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Abstract

In this paper, using a pseudo-Riemannian metric on the base M, of tangent
bundle (TM, π,M) and the pseudo-Riemannian Sasaki lift, the results from
propositions on the paragraphs 2 and 3 are obtained.
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1 Introduction

Let consider the tangent bundle ξ = (TM, π,M), where Mn = (M, [A];ℜn) is a C∞-
differential manifold, paracompact, connex. Moreover, in the general theory knowing
of the tangent bundle, an important role has the case that a Riemannian metric g,
on M, is ”lifted” to the Sasaki metric G, on TM . For this case are working: Kentaro-
Yano, Sasaki, Ianus Stere, R. Miron, etc. A generalization for the cotangent bundle
is given by P. Stavre.

Now, let be a pseudo-Riemannian structure (M, g) and V
(n)

= (M, g,∇) the pseudo-

Riemannian space corresponding in these conditions, the Riemannian metrics {g}
exists on M, globally, but generally, the pseudo-Riemannian metrics, {g} do not glob-
ally exist. An example is given by Steenrod for n = 2, V

(2)
-compact. In this case, only

the torus and the Klein bottle admit pseudo-Riemannian metrics. For instance, the
existence of an everywhere non-zero vector field is a condition for the existence of
pseudo-Riemannian Lorentz metrics, which are essential in the generalized relativ-
ity theory. As well, Steenrod showed that this is equivalent with the vanishing of a
topological invariant (the Euler-Poincaré characteristic).

We will extend the Sasaki lift in the case of pseudo-Riemannian structure (M, g).
The study is difficult because now we have: vectors with zero length; curves (differen-
tiable or differentiable on parts) with zero length (or minimal); the curves with zero
length can be or cannot be geodesics; the distance between two points can be zero:
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x, y ∈M,x ̸= y, d(x, y) = 0. So, the metrization of the topological space (M, τ) is not
possible like in the Riemannian case and so, the Hopf-Rinow theory does not work.

We will define in x ∈ M the pseudo-Riemannian indicator, as follows: εx = −1 if
g(X,X) < 0; εx = 0 if g(X,X) = 0; εx = 1 if g(X,X) > 0.

We will note: C
(−)
x = {Xx ∈ TxM\εX = −1} (the set of spatial vectors); C

(0)
x =

{Xx ∈ TxM\εX = 0} (the set of isotropic vectors);

C
(+)
x = {Xx ∈ TxM\εX = 1} (the set of temporal vectors) and we will define the

length of vector X, by the real number, |X| ≥ 0, where |X|2 = εxg(X,X).

Evidently, Xx ∈ C
(0)
x ⇔ |X| = 0. The field X, at x, is unitary if g(X,X) = εx.

The sets C
(−)
x , C

(+)
x are open and C

(0)
x is closed. We can write the partitions: C

(−)
x =

C
1(−)
x ∪ C2(−)

x ; C
1(−)
x ∩ C2(−)

x = ∅; C(0)
x = C

1(0)
x ∪ C2(0)

x ; C
1(0)
x ∩ C2(0)

x = ∅; C(+)
x =

C
1(+)
x ∪ C2(+)

x ; C
1(+)
x ∩ C2(+)

x = ∅, where C1(−)
x , C

2(−)
x are the conexes open sets and

analogously, C
1(+)
x , C

2(+)
x . If Xx ∈ C

1(+)
x then −Xx ∈ C

2(+)
x ... C

1(0)
x , C

2(0)
x will be

called the isotropic hipercones, with the vertex at x, they are opposite. We consider
C : x→ Cx.

2 Considerations on ξ = (TM, π,M)

On the space TM , considered as a paracompact 2n-dimensional differentiable mani-
fold, there exists a pseudo-Riemannian metric, which has the local form:

(2.1) G = gik(x)dx
i ⊗ dxk + grsδy

r ⊗ δys,

where, δy = ∇y (the covariant differential, relative to the pseudo-Levi-Civita connec-
tion defined by the pseudo-Riemannian g, for y ∈ TxM , x ∈ M) (u = (xi, yi) ∈
π−1(U), where x ∈ U has the local coordinates xi = xi(x), π−1(U) is the geo-
metric zone of a local chart at u, on TM). So, we have a Whitney decomposition,
TuTM = HuTM

⊕
VuTM , u ∈ TM and the distributions, H : u → HuTM (hori-

zontal) and V : u→ VuTM (vertical). The metric G is the generalized Sasaki metric
for the pseudo-Riemannian case.

