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Abstract

In Cartan’s generalization of the Erlangen program, the concepts of group and
geometric equality continue to play, as in Klein, the guiding role in geometry, but
now within the structure of principal fiber bundles. We develop a line of geometry
that emphazises those Klein-Cartan concepts. We are led to a complex of two
structures, of respective Finsler and Kaluza-Klein types, both generated by the
differential invariants ωµ, ωi

0. These structures in turn give rise in principle to
their product structures by O(n − 1), represented by their left invariant forms
ωi
j .
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1 Introduction

Generalized Euclidean geometry (inhomogeneous spaces) was born with Riemann,
whose “program” was based on the concept of distance. Most Finsler geometers en-
visage their own work from that perspective. On the other hand, F. Klein’s gener-
alization of Euclidean geometry [15] retains homogeneity but replaces the Euclidean
group with some other group (affine, projective, etc). With his general theory of
connections, Cartan unified the apparently incompatible programs of Riemann [16],
[17] and Klein: “...Riemannian geometry is a simple generalization of Euclidean ge-
ometry, but whereas Klein keeps from it above all the notion of geometric equality,
Riemann keeps only the notion of distance. Pushed to their last consequences, . . . these
viewpoints are radically divergent. The notion of distance disappears from the most
general Klein geometries, and the notion of equal figures disappears from the most
general Riemannian geometries...” [9].

Consider the following characterization by Dieudonné (as reported in the intro-
duction of a book by Gardner): Finally, it is fitting to mention the most unexpected
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extension of Klein’s ideas in differential geometry. . . E. Cartan was able to show...;
but it is necessary to replace the group with a more complex object, called the “prin-
cipal fiber space”; one can roughly represent it as a family of isomorphic groups,
parametrized by the different points under consideration; the action of each of these
groups attaches objects of an “infinitesimal nature” (tangent vectors, tensors...) at the
same point...” [13]. Notice the reference to Klein’s program, not Riemann’s. Notice
also that, in addition to groups and geometric equality, fiber bundles are essential
in Klein-Cartan geometry. In spite of all this, distance has attracted more attention
than these concepts, specially among Finsler practitioners. In this paper, we develop
a line of geometry which emphasizes geometric equality, (complexes of) groups and
fiber bundles. It is not relevant for global differential geometry, where one is interested
in connection-independent results, or in control theory, optimization and, in general,
where the metric is the main concept. Rather than competing with the main line
of geometry, we are dealing here with a very particular one that implements to the
greatest possible extent Klein’s ideas, as reinterpreted and extended by Cartan.

In developing this new structure, one touches upon issues that are intimated in
Cartan’s papers of the early 1920’s, but which have not been addressed otherwise.
Among these issues are his “Kaluza-Klein” (KK) space [4], his related bivector-valued
(rather than vector-valued) energy-momentum 3-forms [4]-[5], and his implicit sug-
gestion that one might extend the theory of connections beyond a theory of moving
frames [1] (see section 1 of this very long reference).

The contents of the paper is organized as follows. In section 2, we briefly review
Klein’s ideas from the modern perspective that emerged from Cartan’s revolution
in geometry. In section 3, we reproduce the Cartan moving frame approach to the
equations of structure of affine and Euclidean spaces, and also his other approach
where those equations are obtained from movements of frames while points are left
unchanged. In section 4, we consider the Clifton formulation in terms of bundles of
the affine-Finsler geometry that underlies Cartan’s work on his Finsler connection, to
be found only in one of the present authors papers [19]. In section 5, we explain that
teleparallel Finsler structures can be considered as product structures in ways that
non-teleparallel structures cannot. This motivates consideration of a different space
generated by the differential invariants that define the richer factor in the product
structure.

