′ sin θ

(
UZ + 4λ2rAC

)
, F 21

21 = W ′ − 4g′λ2rBC,

3.4c F 31
31 =

(
Z ′ − 4g′λ2rBC

)
sin θ, F 32

31 = V ′ cos θ,

3.4d F 31
32 = (Z − g′V W ) cos θ, F 23

32 =
(
V − g′ZW + 4g′λ2r2C2

)
sin θ,

where A′, C ′, U ′, V ′,W ′, and Z ′ denotes the derivatives with respect to the variable r.
Analogously, we obtain the following non-nul components of the SU(2) stress tensor
Gα

µν :

3.5a G1
02 = −uw, G1

13 = −w′ sin θ, G2
03 = −uw sin θ,

3.5b G2
12 = −w′, G3

01 = −u′, G3
23 =

(
w2 − 1

)
sin θ,

with u′ = du
dr and w′ = dw

dr .
The integral action of our model is:

3.6 SEY M =
∫

d4xe

{
− 1

16πG
F − 1

4Kg′′2
Tr (TαTβ) Gα

µνGβµν

}
,

where F = F ij
µνeµ

i eν
j , e = det

(
ei
µ

)
. We choose Tr (TαTβ) = Kδαβ ; for SU(2) group

we have Ta = 1
2τa (τa being the Pauli matrices) and then K = 1

2 . The gravitational
constant G is the only dimensional quantity in action (the units h= c =1) are un-
derstood) and is connected with the coupling constant g′. Taking δSEY M = 0 with
respect to Aα

µ , ei
µ and Aij

µ , we obtain respectively the following field equations [9]:

3.7
1
e
∂µ (eGαµν) + εαβγAβ

µGγµν = 0,

3.8 F i
µ −

1
2
Fei

µ = 8πGT i
µ,

where T i
µ is the energy-momentum tensor of the SU(2) gauge fields

3.9 T i
µ =

1
Kg′′2

(
−Gα

µρG
iρ
α +

1
4
ei
µGα

ρλGρλ
α

)
,

and
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3.10 F i
µν = 0.

Then, introducing (3.4) and (3.5) into these field equations and imposing the con-
straints C = 1, A = 1

B =
√

N with N (r) a new unknown positive defined function,
we obtain:

3.11a (Nw′)′ =
w

(
w2 − 1

)

r2
− u2w

N
,

3.11b
(
r2u′

)′
=

2uw2

N
,

3.11c
w′2

r
+

u2w2

rN2
= 0,

3.11d
1
2

(rN ′ + N − 1) +
r2u′2

2
+

u2w2

N
+ Nw′2 +

(
w2 − 1

)2

2r2
+

Λr2

2
= 0,

where we used K = 1
2 and 4πG

g′′ = 1 units. These equations admit the following solution
(Schwarzschild-Reissner-Nordstrom-de-Sitter) with a nontrivial gauge field describing
colored black holes [ ]:

3.12a u (r) = u0 +
Q

r
,w (r) = 0, N (r) = 1− 2m

r
+

Q2 + 1
r2

− Λ
3

r2,

where Λ = −12λ2 is the cosmological constant of the model. They admit also the
self-dual solution (Schwarzschild):

3.12b u (r) = 0, w (r) = ±1, N (r) = 1− 2m

r
− Λ

3
r2.

But, the solution (3.12a) is not a self-dual one.

4 Renormalizability and the minimal gravitational
action

In this section we study the scaling behavior of the one-loop partition function for
a spinor field ψ (x) in the presence of the gravitational field ei

µ (x) , Aij
µ (x) in terms

of the ζ−function belonging to the appropriate matter fluctuation operators. The
contribution of the spinor field ψ (x) to the partition is given by the Grassmannn
functional integral[13]:

4.1 Zψ [e, A] =
∫

DψDψ exp
(
iS

(
ψ,ψ; e,A

))
.

The integral of action S is already of the usual quadratic form we may perform the
Grassmann integral and formally obtain:
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4.2 Zψ [e,A] = exp
[
1
2

log det Mψ (e,A)
]

.

