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Ionel Ţevy and Constantin Udrişte

Abstract

This paper refreshes the theory of weak derivatives and weak differential oper-
ators, using periodical test functions, having in mind the needs of our research
group. Our point of view has as starting point the paper of J. Mawhin and M.
Willem.

Section 1 reviews well-known facts in single-time theory. Section 2 extends
the notions to multi-time case and formulates theorems regarding partial weak
derivatives with respect to multi-periodical test functions. Section 3 refers to
the weak partial differential operators in the context of multi-periodical test
functions.
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1 Weak derivative for one variable functions

Let us denote by Ck
p , k ∈ N∗, the set of functions φ : [a, b] → R of class Ck, with the

property φ(a) = φ(b). The index p comes from periodic since these functions extend
by periodicity to the set of real numbers R.

Definition 1.1. The function u : [a, b] → R, u ∈ L1, has weak derivative, if there
exists v : [a, b] → R, v ∈ L1 such that

(1.1)

∫ b

a

u(x)φ′(x)dx = −
∫ b

a

v(x)φ(x)dx, ∀φ ∈ Ck
p .

The function v is called the weak derivative of the function u.
Obviosuly, if u has continuous derivative in the usual sense, then v = u′.

Proposition 1.1. If there exists, the weak derivative function v has the property∫ b

a

v(x)dx = 0.
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Proof. We take φ as a constant function.

Proposition 1.2. If there exists, the weak derivative v is unique in L1.

Proof. Supposing that for a function u there exists v1 and v2 which verify (1.1),
we have ∫ b

a

(v1(x)− v2(x))φ(x)dx = 0, ∀φ ∈ Ck
p .

Then, the fundamental Lemma of Variational Calculus gives v1 − v2 = 0, a.e.

Proposition 1.3. If u1 and u2 have the same weak derivative, then u1 − u2 = 0,
a.e.

Proof. From (1.1), it follows∫ b

a

(u1(x)− u2(x))φ
′(x)dx = 0, ∀φ ∈ Ck

p ,

and then, du Bois Reymond Lemma gives u1(x)− u2(x) =const, a.e.
We denote by F the set of functions u : [a, b] → R which have weak derivatives.

Theorem 1.1. u ∈ F and only if it exists v ∈ L1 such that

(1.2)

∫ b

a

v(x)dx = 0

and

(1.3) u(x) = c+

∫ x

a

v(t)dt, a.e.; a ∈ R.

Proof. Let w(x) =

∫ x

a

v(t)dt. From the condition (1.2) we have w(a) = w(b) = 0.

Applying the formula of integration by parts (from Lebesgue integral theory) to the
functions w and φ, φ ∈ Ck

p , and taking into account w′(x) = v(x) a.e., we obtain∫ b

a

w(x)φ′(x)dx+

∫ b

a

v(x)φ(x)dx = w(b)φ(b)− w(a)φ(x) = 0.

Hence w has weak derivatives v.
If also u has a weak derivative v, then u− w = const. a.e.

Corollary 1.1. If u has weak derivative, its equivalence class has a representative
ū, continuous function (even absolutely continuous), for which ū(a) = ū(b).

2 Weak derivatives for many variables
functions

To simplify, let us concern about two variables only; the extension to n variables is
obvious.

Let us denote Ck
p (D), D = [a, b]×[c, d], the set of functions φ : D → R of class Ck,

k ≥ 1, with the properties φ(a, y) = φ(b, y), ∀y ∈ [c, d], and φ(x, c) = φ(x, d), ∀x ∈
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[a, b]. The index p means multi-periodic since these functions extend by periodicity
on the whole plane R2.

Definition 2.1. The function u : D → R, u ∈ L1, has weak partial derivative
with respect to x, if there exists v : D → R, v ∈ L1, such that

(2.1)

∫∫
D

u(x, y)
∂φ

∂x
(x, y)dxdy = −

∫∫
D

v(x, y)φ(x, y)dxdy, ∀φ ∈ Ck
p (D).