We have globally and locally, for G,

(2.2) G = hG+ vG,

(2.3) hG = gik(x)dx
i ⊗ dxk,

(2.4) vG = grs(dy
r +Nr

k (x, y)dx
k)(dys +Ns

i (x, y)dx
i),

with,

(2.5) Nr
k (x, y) = ylγrkl(x),

the coefficients of a nonlinear connection in ξ, defined by g from the Levi-Civita
coefficients {γ}, of the Levi-Civita connection ∇. Evidently, N is 1-homogeneous
relative to the vertical fibres, that is relative to y.

G is the Sasaki lift for the Riemannian g. It seems that there are no differences.
But, now, we cannot achieve g(X,X) = εX |X|2, εX ∈ {−1, 0, 1}.
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Definition 2.1. Let note Vn = (TM, g,∇) the pseudo-Riemannian space, base, V2n =
(TM,G,D) the tangent pseudo-Riemannian space. The submanifold of V2n defined by
the restriction, gx(y, y) = ε, will be called the tangent bundle (TM, π,M), on M, of
the pseudo-spheres.

A locally map, in uϵTM will be with the geometric zone π−1(U); u ∈ π−1(U);
u ∈ π−1(U); π(u) = x ∈ U , π(u) = x ∈ U . Result:

Proposition 2.1. The metric G, induced by G, on TM is 0-homogeneous, though G
is not 0-homogeneous.

So, let be V2n−1 = (TM,G,D), the pseudo-Riemannian subspace (or the Rieman-
nian subspace if ε = 1).

Proposition 2.2. The horizontal distribution H, on TM , is the restriction of H in
the points u ∈ π−1(U).

From 2.2 - 2.5 result (vG) ◦ ht ̸= vG, that is G is not 0-homogeneous on T̃M =
TM \ {0} (ht=homothety, t ∈ ℜ+).

Proposition 2.3. a) On the connected components of sets C(+), C(−), the metric 2.1
is not 0-homogeneous. b) Its restriction, on C(0) is 0-homogeneous. c) Its restriction,
on TM is 0-homogeneous.

A generalization of Miron’s results ([4]) is obtained in this way.
For the tangent bundle, having fixed N, for each X ∈ X (M), exists Xh ∈ H,Xv ∈

V , uniquely. Let be the almost complex structure, natural, F, defined by,

(2.6) F (Xh) = −Xv ; F (Xv) = Xh (F 2 = −I),

which is G(FX,FY ) = G(X,Y ), ∀X,Y ∈
∼
T M , that is, (T̃M,G, F ) is an almost

complex structure, with the 2-form associated, θ(X,Y ) = G(FX, Y ). In this case,
result:

Proposition 2.4. a) For 2.1, 2.5, 2.6 we have: dθ = 0, that is, the structure is an

almost kählerian structure. b) The structure (
∼
T M,G, F ) is kählerian if and only if

Vn is a linear Lorentz space, locally (pseudo-euclidian) that is, if and only if the first
fundamental form can be write, locally,

ψ =

n∑
i=1

εi(dx
i)2 , εi ∈ {−1, 1}

The homogenization of G must be making only on the connected components
C(+), C(−). Let be εg(y, y) = |y|2 (ε ∈ {−1, 1}); H =

√
εH.

Proposition 2.5. The 0-homogeneous metric G is given by:

∼
G= gikdx

i ⊗ dxk +
r2

εH
grs∇yr ⊗∇ys; r = ct > 0

Proposition 2.6. The 0-homogeneous metric G̃ preserve the signature.
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On the connected components C(+), C(−) is defined an almost complex structure,

F̃ , associated to G̃, locally, from: F̃ (δk) = −H
r ∂k ; F̃ (∂k) = r

H
δk, where, (δk =

∂
∂xk − ysγiks∂i; ∂k = ∂

∂yk ) in u ∈ π−1(U), who is given, from ε = 1 (the Riemannian

case), by R. Miron. Result:

Proposition 2.7. We have, a) θ̃(X,Y ) = G̃(FX, Y ) ; dθ̃ = rd( 1
H
) ∧ θ

b) G̃(F̃X, F̃Y ) = G̃(X,Y ), that is (G̃, F̃ ) is an almost hermitian structure.