2 Retrospective view of Klein’s Program

Retrospectively, it is clear that Klein was off the mark in some important respects.
For one, he believed that he was defining geometries in general, when he was only
defining what nowadays are considered as elementary geometries. But he was not
correct even at that. An elementary geometry is defined as a pair (G,G0) of a group
G and a normal subgroup G0, not just a group [11], [18]. Thus, for example, G is
constituted in Euclidean geometry by the translations, rotations and their products,
and G0 is constituted by just the rotations. In addition to the elementary geome-
tries, there are their respective generalizations, to which Dieudonné’s comments of
the previous section apply. The isomorphic subgroups that he mentions are copies of
the subgroup G0. The translations are still at work, infinitesimally, i.e. as differential
transformations to be integrated along lines. Needless to say that the group G gives
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its name to the elementary geometry and the connections in the spaces that generalize
those elementary geometries.

Finally, Klein considered Riemannian geometry, nowadays viewed as generalized
geometry, as being a geometry of infinite Lie group. Commenting on this view, Cartan
stated: “...the point of view from which we have just envisaged Riemannian geometry
does not make evident and we can even say that it hides what, in the intuitive sense
of the term, is geometric in Riemannian geometry”.

The remark just made is of great importance vis-à-vis attempts at unification of the
interactions, since such attempts do not resort to the natural option of using advanced
classical differential geometry. This is due to the falsely perceived gap between the
finite Lie groups at the root of gauge theories and the Lie groups that are incorrectly
thought to underlie classical differential geometry. The latter geometry is erroneously
viewed as pertaining to a group with an infinite number of parameters. But, as Cartan
explained, the groups of relevance in the generalization of the elementary geometry
remain the same. With regards specifically to Riemannian geometry, he said that “it
is a non-holonomic Euclidean space” [6]. More generally, he stated that “a general
space with an Euclidean connection may be viewed as made of an infinite amount of
infinitesimally small pieces of Euclidean space” [7], though in a non-integrable, i.e.
non holonomic way.

3 Moving frames versus moving points and frames

We proceed to make the point that Cartan’s theory of connections, and its modern
versions for that matter, is a theory of moving frames, not a theory of moving points
and moving frames (we shall later propose a line of geometry which amounts to a
theory of moving frames interacting with moving particles). In order to make this
point most clearly, we first show the derivation of the equations of structure of affine,
Euclidean and Minkowski spaces using the method of the moving frame. It will be
followed by an alternative derivation of the same equations that explicitly shows that
the movement of points has been left out. The first derivation is, however, far more
relevant for formal developments. In particular, it will help to understand in the
next section what is the elementary geometry that underlies differentiable manifolds
endowed with Finsler connections.

Consider the action of the affine group G(aff, n) on the (n + n2)-differentiable
manifold of vector bases constituted as a frame bundle. Affine space AFF (n) can be
assimilated to a vector space if we take one of its points to represent the zero. A pair
(P, eµ) consisting of an arbitrary point and an arbitrary basis at that point can be
written as

P = Q+Aµaµ, eµ = Aν
µaν ,(3.1)

where detAν
µ ̸= 0, where (Q,aµ) is a fixed pair and where (Aµ, A ν

λ ) constitute coor-
dinates in the frame bundle. The second of equations 3.1 represent the action of the
linear group, which we here write as G0(aff , n) to emphasize its relation to the first
element G(aff, n) in the pair that constitutes affine elementary geometry.

Let

{
P
eµ

}
and

{
Q
aµ

}
constitute column matrices with 1+n rows each. Equa-

tions 3.1 define the group element g in
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P
eµ

}
= g

{
Q
aµ

}
(3.2)

as an (n + 1)× (n + 1) matrix where all the elements in the first column except the
first one (which is the unity) are zeroes. Thus, in the case of affine space, G(aff, n) is
a (n2+n)-dimensional hypersurface in the (n+1)2-dimensional manifold of all (n+1)

(n+1) matrices. The set of all the

{
P
eµ

}
matrices constitutes the bundle of bases. If

the associated vector space of the affine space is restricted to be a Euclidean or pseudo-
Euclidean space, the corresponding restriction of the bundle of bases is the bundle of
(pseudo)orthonormal bases, also called frames. G(Euc, n) is an [n + (1/2)n(n + 1)]-
dimensional hypersurface in the same (n+ 1)2 -dimensional manifold. In every case,
one readily gets {

dP
deµ

}
= dg · g−1

{
P
eµ

}
,(3.3)

and more conveniently as

dP = ωµeµ, deµ = ων
µeν .(3.4)

The bundle is said to be spanned by the 20 independent differential forms (ωλ, ωµ
ν )

in the affine case. The first column of dg · g−1 is now made of all zeroes. The dg
hyperplane goes through the zero matrix, which is not contained in the group. dg ·g−1

is the hyperplane through the zero matrix that is parallel to the hyperplane tangent
to the hypersurface at the unit element. It is called the Lie algebra of the group.