The function v is called the weak partial derivative of the function u with respect to
x.

Proposition 2.1. If there exists, the weak derivative v has the following properties:

(2.2)

∫∫
D

v(x, y)β(y)dxdy = 0, β ∈ Ck[c, d], β(c) = β(d),

particularly

(2.3)

∫∫
D

v(x, y)dxdy = 0,

and

(2.4)

∫ b

a

v(x, y)dx = 0 a.e. on [c, d].

Proof. If in (2.1) we put φ(x, y) = β(y), one obtains (2.2) and for φ = ct one
obtains (2.3).

Because the function v is integrable on D, the function v(·, y) is integrable on [a, b]
for almost all y ∈ [c, d]. Then the relation (2.2) becomes∫ d

c

V (y)β(y)dy = 0, ∀β ∈ Ck
p ,

where

V (y) =

∫ b

a

v(x, y)dx.

From (8) it follows V (y) = 0 a.e. and this is the relation (2.4).

Proposition 2.2. If there exists, the weak partial derivative v is unique in L1.

Proposition 2.3. If u1 and u2 have the same weak partial derivatives with respect
to x, then there exists β : [c, d] → R such that

u1(x, y)− u2(x, y) = β(y), ∀y and a.e. on [a, b].

The proofs of these two results are the same to those in §1.
We denote by F the set of functions u : D → R, u ∈ L1, which have weak partial

derivative with respect to x.

Theorem 2.1. u ∈ F if and only if there exists v : D → R, v ∈ L1, and
β : [c, d] → R such that



Weak differential operators 169

(2.5)

∫ b

a

v(x, y)dx = 0 a.e. y ∈ [c, d]

and

(2.6) u(x, y) = β(y) +

∫ x

a

v(t, y)dt a.e. on D.

Proof. We introduce the function

w(x, y) =

∫ x

a

v(t, y)dt.

Applying the formula of integration by parts we have, for each φ ∈ Ck
p (D),

∫∫
D

w(x, y)
∂φ

∂x
(x, y)dxdy =

∫ d

c

(∫ b

a

w(x, y)
∂φ

∂x
(x, y)dx

)
dy =

=

∫ d

c

(w(b, y)φ(b, y)− w(a, y)φ(a, y))dy−

−
∫ d

c

(∫ b

a

v(x, y)φ(x, y)dx

)
dy = −

∫∫
D

v(x, y)φ(x, y)dxdy,

the first integral after the second sign ”=” being null, because from (2.5)

w(b, y) = 0 a.e. y ∈ [c, d].

Hence the function w has weak partial derivative with respect to x, namely v. If the
function u has the weak derivative v too, then, by Proposition 2.3.,

u(x, y) = w(x, y) + β(y) a.e. on D,

and this is just the equality (2.6).

Corollary 2.1. If u has weak partial derivative with respect to x, its equivalence
class has a representative ū, absolutely continuous function, for which

ū(a, y) = ū(b, y), ∀y ∈ [c, d].

Analogously, there are valid the results with respect to variable y.

So we obtain

Corollary 2.2.If the functions u ∈ L1 has weak partial derivatives with respect to
x and with respect to y, then its equivalence class has a representative ū, absolutely
continuous function which is twice periodic, i.e. ū(a, y) = ū(b, y), ∀y ∈ [c, d] and
ū(x, c) = ū(x, d), ∀x ∈ [a, b].
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3 Weak partial differential operators

The notions built up in the previous paragraphs can be extended to several variables,
high order derivatives and differential operators.