For, Vn = (M, g,∇) a Riemannian space, ε = 1 and (a) (b) are result from [4].

Proposition 2.8. If NF̃ = 0, (NF̃ is the Nijenhuis tensor) that is F̃ , is complex,
then we have, equivalently:

(2.7) rijkl(x) =
ε

r2
(gjkδ

i
l − gjlδ

i
k), ε ∈ {−1, 1},

where r(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z, X,Y, Z ∈ X (M) is the curvature
tensor of the pseudo-Riemannian space, base, Vn = (M, g,∇) .

Proposition 2.9. If H is an integrable distribution, then we have 2.7, that is on
the connected components, the curvature is R = ε

r2 , ε ∈ {−1, 1}, constant but with
contrary sign.

Proposition 2.10. If (G̃, F̃ ) is a hermitian structure, then the first fundamental
form ψ, of Vn, will be bring in to the Riemann form:

ψ = 1
A

n∑
i=1

εi(dx
i)2 ; εi ∈ {−1, 1}, where, A =

(
1 + ε

4r2

n∑
i=1

εi(x
i)2

)2

In the case (T ∗M) these results will be much difficult to obtain. We will study
the generalization of these results in the Lagrange theory in to another paper (the
pseudo-Lagrange case).

3 The pseudo-Riemannian associated isometries

We will start with the observation that, for n = 2, M2-compact is not possible to
talk about the pseudo-Riemannian isometries or the pseudo-Riemannian infinitesimal
isometries, only if M2 is the torus or the Klein bottle.

In the relativistic mechanic, a vector field ξ ∈ X (M), with the null divergente,
divξ = 0 has an important roll (will be called incompressible). As is known any
ξ-Killing has this property.

Let be V
(n)

= (M, g,∇) a pseudo-Riemannian space and I(M, g) the group of all

isometries of (M, g). Like in the Riemannian case, I(M, g) is a Lie group who act
differential on (M, g), it is a subgroup of the diffeomorphisms group on M. Like in the
Riemannian case, because, φ ∈ I(M, g) preserve g, hence preserve ∇ (the Levi-Civita
connection) and also preserve the geodesics of ∇, the elementary volume, etc. When
g is Riemannian, φ also preserves the distances (the property is reciprocal). But, in
the pseudo-Riemannian case for g, we cannot talk about such property. Tis is another
difference between the g-Riemannian and the g-pseudo-Riemannian cases.
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Let be ξ and ω
(ξ)

, dual 1-form, given by g(ξ,X) = ω
(ξ)

(X);∀X.

We have, divξ = δ ω
(ξ)

(the codifferential of ω
(ξ)

).

Lemma 3.1. If ξx ∈ C
(0)
x , then, locally, the equation, ω

(ξ)
x

= 0, admit a set of (n-

1)-uples {( ξ
(1)
, ..., ξ

(n− 1)
)}, where ξ

(1)
,..., ξ

(n− 1)
are in x, linear independent and the

directions given by ξ
(a)

, (a = 1, n− 1), through x, cannot be g-conjugate, mutually. We

have, locally, gikξ
iξk = 0; gikξ

i ξk

(a)
= 0(a = 1, n− 1), and ξ is a linear combination of

( ξ
(a)

) (a = 1, n− 1).

Lemma 3.2. Let be a frame, in x,{ V
(a)

} (a = 1, n− 1) orthogonal, g( V
(a)

, V
(b)

)

= 0;∀a ̸= b; a, b = 1, n. Then we have, V
(a)

x

̸∈ C
(0)
x , ∀a ̸= b; a,b=1, n.

That is neither of vectors from the orthogonal frame cannot be with null length.

So, it can be normalized, because

∣∣∣∣∣ V(a)
∣∣∣∣∣ = √

εag( V
(a)

, V
(a)

) ̸= 0. Let be this ( U
(1)
, ..., V

(a)
).

