
Of Finsler fiber bundles

and the evolution of the Calculus

Jose G. Vargas and Douglas G. Torr

Abstract

In order to develop the Kaluza-Klein (KK) space to which we were led in an
accompanying paper, we present the basics of Clifford algebra and of Kähler’s
generalization of the calculus of differential forms, which is based on that alge-
bra. This generalized calculus contains a “Kähler-Dirac (KD) equation”, which
appears to supersede the Dirac and Laplace equations and plays a role compara-
ble in significance to that of the equations of structure in differential geometry.
We incorporate a KD equation into the structure of our KK space to specify the
torsion, thus dressing this type of geometry in a physical attire.
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1 Introduction

In an accompanying paper [7], we have developed a sui generis line of evolution of
generalized geometry consisting in implementing geometric equality to the largest
possible non-trivial extent. This is, needless to say, teleparallelism (TP). Since we are
interested in the Lorentzian signature, we have considered Finsler bundles. Indeed, as
we showed in the same paper, the Lorentzian signature seems particularly well suited
to these bundles. We pointed out that a Finslerian TP structure can be considered
as a product structure of the sphere bundle for n dimensions with the rotation group
in n − 1 dimensions. The product structure was there defined as going beyond the
topological product of spaces and having to do with how the differential invariants
defining the structure of the topological product relate to the differential invariants
of the factors.

We pointed out that it was possible to construct in principle another product struc-
ture with the differential invariants that define Finslerian TP on (pseudo)-Riemannian
metrics of Lorentzian signature. The horizontal invariants will now be used in a dif-
ferent way. The resulting alternative structure may then be multiplied in principle
with the second factor in the topological product of TP Finsler connections on those
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metrics, namely the rotation group in n− 1 dimensions. We pointed out that, in de-
veloping this alternative structure, one needs to resort at a very early stage to Clifford
algebras, and specially a Clifford algebra of differential forms. At the same time, we
shall still need at least the exterior calculus of differential forms, or Cartan calcu-
lus, which is the language of differential invariants. The Kähler calculus [3], which
incorporates not only Clifford products of differential forms but also exterior differ-
entiation, includes in addition Clifford or Kähler differentiation, which is to exterior
differentiation what the Clifford product is to the exterior product.

Kähler differentiation has two pieces, exterior and interior. The interior piece su-
persedes the codifferential, which involves the Hodge dual and resembles an attach-
ment to the exterior calculus, rather than an operation at par with the exterior differ-
ential in its role within the calculus. Those pieces might be referred to as exterior and
interior covariant differentiations when applied to tensor-valued differential forms, but
the term “covariant” is unnecessary in this calculus since it is implicit in the fact that
the differentiation operator is operating on a form which is not scalar-valued. Kähler
and interior differentiations are not differentiations in the modern sense of the term
since they do not satisfy the Leibniz rule. However, it will later become clear why it
still makes sense to refer to these operations as differentiations, as Kähler does.

Coming on top of the great achievements of the exterior calculus, Kähler’s is
unsurpassed by any other. It was proposed to deal not only with general relativity
but also with quantum physics. As we shall show, it has an impact on how we can view
the equations of structure of the space that we developed in the previous section. It
also extends the theory of harmonic functions. The concept of harmonic in the ring of
functions is now replaced with the concept of strict harmonic in the ring of differential
forms.

Before we provide the main highlights of this calculus, we show the naturalness
of Clifford algebra. We are not dealing here with just another algebra, but rather
one which corrects our view of vector products and then puts them together with
dot products. The magnificent synthesis which thus results has seminal effects on the
calculus, analysis and physics, as shown by Kähler [3]. But it is a synthesis which has
failed to get the attention that it deserves, and whose implications have barely started
to surface. The point of this paper is to show how this calculus can be enhanced further
by drawing inspiration from geometry, and perfecting in turn some of it.

The contents of the paper is organized as follows. In section 2, we show how
Clifford algebra incorporates into a unity the two products of vectors, symmetric and
antisymmetric, for any dimension and not just n = 3. In section 3, we summarize the
Kähler calculus of scalar-valued differential forms (See Ref. [6] for general valuedness,
a more controversial case). In section 4, we show how the evolution of geometry along
the lines of the accompanying paper [7] has an impact (on) and is impacted upon by
the Kähler calculus