Let be T = (a1, . . . , an) ∈ Rn and Dn = [0, a1] × [0, a2] × . . . × [0, an]. Let us
denote C∞

T the set of the function in the class C∞ on Dn which are multiple-periodic,
i.e. for any φ ∈ C∞

T we have

φ(t1, . . . , ti−1, 0, ti+1, . . . , tn) = φ(t1, . . . , ti−1, ai, ti+1, . . . , tn),

i = 1, n and tj ∈ [0, aj ], j ̸= i.
For each multiple-index l = (l1, l2, . . . , ln) denote

Dlφ =
∂|l|φ

∂xl1
1 ∂x

l2
2 . . . ∂xln

n

,

where |l| = l1 + l2 + . . .+ ln.

Definition 3.1. The function u : Dn → R, uıL1, has weak derivative Dl, if there
exists a function v : Dn → R, vıL1, such that∫

Dn

u(x)Dlφ(x)dx = (−1)|l|
∫
Dn

v(x)φ(x)dx, ∀φ ∈ C∞
T ,

where x = (x1, . . . , xn) and dx = dx1 . . . dxn.
The results of the previous paragraphs hold true, but the theorems about recap-

turing the function u from its weak derivatives are more and more complicated.
One can introduce the notion of weak linear differential operator of any order:
Let

L(φ) = a0(x)φ+

k∑
j=1

∑
|l|=j

al(x)D
lφ =

∑
|l|≤k

al(x)D
lφ

be a linear differential operator and

L∗(φ) =
∑
|l|≤k

(−1)|l|Dl(al(x)φ)

its formal-adjoint operator. For u ∈ L1(Dn) define the weak differential operator L(u)
by equality

(3.1)

∫
Dn

u(x)L∗(φ)(x)dx =

∫
Dn

L(u)(x)φ(x)dx, ∀φ ∈ C∞
T .

We can easily prove

Proposition 3.1. If it exists, the weak operator has the following properties:

1◦
∫
Dn

L(u)(x)β(x)dx = 0, ∀β ∈ Ker L∗;

2◦ if Ker L∗ contains the constant functions (i.e. a0(x) = 0, ∀x), then
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Dn

L(u)(x)dx = 0.

The recapturing of the function u from v = L(u) depends essentially upon the
operator L. For instance, if L = ∆2, i.e.,

L(φ) = ∆2φ =
∂2φ

∂x2
+

∂2φ

∂y2
= L∗(φ),

the equality (3.1) becomes∫∫
D2

u(x, y)∆φ(x, y)dxdy =

∫∫
D2

v(x, y)φ(x, y)dxdy, ∀φ ∈ C∞
T .

Then

u(x, y) =
1

2π

∫∫
D2

v(s, t) ln
√
(x− s)2 + (y − t)2dsdt+ β(x, y),

where β is a harmonic functions.
Remark 1. The existence of the function v = L(u) does not imply the existence

of each individual weak derivative which appears in the operator L.
Remark 2. The general form of the integration by parts formula for the Lebesgue

integral is the following: if f, g ∈ L1 and

F (x) = λ+

∫ x

a

f(t)dt, G(x) = µ+

∫ x

a

g(x)dt, λ, µ ∈ R,

then ∫ b

a

F (x)g(x)dx+

∫ b

a

f(x)G(x)dx = F (b)G(b)− F (a)G(a).

Remark 3. Let us denote by W 1,2
T the Sobolev space of the functions u ∈

L2 [T0, R
n], which have the weak derivative

∂u

∂t
∈ L2 [T0, R

n], T0 =
[
0, T 1

]
× ... ×

[0, T p] ⊂ Rp. The weak derivatives are defined using the space C∞
T of all indefinitely

differentiable multiple T -periodic function from Rp into Rn. We consider H1
T the

Hilbert space associated to W 1,2
T . The definition of the weak divergence of the weak

Jacobian matrix
∂u

∂t
(i.e., the definition of the weak Laplacian of the function u) is

∫
T0

δαβδij
∂ui

∂tα
∂vj

∂tβ
dt1 ∧ ... ∧ dtp = −

∫
T0

δαβδij
∂2ui

∂tα∂tβ
vjdt1 ∧ ... ∧ dtp,

for all v ∈ H1
T and hence for all v ∈ C∞

T .
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