We can write:

g( U
(a)

, U
(b)

) = 0;∀a ̸= b; a, b = 1, n; g( U
(a)

, U
(a)

) = εa; a = 1, n, εa ∈ {−1, 1}

divξ =

n∑
a=1

εag(∇ U
(a)

ξ, U
(a)

) = δ ω
(ξ)

=

n∑
a=1

εa(∇ U
(a)

ω
(ξ)

)( U
(a)

)

Remark. Sometimes, in the geometry, the codifferential is with (-).
In the case when g is Riemannian, we have εa = 1 (a=1, n) and we will obtain the

formula for divξ in the orthonormal frame.
We consider a Killing vector field ξ defined with by means of infinitesimal isome-

tries. Let be V(n) a pseudo-Riemannian space and let ξ ∈ X (M). If the local 1-
parametric group of diffeomorphisms, generated by ξ is locally given by isometries,
then ξ is called Killing vector field. The local isometries will be called the infinitesimal
isometries or infinitesimal motions.
Equivalently, like in the Riemannian case, we obtain the Killing equations:

(3.-6) (∇X ω
(ξ)

)(Y ) + (∇Y ω
(ξ)

)(X) = 0,

In the definition of ξ being Killing we start from 3.-6, to clarify the infinitesimal
character of the definition. Using the Lie derivative, we have, like in the Riemannian
case, Lξg = 0.

Formally, there are no differences relative to the Riemannian case, while taking
into account the previous remarks. Moreover, we must take into account the case
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ξ : x → ξx ∈ C
(0)
x and ξ is Killing, particulary, when ∇ξ = 0 and its orbits are

geodesics (the case of infinitesimal translations).
From all these we can observe the difficulty of studying pseudo-Riemannian

isometries, infinitesimal isometries, on V2n = (TM,G,D), where G is the pseudo-
Riemannian Sasaki lift.

It is normal not to study the infinitesimal isometries φ̃ ∈ I(TM,G) using the
general model, but using the correspondence with the infinitesimal isometries, φ ∈
I(M, g). The study will be similar with the Riemannian Sasaki case, but now we

shall be using the adapted basis
{

δ
δxi ,

∂
∂yi

}
. This leads to specific results, like in §2,

because: ξx ∈ C
(−)
x or ξx ∈ C

(0)
x or ξx ∈ C

(+)
x .

Consider the infinitesimal transformation on base,

(3.-5) ξxf =
d

dt
f(φt(x))|t=0;x ∈M,f ∈ F(M),

{φt(x)} is an 1-parametric group generate from ξ, which is generally local (t ∈
(−ε, ε) = I, ε > 0). It is global if ξ is complete and conversely. If ξ is Killing, then the
local group of diffeomorphisms consists of local isometries φ ∈ I(M, g).

Let be the infinitesimal transformation on TM ,

(3.-4) ξuf =
d

dt
f(φt(u))|t=0;π(u) = x;u ∈ π−1(U);x ∈ U,

If ξ is Killing then the diffeomorphisms of 1-parametric group generate from ξ, are
isometries (local) φ ∈ I(TM,G).

Generally, the orbit of x is an immersion γx : I → M given by γx(t) = φt(x) and
ξ(γx(t)) = γ̇x(t) (γx is an integral curve of ξ, through x). Their family {γx(t)}, x ∈M
(x ∈ U), t ∈ I, is a congruence of curves on M (if ξ is complete) or locally, through
each x ∈ U passes one curve of the family, in opposite case. The similar happens for
ξ.

Problem 1 If ξ ̸∈ C(0), then we consider the infinitesimal isometries (local),
φ ∈ I(TM,G) natural prolongations of infinitesimal isometries (local), φ ∈ I(M, g)?
Problem 2 If these prolongations are infinitesimal translations (infinitesimal motions,
who are translations) local, on the base, what infinitesimal motions (local) correspond
on TM?
Problem 3 In both cases, do they induce induces on V2n−1 infinitesimal motions?
Problem 4 In this natural prolongation, if the orbits of ξ are geodesics (local) of Vn,
then are the orbits of ξ geodesics of V2n?
Problem 5 Considering the unique decomposition ξ = hξ + vξ (with respect to
the nonlinear connection N), when do hξ and vξ locally generate the infinitesimal
isometries?

Because ξ ̸∈ C(0) we can write, in x ∈ U , εξ ∈ {−1, 1} and ξ ∈ C(−) or ξ ∈ C(+),

(3.-3) | ξ |2 = εξgikξ
iξk,

Let be ξ defined by,

(3.-2) ξ = hξ + vξ,
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where, in u ∈ π−1(U), π(u) = x ∈ U ,

(3.-1) hξ
def
= ξh = ξi

δ

δxi
; vξ

def
= (ys∇sξ

r)
∂

∂yr
,

if,

(3.0) ξ = ξi(x)
∂

∂xi
,

Let note G(uα, uβ) = Gαβ(x, y), where u
α = (ui = xi, un+i = yi).