2 The Case for a Calculus Based on Clifford Algebra

Different calculi are underlined by different algebras: exterior, tensor, etc. The Kähler
calculus is underlined by Clifford algebra, whose basic product is the Clifford product
[4]. Let us see the common Euclidean and pseudo-Euclidean rules of this algebra.
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Suppose the existence of a product of vectors which is associative and distributive
with respect to addition, but not necessarily commutative or anticommutative. Any
such product, denoted simply through juxtaposition, can always be rewritten as

ab ≡ (1/2)(ab+ ba) + (1/2)(ab− ba).(2.1)

This decomposition applies in particular to the tensor product, but, more interestingly,
to the Clifford product, which we shall be defining further down. We introduce symbols
to name these two parts of the product as individual products themselves:

a · b ≡ (1/2)(ab+ ba), a ∧ b ≡= (1/2)(ab− ba).(2.2)

It is clear that a ∧ a = 0 and a · b = −b · a.
In order to facilitate the connection with the readers experience, let us use boldface

in the illustration that follows of the exterior product. Consider any two non-colinear
vectors in a 3-dimensional subspace of an n-dimensional vector space. We shall denote
as (i, j,k) any basis in this subspace, not necessarily orthonormal. We have

(a1i+ a2j+ a3k) ∧ (b1i+ b2j+ b3k) =

= (a1b2 − a2b1)i ∧ j+ (a2b3 − a3b2)j ∧ k+ (a3b1 − a1b3)k ∧ i,
(2.3)

where we have used antisymmetry. In terms of i ∧ j, j ∧ k and k ∧ i, the components
of the expression on the right hand side of 2.3 are the same as for the vector product,
but one no longer associates i ∧ j with k, j ∧ k with i, etc. We shall say that a ∧ b
represents an oriented plane, a figure of grade 2, determined by a and b, and so does
λ(a ∧ b) for any positive scalar. λ(b ∧ a) represents the opposite orientation of the
same plane. The contents of the parenthesis on the right hand side of Eq. 2.3 are said
to represent the components of the “bivector” a ∧ b in terms of the bivectors i ∧ j,
j∧k and k∧ i. We may also say that, up to a multiplicative constant, those quantities
are the components of the plane a ∧ b relative to the planes i ∧ j, j ∧ k and k ∧ i. In
other words, the product “∧”, called exterior product, of vectors represents oriented
planes, not vectors or directions.

We may now associate a·b with the standard scalar (i.e. dot) product of Euclidean
geometry, a figure of grade zero (i.e. just a number). From the first of the equations
2.2, we have, using ai for the vectors of a basis in any number of dimensions,

aiaj + ajai − 2gij = 0.(2.4)

where gij is the usual aı̄ · aj . This equation exemplifies Clifford algebra. Let us show
its relation to the general graded tensor algebra.

We start with the exterior algebra, which is simpler. It is defined as the quotient of
the graded tensor algebra by the two sided ideal defined by a⊗ a, where a represents
any tensorial quantity of grade 1 (We return to not bolded symbols, because these
symbols may refer in particular to cochains, differential forms, etc). Computing in the
exterior algebra is equivalent to computing in the tensor algebra modulo a⊗ a. It is
important to notice that, if we had

...a⊗ b⊗ ...⊗ c⊗ a⊗ d...,(2.5)
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we still would set this product equal to zero, even if the two factors a are not con-
tiguous. This is so because

0 = (a+ b)⊗ (a+ b) = a⊗ a+ a⊗ b+ b⊗ a+ b⊗ b,(2.6)

which shows that a⊗a = 0 for all a implies a⊗b = −b⊗a and, therefore, a⊗...⊗a = 0
(after performing successive anticommutations). Products so computed (i.e. mod a⊗a)
are indicated by the symbol ∧ instead of ⊗.

Similarly, a Clifford algebra is defined as the quotient of the graded tensor algebra
by the two sided ideal defined by a ⊗ b + b ⊗ a − 2Q(a, b).1, where Q denotes any
symmetric, non-singular quadratic form. One then uses the symbol ∨, rather than ⊗.
In terms of a (pseudo)-orthonormal basis pertaining to the Lorentzian signature, the
rules for ∨ multiplication are the same as for multiplication of the gamma matrices
of Dirac’s relativistic quantum mechanics [2], [4].

From equations 2.1 and 2.2, we get, now for the Clifford algebra,

a ∨ b = a · b+ a ∧ b.(2.7)

Similar considerations, up to issues of sign, apply to the Clifford product of a vector
and a multivector (bivector, trivector, etc):

a ∨A = a ·A+ a ∧A.(2.8)

Any element of the Clifford algebra can be written as a sum of a scalar, a vector, a
bivector, etc. If A is of homogeneous grade r, a∨A will have in general a part of grade
r − 1 and another part of grade r + 1. The foregoing few considerations on Clifford
algebra are sufficient to understand the basics of the Kähler calculus.