The hyperbolic fluctuation operator in the spinor case is obtained as usual by squaring
the Dirac operator:

4.3 Mψ (e,A) = −∇i∇i +
i

2
ΣijFij −m2,

where ∇i = eµ
i ∇µ and Fij = i

4Fmn
ij Σmn, with

4.4 Fmn
ij = Fmn

µν eµ
i eν

j .

The tensor Fmn
µν is obtained from Eq. (2.8) considering λ = 0; the cosmological con-

stant Λ = −12λ2 will be introduced finally as a term into the integral of the action
[see Eq. (4.11)]. The spinor contribution to the partition function normalized at scale
µ becomes then:

4.5 Zψ [µ; e,A] = exp
[
−1

2
ζ ′ (0; µ; Mψ (e,A))

]
.

If we change the scale µ̃ = λµ, then the partition function transforms as:

4.6 Zψ [µ̃; e,A] = Zψ [µ; e,A] exp [− log λζ (0; µ; Mψ (e,A))] .

Renormalizability of any theory including dynamical gauge fields requires now at
least that these anomalous contributions, which are local polynomials in ei

µ and Aij
µ

and their derivatives, may be absorbed in the classical action for the gauge fields ei
µ

and Aij
µ . Hence, to determine explicitly a minimal gauge field dynamics consistent

with renormalizability we finally have to evaluate the corresponding ζ-function. To
evaluate ζ (0; µ; M) we can use the following representation:

4.7 ζ (u; µ; M) =
iµ2u

Γ (u)

∫ ∞

0

ds (is)u−1
Tre−isM .

where Γ (u) is the gamma function, and expand the ”heat kernel”

4.8 Tre−isM |s−→0 =
i

(4πis)d/2

∞∑

k=0

(is)k
∫

dDxeTr ck (x) .

Performing the s-integration in (4.7) we obtain the contribution for k = D
2 :

4.9 ζ (0; µ;M) =
i

(4π)d/2

∫
dDx eTr [cD/2 (x)].

Therefore, we have to calculate the coefficient Tr[cD/2 (x)] in order to obtain the value
of ζ (0; µ; Mψ (e, A)) which finally yields the anomalous term in (4.6). We obtain:

4.10
Tr [c2] = 1

30∇i∇iF ij
ij + 1

72F ij
ij F rs

rs

− 1
360FijrsF

ijrs − 1
45F i

ij sF
jrs

r + 1
3m2F ij

ij + 2m4.
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We explicitly obtained the anomalous contribution to the rescaled partition func-
tion as local DS gauge invariant polynomials in the fields ei

µ (x) and Aij
µ (x) =

−Aji
µ (x). The anomalous contributions are present in any classical gauge field dy-

namics consistent with renormalizability of the matter sector. Hence, we are finally
led to construct a minimal action for the gauge fields just in terms of these DS gauge
invariant polynomials. In our case, if we restrict ourselves to the contributions of
second order in the derivatives O

(
∂2

)
we obtain as minimal classical action to this

order:
4.11

SG (e) =
∫

d4x e

[
Λ− 1

k2
F ij

ij + α1F
ij

ij F rs
rs + α2FijrsF

ijrs + α3F
i

ij sF
jrs

r

]
.

The couplings k, α1, α2, α3 and the constant Λ obtain again contributions from the
one-loop scale anomalies which have been determined above. We emphasize that SG

is an action for the gauge fields defined on the Minkowski space-time (M4, η) and is
invariant on one hand under local DS gauge transformations, and on the other hand
under the global Poincare transformations, reflecting the symmetries of the underlying
space-time.

4.1 The analytical program

All the calculations in Section 3have been performed using an analytical program
working on the MAPLE platform. The computer language of MAPLE includes fa-
cilities for interactive algebra, calculus, discrete mathematics, graphics, numerical
computation, and many other areas of mathematics. It provides also a unique envi-
ronment for rapid development of mathematical programs using its vast library of
built-in functions and operations.