In terms of general coordinate systems and their dual bases, the (ωλ, ωµ
ν ) will take

very complicated forms. Any such set of differential forms (the ωλ and ωµ
ν having to

satisfy certain conditions that we need not specify) are the left-invariant differential
forms of affine space (or rather of the affine group) if and only if they satisfy

dων − ωλ ∧ ων
λ = 0, dων

µ − ωλ
µ ∧ ων

λ = 0.(3.5)

Equations 3.5 constitute the integrability conditions of the differential system 3.4, as
can be shown by applying the Frobenius theorem for differential forms to the diffe-
rential system 3.4 written in the form dP−ωµeµ = 0, deµ − ων

µeν = 0, as required
for application of this theorem [2]. Equations 3.5 are referred to as the equations of
structure of affine space.

All the foregoing applies mutis-mutandis to the bundles of bases of the Euclidean
and Poincaré groups, which are restrictions of the affine bundle by eµ · eν = δµν and
eµ · eν = ηµν respectively. The ωµ

ν ’s are no longer independent but satisfy

ωνµ + ωµν = 0.(3.6)

We now provide an alternative derivation of Eqs. 3.5 by Cartan [1], which empha-
sizes that we are dealing with fixed points and moving frames. This is not obvious ab
initio, given that one computes autoparallel and extremal curves from the invariants
forms of the space. Consider a point and a frame. If we leave the point fixed and per-
form an elementary translation (given by ωi) and a rotation of the reference frame,
the coordinates of the point change so that the following equations are satisfied
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dx+ yω21 + zω31 + ω1 = 0,

dy + zω32 + xω12 + ω2 = 0,

dz + xω13 + yω23 + ω3 = 0,

with antisymmetric ωij . In compact form, we have:

dxi + xjωi
j + ωi = 0.(3.7)

Exterior differentiating, we obtain

0 + dxj ∧ ωi
j + xjdωi

j + dωi = 0.(3.8)

Substitution of dx from 3.7 in 3.8 yields

(−xkωj
k − ωj) ∧ ωi

j + xkdωi
k + dωi = 0,

which is further organized as:

dωi − ωj ∧ ωi
j + xk(dωi

k − ωj
k ∧ ωi

j) = 0.(3.9)

Equation 3.9 has to be valid for all x. Hence, the equations of structure follow. This
emphasizes that these equations are about a geometry where points remain fixed and
frames move. We shall later see why the equations of “canonical curves” (autoparallels
and extremals) are not counterexamples to that statement.

Of course, one might represent the motion of the point so that it is absorbed into
the ωi. Nothing is thus modified. The interesting fact, retrospectively, is that there is
an alternative way where the translation of the point is not equivalent to a translation
of the frame. Physically, they are not equivalent. Whereas a translation of a frame
is a comparison of two parallel frames, a translation of a point is an actual motion
and, in present formalisms, is represented by a boost or by integration of elementary
boosts. In any case, it is important to look at descriptions where motions of particles
are not assimilated to motions of frames.

4 Canonical signature and elementary Geometry
for Finsler bundles

The construction of the Finsler bundle of bases and the definition of affine Finsler
connections that follows is due to the differential topologist Y. H. Clifton, who is not
very inclined to writing (Some of his papers were presented to journals by the late
Prof. Chern). Given the importance of his ideas for the line of evolution of geometry
which is of the essence of this paper, we first summarize the main part of a paper
on this subject that we wrote largely from notes taken from him and to which we
gave the title of “Finslerian Structures: the Cartan-Clifton Method of the Moving
Frame” [19]. We take credit for formulating some of the questions and getting Clifton
to work on them. The main question was the following. If Riemannian geometry was
viewed by Cartan as a particular case of generalized affine geometry (and so is the
case also for all the Euclidean, pseudo-Euclidean and Weyl connections), should one
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not try to see the Cartan-Finsler connection as a particular case of “affine-Finsler”
connection? If affirmative, what is the latter? In the second part of the section, we
extract consequences vis-a-vis the elementary geometry that underlies the Finsler
bundle. It will become clear that this line of development of Finsler geometry is one
which singles out the Lorentzian signature.