3 The Basics of the Kähler Calculus

We use the symbol ∨ for Clifford product of differential forms, rather than the more
common juxtaposition used when dealing with the Clifford algebra of tangent vectors,
since juxtaposition is often used to designate the exterior product when dealing with
differential forms and cochains (integrands). Kähler [3] defined a Clifford algebra of
differential forms through the relation

ωi ∨ ωj + ωj ∨ ωi − 2δij = 0.(3.1)

Here, the ωi’s are the pull-backs of the soldering forms to a section of the bundle
B′(M) → M , where B′(M) is the set of orthonormal bases of tangent vectors to
the manifold M . If the signature is Lorentzian, we replace δij with ηij , i.e. diagonal
(−1, 1, 1, 1) or (1,−1,−1,−1). Actually Kähler used coordinate bases, i.e.

dxi ∨ dxj + dxj ∨ dxi − 2gij = 0.(3.2)

This equation has to be seen in the context that dxi ∨ dxj is an element of a basis for
an integrand or cochain, normally written as dxidxj , where this could be the dxdy, or
dρdθ, etc. He also considered tensor-valued differential forms, i.e. whose coefficients
are tensors. For example, he writes a differential r-form of (1, 1) valuedness as uj

i :
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uj
i = uj

ik...ldx
k ∧ ... ∧ dxl.(3.3)

Kähler gave a complicated ansatz for his concept of covariant derivative (it satisfies
the Leibniz rule) dhu such that dxh ∧ dhu is the exterior derivative du, and, if the
differential form is tensor valued, say uj...

i... , the expression

duj...
i... = dxh ∧ dhu

j...
i... .(3.4)

gives the usual exterior covariant derivative [3], [6]. His covariant derivative is very
cumbersome, appears to have an ad hoc character and is only applicable when the
connection of the manifold is the Levi-Civita connection. It is of enormous importance,
however, in his calculus since it gives rise to the Kähler or Clifford “derivative” (it
does not satisfy the Leibniz rule), which is defined in terms of coordinates bases as

∂uj...
i... = dxh ∨ dhu

j...
i... .(3.5)

We use the symbol ∂ where he uses the symbol δ. We, therefore, have:

∂uj...
i... = dxh ∧ dhu

j...
i... + dxh · dhuj...

i... .(3.6)

The definition in terms of contracted Clifford products with the soldering forms ωh,
rather than with the dxh, is trivial, provided that one treats dhu

j...
i... accordingly. It is a

matter of a change of basis, which has to be carried out consistently everywhere. The
last term in Eq. 3.6 is known as the interior covariant derivative, denoted δuj...

i... , even
if it does not satisfy the Leibniz rule. Kähler does not have any dedicated symbol to
play the role of our δ. He only defines δuj...

i... for the Levi-Civita connection (LCC), in
which case it becomes equal to the co-derivative. All this, however, is easily extendable
to arbitrary connection, in which case the last term in expression 3.6 is no longer the
co-derivative in general. The symmetry of the roles of d and δ in the equation

∂uj
i = duj

i + δuj...
i... .(3.7)

leads one to still refer to δuj...
i... as the interior derivative.

When the differential form is scalar-valued, the expression for ∂u is simplified to
become

∂u = dxh ∨ u,h −eh(ωl
h ∧ elu),(3.8)

where u,h is the partial derivative of u with respect to xh. The operator el acts on u
to give elu = u′, with u′ uniquely defined by u = ωl ∧ u′ + u” (where neither u′ nor
u” contains the factor ωl). It is worth noticing that operating with eh is equivalent
to the left multiplication “dxh · ...” or “ωh · ...”.

Formula 3.8 still is largely unscrutable. In order to make smooth contact with the
exterior calculus, one can try to proceed in reverse and infer the covariant derivative
from the exterior derivative, du = dxh ∧ dhu. Although there are infinite solutions for
dhu in this equation for given du, only a few suggest themselves. Among these, only one
extracts the information contained in the partial derivatives –or from the connection
from which the covariant derivatives are made– without introducing spurious elements
[5]. Proceeding in that way, one avoids Kähler’s ad hoc ansatz for derivatives.

The relation of the Kähler derivative to the Laplacian takes a simple form when
the affine curvature is zero,
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∂∂u = dkdku = ∆u,(3.9)

where dk results from raising indices in dk. A differential form u is called strict har-
monic if ∂u = 0. It is clear that strict harmonicity implies harmonicity, but not the
other way around. It goes without saying then that the solving of the equation ∂u = 0
is a problem of great significance ab initio.

