
The pseudospherical reduction of an uniaxial

deformation of the Carbon nanotubes

Petre P. Teodorescu, Veturia Chiroiu and Ligia Munteanu

Abstract

This paper is focused on the single-walled carbon nanotubes with different radius
and chirality (armchair (n, n), chiral (2n, n), and zigzag (n, 0)), and perfect
circular cross section, subjected to tensile loading. The aim is to determine a
parametrical representation for a class of constitutive laws for which the motion
equations attached to a material system can be associated to a pseudospherical
surface (with negative Gaussian curvature K). A genetic algorithm is performed
to study some inverse problems associated to some experimental results.
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1 Introduction

The carbon nanotubes as a quasi-one-dimensional structures were discovered by Iijima
[1], Iijima and Ichihashi [2]. The carbon nanotube is one of the most promising building
blocks for future development of functional nanostructures (Srivastava, Menon and
Cho [3], Gao, Cagin and Goddard [4]). The single-walled carbon nanotubes can be
regarded as a rolled-up graphite sheet in cylindrical form. Thess and co-workers [5]
produced crystalline ropes of metallic carbon nanotubes with 100–500 single-walled
carbon nanotubes bundled into a two-dimensional triangular lattice. These ropes are
expected to have remarkable mechanical, electronic and magnetic properties. The na-
notube is a cylindrical molecule composed of carbon atoms, with open or closed ends.
A typical section of a single-walled carbon nanotube is illustrated in Fig. 1.1, each
node being a carbon atom and lines the chemical bonds (Ruoff et al. [6]).
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Fig. 1.1. A section through a carbon nanotube (zigzag)

viewed from the side (after Ruoff et al. [6]).

In this paper we try to find a class of constitutive laws by applying the pseudo-
spherical reduction method for the carbon nanotubes mechanical problem. By this
reduction, the motion equations are associated to a pseudospherical surface Σ, with
negative Gaussian curvatureK (Rogers and Schief, [7], [8], Chiroiu et al. [9]). If the ra-
tio K/d4, where d is the distance from the origin to the tangent plane at an arbitrary
point, is constant, then we obtain a Ţiţeica surface (Ţiţeica [10], [11], Teodorescu
et al. [12], [13]). The Ţiţeica surfaces are invariants under the group of centroaffine
transformations, being analogues of spheres in affine differential geometry. At present,
only a few achievements have been made to determine the parametrical representa-
tion of a class of constitutive laws for which the motion equations attached to the
material system can be associated to a pseudospherical surface. We consider that this
novel approach may improve the estimation of structurally sensitive carbon nanotubes
properties. The constitutive laws for single-walled carbon nanotubes are determined
by applying the pseudospherical reduction method and a genetic algorithm.

2 The pseudospherical reduction of the problem

Consider the 1D problem of uniaxial deformation of a single wall carbon nanotube
modelled by a nonhomogeneous bar. We present in this section the pseudospherical
reduction of the problem in the spirit of Rogers and Schief [7], [8]. The governing
equations in a Lagrangian system of coordinates (X, t) read

εt = vX , ρ0vt = σX .(2.1)

The general constitutive law is given by

σ = σ(ε.X).(2.2)

Here, σ and ρ are the uniaxial stress and the density of the material, respectively
ε = ρ0

ρ − 1 is the strain, ρ0 is the density of the material in the underformed state,

and v(X, t) is the material velocity. In terms of the Eulerian coordinates x = x(X, t),
we have

dx = (ε+ 1)dX = vdt,(2.3)

so that
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ρ0dX = ρdx− ρvdt.(2.4)

In (2.4), X corresponds to the particle function ψ of the Martin formulation. The
independent variables are chosen to be σ and ψ, and we suppose ρ0 = 1. In this case
we obtain the Monge–Ampère equation

ξσσξψψ − ξ2σψ = εσ,(2.5)

where
t = ξσ, v = ξψ,

dx = ξψξσσ + (ξψξσψ + ε)dψ,(2.6)

0 < |ξσσε| <∞.

If a solution ξ(σ, ψ) of this equation is specified, then the particle trajectories are
calculated from

x =

∫
[ξψξσσ + (ξψξσψ + ε)dψ], t = ξp,(2.7)

in terms of σ, for ψ = const. By solving (2.7), the solution σ(ψ, t) is obtained, and the
original solution of (2.1)–(2.2) is parametrically determined in terms of the Lagrangian
variables

x = x(ψ, t), v = v(ψ, t), σ = σ(ψ, t).(2.8)

Rogers and Schief (1997) made the geometric connection to this problem. To show
this, let us consider a surface Σ in R3 written Monge parametrization

r = xe1 + ye2 + z(x, y)e3,(2.9)

where r = r(x, y, z) is the position vector of a point P on the surface
The first and second fundamental forms are defined as

I = Edx2 + 2Fdxdy +Gdy2

= (1 + z2x)dx
2 + 2zxzydxdy + (1 + z2y)dy

2,
II = edx2 + 2fdxdy + gdy2

= 1√
1+z2x+z

2
y

(zxxdx
2 + 2zxydxdy + zyydy

2).