We must first address the issue of why should one add the name of Clifton to a
method that is known in the literature by the name of Cartan. To start with, Cartan
did not create the method. The great user of the method (it escapes us whether
he created it or not), was Darboux [12], to whom Cartan gives extensive credit [8].
Cartan brought the use of the moving frame to a higher level than Darboux, and so
did Clifton relative to Cartan. To be specific, Clifton contributed as follows:

(a) The concept of the Finsler bundle as a refibration of the standard bundle (this
is already implicit in Chern’s 1948 paper [10], though in a far less clear way). This
bundle is not only the one where Finsler connections live, but also has implications
as to what the elementary or Klein geometry of Finsler geometry is, as we shall later
see.

(b) His introduction of both affine connection and equations of structure into just
one and the same definition, a definition which, accompanied by a few straightforward
theorems, makes the method of the moving frame rigorous in generalized geometry.
He did that for affine-Finsler connections, which one easily specializes to the pre-
Finsler case [19]. That would constitute a formidable achievement even if it had taken
place only for the usual (pre-Finsler) affine connections. Clifton thus proved that one
does not need to resort to the modern and cumbersome approach to the equations
of structure and clumsy concomitant computations to make the method rigorous. In
addition, there is also in the modern approach a complete absence of integrability
considerations. This is clearly because vector fields, which dominate that approach,
is not the natural language of the theory of integration; differential forms are.

(c) His reduction of the technique of doing Finsler geometry to a relatively simple
variation of the techniques of pre-Finsler geometry. This is to be compared with the
complexity of the same problems when other methods are used. An example of this
is Cartan’s obtaining of his own Finsler connection, based on a string of postulated
properties for the connection [3]. Clifton replaced all those postulates with the solving
for the connection with the system of equations constituted by the first equation of
structure with zero torsion and the statement of metric compatibility [20]. When the
metric is Finslerian, one cannot avoid having one of the terms of the Finslerian torsion
be different from zero. With that caveat, the solving for that system is similar to the
solving for the Levi-Civita connection in Riemannian geometry. The difficulty lies
just in the fact that one is not used to compute with exterior equations, much less
in the sphere bundle. But this, rather than a difficulty, is an opportunity to acquire
computational virtuosity.

We proceed to summarize contributions (a) and (b), avoiding the few required
theorems [19]. Let S(M) and T (M) be the sphere and tangent bundles of a differen-
tiable manifold M , and let T [S(M)] be the tangent bundle of S(M). Let π and Tπ
be the projections π : T (M) → M and Tπ : T [S(M)] → S(M). We say that two
vectors at s ∈ S(M) are equivalent if they differ by a vector tangent to the fibers of
π (these go to zero under Tπ). Let RT [S(M)] be the quotient set of T [S(M)] by this
equivalence relation and let π̂ : RT [S(M)] → T (M) be the projection of the induced
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isomorphic map of tangent spaces. Many tangent spaces to S(M) go to each tangent
space to M , but we need consider only “adapted vectors” of RT [S(M)]. The vectors
π̂−1e of RT (s) will be called adapted if e belongs to the equivalence class of s. A
basis (a0, ...,an−1) in RT [S(M)] will be called adapted if a0 is adapted (notice that
the choice of a0 for this role is arbitrary). Let b be a point of the bundle B(M) of
bases of vectors that are in T (M), i.e. a basis (e0, ..., en−1) of T (x) for some x ∈ M .
Since e0 is different from zero, it belongs to one of the equivalence classes s that con-
stitute S(M). This defines a map π̃ : B(M) → S(M). Since the basis (a0, ...,an−1)
that corresponds to the basis b of T (π̂−1) is adapted, the bundle B(M) can also be
regarded as the bundle of adapted bases over S(M). The fiber of π̃ is constituted by
the (n2−n+1)-dimensional group G of transformations that leaves the direction of e0
fixed. We call Finsler bundle of bases the principal fiber bundle [B(M), S(M), π̃, G]. If
M is endowed with a Riemannian (or pseudo-Riemannian) metric, we define B′(M) as
the restriction of B(M) to the normal or pseudo-orthonormal bases. When the metric
is Riemannian, we refer to [B′(M), S(M), π̃, G] as the Finsler bundle of frames.