Of particular interest is Green’s formula for differential forms, which requires a
couple of definitions. Following Kähler, we define the scalar product of order one of
two differential forms as

(u, v) ≡ (ζu ∨ v) ∧ z = (ζu ∨ v)0 z,(3.10)

where (...)0 is the 0-form part of whatever differential form constitutes the contents
of the parenthesis, where ζ is the operator that reverses the order of all 1-form factors
(in u in this case) and where z is the unit pseudo-scalar in the Clifford algebra of
differential forms. Similarly, one defines the scalar product of order one as the (n−1)-
form

(u, v)1 ≡ ei(dx
i ∨ u, v),(3.11)

which can be shown to take the alternative form

(u, v)1 = ei[(ζu ∨ dxi ∨ v)0 z] = (ζu ∨ dxi ∨ v)0 eiz(3.12)

Green’s formula for differential forms of arbitrary dimensions then reads

(u, ∂v) + (v, ∂u) = d(u, v)1.(3.13)

In the Kähler calculus, differential forms are actually cochains (integrands) rather than
antisymmetric multilinear functions of vectors (or fields thereof). Thus integrations
involving formulas such as this one result from making explicit the evaluation (i.e
integration) of the differential forms and application of the generalized Stokes theorem
to the integration of the right hand side of Eq. 3.13. All sorts of formulas can in
turn be derived from 3.13 (for instance replacing v with ∂v, etc). In order to handle
that situation, one would have to give here explicit rules for Kähler and exterior
differentiations of Clifford and exterior products. This transcends the scope of this
paper.

The central equation of this calculus is the Kähler-Dirac (KD) equation,

∂u = a ∨ u,(3.14)

of which the equation ∂u = 0 for strict harmonicity is but a special case. If one defines
a conjugate KD equation,

∂v = −ζa ∨ v,(3.15)

one can use Green’s formula, Eq. 3.13, to prove the following conservation law:

d(u, v)1 = 0.(3.16)

The relationship between the solutions of a KD equation and its conjugate depends
on the form of a. Kähler showed that, if u is a solution of the first equation with elec-
tromagnetic coupling using a complex algebra and metric with signature (−,+,+,+),
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ηū is a solution of the conjugate equation, i.e. ∂(ηū) = −ζa ∨ ηū (overbar denotes
complex conjugate and η changes the sign of the odd part of the differential forms).

Of particular interest is the concept of constant differentials, c, defined by

dic = 0 for all i,(3.17)

since they generate new solutions of KD equations. If u is a solution of ∂u = a ∨ u,
we also have

∂(u ∨ c) = a ∨ (u ∨ c),(3.18)

If the space is (pseudo-)Euclidean, it admits (pseudo-)Cartesian coordinates. Their
differentials are constant differentials, and so are their polynomials with constant
coefficients. Examples are dx∨ dy, dx∨ dy ∨ dz, etc. Constant differentials constitute
a tool to uncover algebraic structure in the set of solutions of KD equations with
symmetries (Lie operators are another).

4 Interplay of the Evolutions of Geometry and of
the Calculus

In the previous paper [7], we stopped at a point where we required use of Clifford
algebra in order to deal with our new geometric structure, a kind of Kaluza-Klein (KK)
space, M4⊕M1, where M4 is spacetime and where M1 is a 1-dimensional manifold. This
KK space, to be described below, is canonically determined by the same differential
invariants that define the base space of the Finsler bundle, namely ωµ and du. We
have written du instead of de0 or ωi

0 because specifying du is equivalent n the Finsler
bundle to specifying ωi

0, but not in the KK space in question.
Relative to pre-Finslerian connections, the Finslerian ones have additional degrees

of freedom, and so do the KK ones. It is not clear whether the respective additional
degrees of freedom of one case correspond to those of the other. Explicit calculations
of autoparallels, contracted second equation of structure (geometric Einstein equa-
tions) and Bianchi identities for both structures reproduce familiar equations of the
physics for torsions proportional to u [6]. The additional terms that appear in the KK
space offer tantalizing possibilities because of their potential association with radia-
tion terms. In addition, the KK structure does not have the standard problems with
the Laplacian that Finsler geometry has, since the Kähler calculus unambiguously
defines the Laplacian.

The translation element of our KK space is

d℘ = dP+ udτ = ωµeµ + udτ,(4.1)

The unit vector (u · u = −1) spans the fifth dimension but is not perpendicular to
spacetime. dτ is clearly its dual differential form. The dot products of u with the
elements of bases of the spacetime subspaces, gαµ = u · eµ =uµ, become on curves
the spacetime components of the (former) 4-velocity.