(2.10)

The Gaussian curvature of Σ is

K =
eg − f2

EG− F 2
= −

zxxzyy − z2xy
(1 + z2x + z2y)

2
.(2.11)

If Σ is a hyperbolic surface, then the total curvature is negative and the asymptotic
lines on Σ may be taken as parametric curves. Let us introduce the same independent
variables as before, i.e.

σ = zx, ψ = zy,(2.12)

and the dependent variables
ξσ = x, ξψ = y.(2.13)

Therefore, we have

ξσσ =
zyy

zxxzyy − z2xy
, ξψψ =

zxx
zxxzyy − z2xy

, ξσψ =
zxy

zxxzyy − z2xy
.(2.14)
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The Gaussian curvature (2.10) yields

K =
1

(1 + σ2 + ψ2)2(ξσσξψψ − ξ2σψ)
,(2.15)

and may be set into correspondence with Martin’s Monge–Ampère equation (2.5) by

εσ =
1

K(1 + σ2 + ψ2)2
,(2.16)

and

K =
A2

(1 + σ2 +X2)2
.(2.17)

where A2 = ∂σ
∂ε|X , with A the Lagrangian wave velocity. The surface Σ is restricted

to be pseudospherical, that is

K = − 1

a2
, a = const.(2.18)

In this case the relation (2.17) gives

∂2σ

∂ε2|X
=

2

a2
(1 + σ2 +X2)σ

∂σ

∂ε
|X > 0, σ > 0.(2.19)

Integrating (2.19), we have

ε =
a2

2(1 +X2)3/2

[
arctan

(
σ

1 +X2

)
+

σ
√
1 +X2

1 + σ2 +X2

]
+ α(X),(2.20)

with α(X)arbitrary. For σ|ε=0 = 0 it results α(X)=0.
The relation (2.20) represents a class of constitutive laws for which the equations

(2.1) are associated to a pseudospherical surface Σ.
Starting from it we can obtain several constitutive laws for specifical practical

problems.
In particular, let us introduce into (2.19) the stress representation

σ =
√
1 +X2 tan

[√
1 +X2

a
(c− c0)

]
,(2.21)

In this case we get

ε =
a2

2(1 +X2)

[
c− c0
a

+
1√

1 +X2

]
sin

(
2
√
1 +X2

a
(c− c0)

)
.(2.22)

Thus, the relations (2.21) and (2.22) give a parametric representation of the con-
stitutive laws σ = σ(ε,X), for which the equations (2.1) are associated to a pseudo-
spherical surface Σ.

These equations lead to
σXX = εtt.(2.23)
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Using (2.16), we have

σXX =

[
a2

(1 + σ2 +X2)2
σt

]
t

.(2.24)

The equation (2.24) has a solitonic behavior and admits soliton solutions (Munteanu
and Donescu [14], [15]). These solutions, known as solitons, have the form of local-
ized functions that conserve their properties even after interaction between them, and
then act somewhat like particles. The equation (2.24) like other remarkable equations
(Korteweg and de Vries, Burgers, sine-Gordon, Schrödinger, etc.) has interesting prop-
erties: an infinite number of local conserved quantities, an infinite number of exact
solutions expressed in terms of the Jacobi elliptic functions (conoidal solutions) or the
hyperbolic functions (solitonic solutions or solitons), as well as the simple formulae
for nonlinear superposition of explicit solutions. Such equations were considered in-
tegrable or more accurately, exactly solvable. Given a nonlinear equation, it is natural
to ask whether it is integrable, or it admits the exact solutions or solitons, whether its
solutions are stable or not. This question is still open, and efforts are made to collect
the main results concerning the analysis of nonlinear equations such as (2.24).

3 The Inverse Problem

The mathematical modelling is focused on the extracting or abstracting the essential
feature from the complexities of the physical phenomena. The only way to justify the
model is to show that what is predicted by it corresponds to some aspects of a real
problem. The formulation of the constitutive property for a material is not formalism.
A constitutive law must describe the global mechanical properties of the specimen,
being an inverse problem, which cannot be treated empirically.

The inverse problem is an important subject in mechanics. Inverse problems are
dealing with the determination of the mechanical system with unknown material prop-
erties from the knowledge of the measured responses to given loadings or excitations
on its boundary. The inverse problem may be modelled into a parameter identifica-
tion problem in which an optimal set of parameters should be found by minimizing an
appropriate norm of differences between the computational responses and measured
ones (Tanaka and Nakamura [16], Chiroiu and Chiroiu [17]).