Definition 4.1. An affine-Finsler connection is a 1-form (ωµ, ων
λ) on a (n2 + n)-

dimensional manifold B(M) taking values in the Lie algebra of the affine group and
satisfying the conditions:

(1) The n2 + n real-valued 1-forms are linearly independent.
(2) The forms ωµ are the soldering forms.
(3) The forof the ms ωi

0 vanish on the fibers of π̃ : B(M) → S(M).
(4) The pullbacks of ω0

0 , ω
0
i , ω

i
j into the fibers of π̃ : B(M) → S(M) are the left in-

variant forms of the linear (sub)group that leaves the direction of a vector unchanged.
(5) The forms Ων = dων −ωλ∧ων

λ, called torsion, and Ων
µ = dων

µ−ωλ
µ ∧ων

λ, called

affine curvature, are quadratic exterior polynomials in the 2n− 1 forms ωµ, ωi
0:

Ων = Rν
λµω

λ ∧ ωµ + Sν
λiω

λ ∧ ωi
0(4.1)

Ων
π = Rν

π λµω
λ ∧ ωµ + S ν

π λiω
λ ∧ ωi

0 + T ν
π ijω

i
0 ∧ ωj

0,(4.2)

where Rν
λµ, R

ν
π λµ and T ν

π ij are antisymmetric in the last 2 subscripts.
Consider a differentiable manifold endowed with a standard Lorentzian pseudo-

metric. The adaptation of the preceding definition to the Finsler bundle of frames
consists in restricting it to pseudo-orthonormal bases. The first element in the basis
may be chosen to be timelike or spacelike. In both cases, the subgroup of the linear
group that leaves a direction unchanged is now replaced by the subgroup of the
Lorentz group in n-dimensions that leaves a direction unchanged. If the direction is
timelike, the subgroup is O(n − 1). It is, however, O(1, n − 2) if that direction is
spacelike. But why should the “special element in the frame”, which we arbitrarily
chose to be the first one, be other than timelike? The metric already chooses one of
the four elements (if the frame does not contain null vectors), namely the timelike
element. By choosing the direction that is instrumental in refibrating over S(M) the
frames tangent to M to be timelike, one conforms the affine structure with the metric
structure. Conversely, if one chooses the first element in the frames to be spacelike, one
is arbitrarily choosing the (n−2)-dimensional spatial subspace that the rotations in the
group of the fibers act upon. That arbitrariness also exists if the metric is properly
Riemannian, i.e. definite. In this case, however, the arbitrariness is not removable,
unlike in the Lorentzian case. Because the Lorentzian signature singles out one of the
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elements in the bases (if null vectors are not used), it is the canonical signature of
metric-Finsler bundles. The adapted vectors are naturally timelike in the Lorentzian
metrics, and arbitrary for other metrics. Since any pre-Finslerian connection can be
lifted to the Finsler bundle, this result applies in particular to the Finsler bundle of
differentiable manifolds endowed with the usual metric-compatible affine connections.

It is clear that an elementary geometry of metric-Finsler connections on pseudo-
Riemannian metrics of Lorentzian signature is constituted now by a triple consisting of
a group, a subgroup and a subsubgroup, namely the Poincaré, Lorentz and rotation
groups, the latter in n − 1 dimensions. In the case n = 4, the space to which this
elementary geometry refers is the spacetime of special relativity, viewed from this
new perspective and not as pseudo-Riemannian. Hence, the theory of Finsler frame
bundles has the Lorentz-Minkowski’s spacetime as the elementary geometry whose
generalization are the differentiable manifolds endowed with Finslerian connections.