The restricting condition

d℘(∨,∨)d℘ = d℘(∧,∧)d℘,(4.2)

becomes
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d℘(·, ·)d℘ =dτ · dτ − ω0 · ω0 + ω1 · ω1 + ω2 · ω2 + ω3 · ω3 = 0,(4.3)

since the terms d℘(∧, ·)d℘ and d℘(·,∧)d℘ in the expansion of the left hand side of 4.2
cancel each other out. We have thus caused the usual metric to become part of the
Clifford algebra. In the process, the length of curves (whose square is represented by
dτ · dτ) becomes an expression in terms of spacetime differentials.

In such a KK space, one has the opportunity to make geometry and calculus more
like each other, as we now show. The output differential form in the equations of
structure of geometry are differential invariants (ωµ, ωλ

ν ) that define the connected
manifold, though, in physics, they are obtained through integration of the equations
of structure. KD equations, on the other hand, do not involve in principle the differ-
ential invariants of a space. But whereas the set of equations of structure and Bianchi
identities involves the exterior (covariant) derivative of the torsion but not its exterior
(covariant) derivative, KD equations involve both derivatives for their respective out-
put differential forms. One may specify the torsion through its interior and exterior
derivatives, rather than through the first equation of structure. The issue then is to
find an appropriate KD equation for the torsion. The input differential form must be
such that the output differential be vector-valued, as torsions are. The issue of KD
equations when the input is not scalar-valued is not a settled issue [6].

The statement that the affine curvature in our KK space is zero, (dωMN −ωML∧
ω N
L )eMN = 0, is rewritten as

(dαMN − αML ∧ α N
L )eMN + βML ∧ β N

L eMN+

+(dβMN − ωML ∧ β N
L − βML ∧ ω N

L )eMN = 0,

+(dβMN − ωML ∧ β N
L − βML ∧ ω N

L )eMN = 0,

(4.4)

where α and β are the Levi-Civita and contorsion bivector-valued differential 1-forms.
The first of the three high level terms on the left hand side of Eq. 4.4 is the metric
curvature of the 5-dimensional manifold and, in essence, also of spacetime. The last
of those three terms is the exterior covariant derivative of the contorsion. Since the
torsion is vector-valued, a more specific form of the KD equation would be something
along the lines of ∂Ω̌ = a(∨,∨)Ω̌, or ∂Ω̌ = a(∨,⊗)Ω̌, where the second product in
each parenthesis refers to the valuedness factor of Clifford-valued or tensor-valued
differential forms. The markings over characters are meant to remind us of the five
dimensions. Torsions of the type Ω4u are of particular interest, and so are forms a
of the type u∨dP and u∨d℘. Hence the structure equation 4.4 would have to be
complemented by a reformulated equation of structure such as

∂Ω̌ = u∨d℘(∨,∨)Ω̌.(4.5)

The trivector part of the right hand side drops out for Ω̌ proportional to u. This
equation may be viewed not as an equation on the torsion, but as an equation on
d℘, since Ω̌ =d(d℘). Thus, in the system of two equations of structure 4.4-4.5, the
first equation retains its geometric flavor. The second one is of the KD type, i.e. the
central equation of the Kähler calculus of differential forms.
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5 Concluding Remarks

In a paper titled of The Tragedy of Grassmann, Dieudonnéspeaks of “...the horrible
‘Vector Analysis’, which we now see as a perversion of Grassmann’s best ideas”. He
goes on to speak of genuine applications of Grassmann’s ideas, “which have made
exterior algebra an indispensable tool of modern mathematics...: first of all E. Cartan’s
calculus of differential forms, which is now the basis of Differential geometry and of
the theory of Lie groups;...” [1]. Kähler has brought that calculus to new heights. It has
a tremendous impact on the branch of differential geometry of the previous section,
to which we were led in the accompanying paper. That geometry was an outgrowth
of emphasizing maximum implementation of some concepts which are prominent in
Klein’s work (groups), in Poincaré’s interpretation of the role of groups (geometric
equality) and in Cartan’s generalization of his program (principal fiber bundles).
Equations 4.4 and 4.5 complement each other in determining together the connection
in that branch of differential geometry. And there is no input differential form in
this system of equations. All the differential invariants in these equations can be
expressed in terms of the fundamental differential invariants, i.e. the one-index and
two-indices low case omegas, both in Finsler geometry and in the KK space. Hence,
we are dealing with a very sophisticated closed geometric system. One half of it has
a distinctly gravitational flavor and, the other one, quantum mechanical.
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