We used the GRTensorII [16] which is a package for the calculation and manipu-
lation of tensor components and related objects. In GRTensorII, when the goal is the
calculation of components and indexed objects (in particular tensors) or the defining
new tensors, first of all, we must specify the space geometry. The simplest way to
specify this geometry is to use the makeg( ) facility. This function can be used to
enter all the information needed to specify a coordinate metric (a n×n - dimensional
2-tensor) or a basis ( a set of n linearly independent vectors related by a user-defined
inner product). The metrics created can be saved to ASCII files. These files can be
then loaded into GRTensorII using either the qload( ) or grload( ) commands. For
example, in our model, we used the spherical symmetric Minkowski metric.

Our analytical program allows to calculate: the components Gα
µν F ij

µν and F i
µν

of the strength tensor fields corresponding, respectively, to the SU(2) and SO(1, 4)
groups, the components T i

µ of the energy-momentum tensor, and the field equations
for the gauge potentials.

Below we list the part of program which allows to define and calculate the previ-
ously specified quantities.

Program ”GAUGE THEORY.mws”
>restart: grtw( ):

>grload(minkowski,‘C:/maple/sferice.mpl‘);

>grdef(‘ev{ˆi miu}‘); grcalc(ev(up,dn));

>grdef(‘evinv(i ˆmiu}‘); grcalc(evinv(dn,up));
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>grdef{‘A{ˆi ˆj miu niu}‘); grcalc(A(up,up,dn,dn));

>grdef(‘A1{miu}:= [0, 0, 0, -w(r)*sin(theta)]‘):

grdef(‘A2{miu}:= [0, 0, w(r), 0]‘):

>grdef(‘A3{miu}:= [u(r), 0, 0, cos(theta)]‘):

>grdef(‘G1{[i j]}:=2*(A1{[j,i]}+A2{[i}*A3{j]})‘);
>grdef(‘G2{[i j]}:=2*(A2{[j,i]}+A3{[i}*A1{j]})‘);
>grdef(‘G3{[i j]}:= 2*(A3{[j,i]}+A1{[i}*A2{j]})‘);
>grcalc(G1(dn,dn),G2(dn,dn),G3(dn,dn));

>gralter(G1(dn,dn),G2(dn,dn),G3(dn,dn),1,3,5,6,10):

>grdef(‘F{ˆi ˆj miu niu}:=A{ˆi ˆj niu, miu}- A{ˆi ˆj miu, niu} +

(A{ˆi ˆs miu}*A{ˆm ˆj niu} - A{ˆi ˆs niu}*A{ˆm ˆj miu})*
eta1{s m}-4*lambdaˆ2*(ev{ˆi miu}*ev{ˆj niu}-

ev{ˆi niu}*ev{ˆj miu})‘); grcalc(F(up,up,dn,dn));

>grdef(‘gb{miu niu}:=eta1{a b}*ev{ˆa miu}*ev{ˆb niu}‘);
>grcalc(gb(dn,dn,));

>grdef(‘gbinv{ˆmiu ˆniu}:=eta1inv{ˆa ˆb}*evinv{a ˆmiu}*
evinv{b ˆniu}‘); grcalc(gbinv(up,up));

> grdef(‘Gb1{ˆmiu ˆniu}:=gbinv{ˆmiu ˆrho}*gbinv{ˆniu ˆsigma}*
G1{rho sigma}‘); grcalc(Gb1(up,up));

>grdef(‘Gb2{ˆmiu ˆniu}:=gbinv{ˆmiu ˆrho}*gbinv{ˆniu ˆsigma}*
G2{rho sigma}‘); grcalc(Gb2(up,up));

>grdef(‘Gb3{ˆmiu ˆniu}:=gbinv{ˆmiu ˆrho}*gbinv{ˆniu ˆsigma}*
G3{rho sigma}‘); grcalc(Gb3(up,up));

>grdef(‘detev:=rˆ2*sin(theta)‘); grcalc(detev);

>grdef(‘Gbb1{ˆmiu ˆniu}:=detev*Gb1{ˆmiu ˆniu}‘); grcalc(Gbb1(up,up));

>grdef(‘Gbb2{ˆmiu ˆniu}:=detev*Gb2{ˆmiu ˆniu}‘); grcalc(Gbb2(up,up));

>grdef(‘Gbb3{ˆmiu ˆniu}:=detev*Gb3{ˆmiu ˆniu}‘); grcalc(Gbb3(up,up));