5 A different line of evolution of Geometry

Equality is an equivalence relation. Only teleparallel connections endow a manifold
with equality of vectors at a distance, since only they have the property of path
independent equality of vectors. In fact, path-independent is a misnomer which has to
do with historical accident, namely that, mathematically, non-teleparallel connections
were known before the teleparallel ones. Hence, maximization of Klein’s ideas will
include teleparallelism. It will also include Finsler frame bundles, rather than pseudo-
Riemannian ones, for the reason stated in the previous section. A concomitant of
Finsler bundles is that their connections are then generalizations of an elementary
geometry constituted by a group G, a subgroup G’ and a subsubgroup G”.

Finsler bundle structures enlighten the fact that one can separate (ωµ, ω0
i ) from

the remaining ων
µ. The ω0

i are now horizontal. Teleparallelism (TP) adds something
more. Consider first the usual TP, i.e. in pre-Finsler frame bundles. When we say
that these bundles are product structures, we do not mean only that they are locally
topological products of the base space by the fiber space. We mean that, in addition,
one can reconstruct the product structure from just the invariants (ωµ) and from
the off-the-shelf invariants ων

µ of a group, the linear group in n dimensions in this
case. Ditto for metric compatible pre-Finsler TP, except for the reduction of the
dimensionality of the bundle by virtue of ωνµ = −ωνµ, the group now being O(n).
In affine-Finsler TP, we reconstruct (ωµ, ων

µ) from (ωµ, ω0
i ) with the left invariant

forms of the linear group that leaves a direction in n−1 dimensions unchanged. Ditto
for metric compatible metric-Finsler TP on (pseudo)-Riemannian metrics, except,
again, for the reduction of the dimensionality of the bundle by virtue of ωνµ = −ωνµ

(the group is now O(n − 1)). Of course, the construction of a product structure in
the sense indicated will require knowing what the “frames” of the structure are. In
the following, we simply construct an alternative main factor in the product, i.e. one
generated by the horizontal invariants of a constant section of a TP Finsler connection
on a pseudo-Riemannian metric of Lorentzian signature.

Consider a space, M4⊕M1, where M4 is spacetime and where M1 is a 1-dimensional
space. The translation element of this “Kaluza-Klein” (KK) space will be defined as

d℘ = dP+ udτ = ωµeµ + udτ,(5.1)
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where the vector u spans the fifth dimension or, equivalently, the M1 space with
coordinate τ . The vector u is a unit vector of square minus one, but not orthogonal
to spacetime. We reserve the index 4 for the fifth dimension in terms of orthonormal
bases. We have

de4 = ωµ
4 eµ.(5.2)

where the ωµ
4 (µ = 0, 1...3) play the role of the ωi

0 in the Finsler bundle [21]. Equiva-
lently,

du = ω′µ
4 eµ + ω′4

4 u.(5.3)

This space is thus canonically determined by the differential invariants that define
the sphere bundle, in the sense that we proceed to explain. The interpretation of u is
that, on curves of M4⊕M1, it becomes the tan least in a weak sense that we proceed
to explain. It appears that ω4

4 represents some extra information which is peculiar
to the KK space. However,gent vector, and its dual coordinate becomes proper time.
It is in that sense that we say that the translation element 5.1 is defined by the set
of differential invariants (ωµ, ω0

i ) of appropriate cross sections of the Finsler bundle
of a spacetime endowed with a teleparallel Finsler connnection. The involvement is
partially direct (ωµ) and partially indirect (through du). In both scenarios, these two
sets of differential invariants represent the metric and du.

6 Concluding remarks

The inner workings of our KK space require involvement with Clifford algebras and
the unfamiliar Kähler calculus [14]. In the KK structure, this calculus allows one
to specify the torsion of the space (i.e. half of the equations of structure, the other
half specifying the affine curvature) as a Kähler-Dirac (KD) equation. The latter
generalizes without gamma matrices the Dirac equation. The reader is referred to the
acompanying paper for the foundations of the Kähler calculus [22] (available only in
German) and for further development of this line of geometry.

References
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