We assume that the unknown three parameters p = {a, c, c0} from (2.22) are
discretized into discrete values with the step width ∆a, ∆c, ∆c0. The set p =
{a,i, c,j , c0,k} of parameters for an arbitrary problem is expressed as the combina-
tion number Mijk = (i − 1)JK + (j − 1)K + k, where I, J , K are total number of
discretized values for each parameter p. This number is counted from the first set of
parameter p = {a,1, c,1, c0,1}. We define the objective function as a square sum of dif-
ferences between the experimental and the computed stress-strain results for carbon
nanotubes

W =

M∑
m=1

(σmi −σ̄mi )2,(3.1)

where σ̄mi denotes the measured stress at point m on the experimental strain-stress
diagram σ-ε, and σmi denotes the computed strain-stress σ-ε at the same point m. M
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is the number of points from the experimental uniaxial diagram σ-ε. We define fitness
F̃ as a reciprocal number of the function W

F̃ =
W0

W
,(3.2)

where

W0 =

M∑
m=1

(σ̄mi )2.(3.3)

As the convergence criterion of iterative computations by using a genetic algo-
rithm, we use a non-dimensional expression

Z =
1

2
log10

W

W0
.(3.4)

For all considered examples, the number of populations is 25, ratio of reproduction
1, number of multi-point crossovers 1, probability of mutation 0.25 and the maximum
number of generations 300.

We study the stretching and compression of the single-walled carbon nanotubes
by varying the lattice parameter, along the tube axis. We impose a periodic boundary
condition along the axial tube direction. The others cell parameters are 50 times the
circular tube diameter D. The thickness of the tube wall is h = 0.34 nm, and the
number of carbon atoms per a slab of width L is N = 2πρLR, where R is the radius
of the tube and ρ – the density.

Fig. 3.1. The stress–strain law for different single–walled carbon nanotubes.
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The constitutive law for the single-walled carbon nanotubes (armchair (10, 10)
with radius R = 3.223 Å, chiral (12, 6) with R = 4.553 Å, and zigzag (17, 0) with
R = 6.264 Å) obtained by the present inverse analysis, are illustrated in Fig. 3.1.
The continuous line means the theoretical results and circles, the experimental re-
sults reported by Gao, Cagin and Goddard [18]. The results demonstrate that the
pseudospherical reduction method coupled with a genetic algorithm can be success-
fully and efficiently applied to the identification of the constitutive laws for carbon
nanotubes.

The results reveal the importance of the parameters a, c and c0 in describing
the stress-strain curve for carbon nanotubes. We can say that the parameter a is
proportional to the radius R of the carbon nanotube for specified c and c0. Also, the
parameter c is proportional to the number n2 which defines the nanotube, for specified
a and c0. Also, we can say that the parameter c0 depends on

√
h for specified a and

c. An interesting case of a constitutive law, associated to a Ţiţeica surface (K/d4 is
constant), is considered for a chiral nanotube (18, 9) with R = 6.222 Å. We obtain
the diagrams illustrated in Fig. 3.2, that show a significant ductility and fracture
toughness

Fig. 3.2. The stress–strain law for a chiral nanotube (18, 9).

4 Conclusions

This paper is studying the mechanical properties of the single-walled carbon nan-
otubes with different radius and chirality forms (armchair (n, n), chiral (2n, n), and
zigzag (n, 0)), and perfect circular cross section, subjected to tensile loading. The goal
of the paper is to determine a parametrical representation for a class of constitutive
laws for which the motion equations attached to a material system is associated to a
pseudospherical surface. The uniaxial deformation problem for the carbon nanotubes
is discussed via the pseudospherical reduction technique. The parametric represen-
tation of the constitutive laws, for which the motion equations are associated to a
pseudospherical surface, are given by (2.21) and (2.22), in terms of three parameters
a, c and c0.
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A genetic algorithm is performed to study several inverse problems associated to
experimental results. The relation of a to the Gaussian curvature is K = − 1

a2 . So,
we can conclude that if the motion equations can be associated to a pseudospherical
surface Σ, of Gaussian curvature K, the strength of the carbon nanotube can be
described as a function of K. The results yields to the conclusion that the parameter
a is proportional to the radius R of the carbon nanotube for specified c and c0.
Another result is that the parameter c may be proportional to the number n2 which
defines the nanotube, for specified a and c0, and the parameter c0 depends on

√
h for

specified a and c.
A subclass of the constitutive laws is associated to a Ţiţeica surface, for which

the ratio K/d4 (d is the distance from the origin to the tangent plane at an arbitrary
point) is constant. For carbon nanotubes, the parameter a is related to d, and it is
important in describing the ductility and fracture toughness properties.
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[8] C. Rogers and W. K. Schief, Bäcklund and Darboux transformations. Geometry
and modern applications in soliton theory, Cambridge Univ. Press, 2002.
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10–16, 2004.

[13] P. P. Teodorescu, L. Munteanu, V. Chiroiu, On the wave propagation in chiral
media, Proceed. “New Trends in Continuum Mechanics-2003 Constanţa”, 295–
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Editura Academiei Române, Bucureşti, 2002.
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