>grdef(‘EQ1{ˆniu}:=(1/detev)*Gbb1{ˆmiu ˆniu,miu}+
A2{miu}*Gb3{ˆmiu ˆniu}-A3{miu}*Gb2{ˆmiu ˆniu}‘);

>grcalc(EQ1(up)); grdisplay( );

>grdef(‘EQ2{ˆniu}:=(1/detev)*Gbb2{ˆmiu ˆniu,miu}+
A3{miu}*Gb1{ˆmiu ˆniu}-A1{miu}*Gb3{ˆmiu ˆniu}‘);

>grcalc(EQ2(up)); grdisplay( );

>grdef(‘EQ3{ˆniu}:=(1/detev)*Gbb3{ˆmiu ˆniu,miu}+
A1{miu}*Gb2{ˆmiu ˆniu}-A2{miu}*Gb1{ˆmiu ˆniu}‘);

>grcalc(EQ3(up)); grdisplay( );

>grdef(‘T{ˆi miu}:=(1/(4*pi*G))*(-G1{miu rho}*ev{ˆi niu}*
Gb1{ˆniu ˆrho}-G2{miu rho}*ev{ˆi niu}*Gb2{ˆniu ˆrho}-
G3{miu rho}*ev{ˆi niu}*Gb3{ ˆniu ˆrho}+1/4*ev{ˆi miu}*
(G1{rho lambda}*Gb1{ˆrho ˆlambda}+G2{rho lambda}*
Gb2{ˆrho ˆlambda}+G3{rho lambda}*Gb3{ˆrho ˆlambda}))‘);

>grcalc(T(up,dn)); grdisplay( );

>grdef(‘F{ˆi miu}:=F{ˆi ˆj miu niu}*evinv{j ˆniu}‘);
>grcalc(F(up,dn)); grdisplay( );

>grdef(‘F:=F{ˆi ˆj miu niu}*evinv{i ˆmiu}*evinv{j ˆniu}‘);
>grcalc(F); grdisplay( );

>grdef(‘EQ{ˆi miu}:=F{ˆi miu}-1/2*F*ev{ˆi miu}-8*pi*G*T{ˆi miu}‘);
>grcalc(EQ(up,dn)); grdisplay( );



212 G. Zet

References

[1] St. Pokorski, Gauge Field Theories, Second Edition, Cambridge University Press,
Cambridge, United Kingdom 2000.

[2] C.N. Yang, R. Mills, Conservation of isotopic spin and isotopic gauge invariance,
Phys. Rev. 96, 191 (1954), 191-195.

[3] T.W.B. Kibble, Lorentz invariance and the gravitational field, I. Math. Phys. 2,
212 (1961), 212-221.

[4] M. Blagojevic, Gravitation and gauge symmetries, Institute of Physics Publish-
ing, London 2002.

[5] T. W. B. Kibble, K. S. Stelle, Gauge theories of gravity and supergravity, Progress
in Quantum Field Theory, Eds: H. Ezava and S. Kamefuchi, Elsevier Press,
Amsterdam 1986.

[6] G. Zet, V. Manta, S. Babeti, De Sitter gauge theory of gravitation, Int. T. Modern
Physics C14, No. 1, 41 (2003), 41-48.

[7] R. Aldrovandi, J.P. Beltron Almeida, J. G. Pereira, Cosmological term and fun-
damental physics, arXiv:gr-qc/0405104 (2004).

[8] B. Felsager, Geometry, Particles and Fields, Odense University Press, Copen-
hagen 1981.

[9] V. Manta, G. Zet, Exact solutions of the self-duality equations on the Minkowski
Space-Time, Int. T. Modern Physics C12, 801 (2001), 801-806.

[10] G. Zet, V. Manta, S. Oancea, I. Radinschi, B. Ciobanu, A computer aided study of
de-Sitter gauge theory of gravitation, submitted to Mathematical and Computer
Modelling (USA) (2004).

[11] S. W. MacDowell, F. Mansouri, Unified geometric theory of gravity and super-
gravity, Phys. Rev. Lett. 38, 174 (1977), 739-742.
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