Theorem 3.1. Let be Vn = (M, g,∇)-pseudo-Riemannian and
V2n = (TM,G,D), with the pseudo-Riemannian Sasaki lift G. The necessary and
sufficient condition for to exists infinitesimal motions (that is local isometries, in-
finitesimal) φ ∈ I(M, g), φ̃ ∈ I(TM,G), who correspond one the other, is to exist a
system of local coordinates (x,y), on TM, such as Gn+i n+k(x, y) is not depend form
a local coordinate, xr (r, fixed). That is,

(3.1)
∂Gn+in+k

∂xr
= 0;∀i, k = 1, n(r, fixed),

Theorem 3.2. In the conditions of theorem 1, the equations Lξg = 0 admit one
solution ξ, who is Killing and for who the diffeomorphisms of 1-parametric group 3.-

5, given by ξ, are the infinitesimal motions. Let be ξ 3.0. Then ξx ̸∈ C
(0)
x (x ∈ U).

Because ξ is Killing, result that ξ 3.-2, 3.-1 is Killing, for the space V2n and so
LξG = 0, and reciprocally. So, the 1-parametric group, local, generated by ξ is given
by local isometries. We have the reciprocal.

In the local coordinates for 3.1, we have:

|ξ|2 = εξgrr; gik = gik(x
1, . . . , xr−1, xr+1, . . . , xn), i, k = 1, n

Evidently, εξ ∈ {−1, 1}, if grr < 0 or grr > 0. We cannot have grr = 0 because g is
nondegenerate. |ξ| ≠ 0, so the infinitesimal motion is not minimal.

The infinitesimal motion is a translation, |ξ| = ct if and only if grr = ct ̸= 0. From
that result Gn+r n+r = ct for the first fundamental form of Vn, such as, of V2n. The
linear element will be: ds2 = εgikdx

idxk + εrgrr(dx
r)2; gii ̸= grr(i = 1, n) (without

summation from r) with
∂gjl
∂xr = 0; j, l = 1, n.

Theorem 3.3. If exist a local chart in u, on TM (u ∈ π−1(U), π(u) = x ∈ U), thus
we have 3.1, then exist ξ, ξ 3.-2 3.-1, thus we have the relations:

(3.2) D2
XY ξ = R(X, ξ)Y ;∀X,Y ∈ X (TM),

(3.3) LξD = 0,

(ξ is an affine collineation, infinitesimal of space V2n) and we have the relations for
ξ, analogously.
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Proof. The conditions are equivalent with the existence of a Killing vector field
ξ on Vn and hence, with the existence of a Killing vector field ξ, on V2n, who has
the form 3.-2 3.-1. So we have 3.2, 3.3 and the similar relations, ∇2

XY ξ = r(X, ξ)Y ;
∀X,Y ∈ X (M), Lξ∇ = 0. 2

If ξx ̸∈ C
(0)
x then, like in the Sasaki-Riemannian case, we can show that, taking

into account the transformations (x, y) → (x, y), for the relations 3.-5, 3.-3 are obtain
the infinitesimal transformations:

(3.4) xi = xi + ξi(x)δt,

(3.5) xi = xi + ξi(x)δt, yi = yi + (ys∇sξ
i −N i

rξ
r)δt,

Starting from here we can prove that if 3.4 are the isometries (local) φ ∈ I(M, g),
then 3.5 are the isometries (local) φ̃ ∈ I(TM,G). So, if ξ ̸∈ C(0) is Killing, then ξ
3.-2 3.-1 is Killing and reciprocally. Other aspects relative to the previously discussed
problems will be provided in a forecoming paper.

Proposition 3.1. If Vn = (M, g,∇)-pseudo-Riemannian has ξ parallel with ∇ξ = 0,
then ξ = ξh is Killing.

Moreover, the orbits of ξ are the geodesics of space Vn and the orbits of ξ are the
horizontal lifts of the orbits of ξ, and these are the geodesics of V2n. Their restrictions
to V2n−1 are the geodesics of V2n−1.
The general problem of geodesics on V2n-pseudo-Riemannian, tied to the geodesics
on Vn, is solved. We show that, the equations of geodesics on V2n can be written
locally using ∇, only in terms of Vn. The problem of general translations for Vn, V2n
is subject of further research.
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