The pseudo-Riemannian isometries associated to Sasaki lift

Petre Stavre and Amelia Curcă-Năstăselu

Abstract

In this paper, using a pseudo-Riemannian metric on the base M , of tangent bundle ($T M, \pi, M$) and the pseudo-Riemannian Sasaki lift, the results from propositions on the paragraphs 2 and 3 are obtained.

Mathematics Subject Classification: 53C60.
Key words: pseudo-Riemannian indicator, homogeneous lift.

1 Introduction

Let consider the tangent bundle $\xi=(T M, \pi, M)$, where $M_{n}=\left(M,[A] ; \Re^{n}\right)$ is a $C^{\infty}{ }_{-}$ differential manifold, paracompact, connex. Moreover, in the general theory knowing of the tangent bundle, an important role has the case that a Riemannian metric g, on M, is "lifted" to the Sasaki metric G, on $T M$. For this case are working: KentaroYano, Sasaki, Ianus Stere, R. Miron, etc. A generalization for the cotangent bundle is given by P. Stavre.

Now, let be a pseudo-Riemannian structure (M, g) and $V=(M, g, \nabla)$ the pseudo(n)

Riemannian space corresponding in these conditions, the Riemannian metrics $\{g\}$ exists on M, globally, but generally, the pseudo-Riemannian metrics, $\{g\}$ do not globally exist. An example is given by Steenrod for $n=2, V$-compact. In this case, only (2)
the torus and the Klein bottle admit pseudo-Riemannian metrics. For instance, the existence of an everywhere non-zero vector field is a condition for the existence of pseudo-Riemannian Lorentz metrics, which are essential in the generalized relativity theory. As well, Steenrod showed that this is equivalent with the vanishing of a topological invariant (the Euler-Poincaré characteristic).

We will extend the Sasaki lift in the case of pseudo-Riemannian structure (M, g). The study is difficult because now we have: vectors with zero length; curves (differentiable or differentiable on parts) with zero length (or minimal); the curves with zero length can be or cannot be geodesics; the distance between two points can be zero:

[^0]$x, y \in M, x \neq y, d(x, y)=0$. So, the metrization of the topological space (M, τ) is not possible like in the Riemannian case and so, the Hopf-Rinow theory does not work.

We will define in $x \in M$ the pseudo-Riemannian indicator, as follows: $\varepsilon_{x}=-1$ if $g(X, X)<0 ; \varepsilon_{x}=0$ if $g(X, X)=0 ; \varepsilon_{x}=1$ if $g(X, X)>0$.
We will note: $C_{x}^{(-)}=\left\{X_{x} \in T_{x} M \backslash \varepsilon_{X}=-1\right\}$ (the set of spatial vectors); $C_{x}^{(0)}=$ $\left\{X_{x} \in T_{x} M \backslash \varepsilon_{X}=0\right\}$ (the set of isotropic vectors);
$C_{x}^{(+)}=\left\{X_{x} \in T_{x} M \backslash \varepsilon_{X}=1\right\}$ (the set of temporal vectors) and we will define the length of vector X , by the real number, $|X| \geq 0$, where $|X|^{2}=\varepsilon_{x} g(X, X)$.

Evidently, $X_{x} \in C_{x}^{(0)} \Leftrightarrow|X|=0$. The field X, at x, is unitary if $g(X, X)=\varepsilon_{x}$. The sets $C_{x}^{(-)}, C_{x}^{(+)}$are open and $C_{x}^{(0)}$ is closed. We can write the partitions: $C_{x}^{(-)}=$ $C_{x}^{1(-)} \cup C_{x}^{2(-)} ; C_{x}^{1(-)} \cap C_{x}^{2(-)}=\emptyset ; C_{x}^{(0)}=C_{x}^{1(0)} \cup C_{x}^{2(0)} ; C_{x}^{1(0)} \cap C_{x}^{2(0)}=\emptyset ; C_{x}^{(+)}=$ $C_{x}^{1(+)} \cup C_{x}^{2(+)} ; C_{x}^{1(+)} \cap C_{x}^{2(+)}=\emptyset$, where $C_{x}^{1(-)}, C_{x}^{2(-)}$ are the conexes open sets and analogously, $C_{x}^{1(+)}, C_{x}^{2(+)}$. If $X_{x} \in C_{x}^{1(+)}$ then $-X_{x} \in C_{x}^{2(+)} \ldots C_{x}^{1(0)}, C_{x}^{2(0)}$ will be called the isotropic hipercones, with the vertex at x, they are opposite. We consider $C: x \rightarrow C_{x}$.

2 Considerations on $\xi=(T M, \pi, M)$

On the space $T M$, considered as a paracompact $2 n$-dimensional differentiable manifold, there exists a pseudo-Riemannian metric, which has the local form:

$$
\begin{equation*}
G=g_{i k}(x) d x^{i} \otimes d x^{k}+g_{r s} \delta y^{r} \otimes \delta y^{s} \tag{2.1}
\end{equation*}
$$

where, $\delta y=\nabla y$ (the covariant differential, relative to the pseudo-Levi-Civita connection defined by the pseudo-Riemannian g, for $\left.y \in T_{x} M, x \in M\right)\left(u=\left(x^{i}, y^{i}\right) \in\right.$ $\pi^{-1}(U)$, where $x \in U$ has the local coordinates $x^{i}=x^{i}(x), \pi^{-1}(U)$ is the geometric zone of a local chart at u, on $T M)$. So, we have a Whitney decomposition, $T_{u} T M=H_{u} T M \bigoplus V_{u} T M, u \in T M$ and the distributions, $H: u \rightarrow H_{u} T M$ (horizontal) and $V: u \rightarrow V_{u} T M$ (vertical). The metric G is the generalized Sasaki metric for the pseudo-Riemannian case.

We have globally and locally, for G,

$$
\begin{gather*}
G=h G+v G \tag{2.2}\\
h G=g_{i k}(x) d x^{i} \otimes d x^{k} \tag{2.3}\\
v G=g_{r s}\left(d y^{r}+N_{k}^{r}(x, y) d x^{k}\right)\left(d y^{s}+N_{i}^{s}(x, y) d x^{i}\right) \tag{2.4}
\end{gather*}
$$

with,

$$
\begin{equation*}
N_{k}^{r}(x, y)=y^{l} \gamma_{k l}^{r}(x), \tag{2.5}
\end{equation*}
$$

the coefficients of a nonlinear connection in ξ, defined by g from the Levi-Civita coefficients $\{\gamma\}$, of the Levi-Civita connection ∇. Evidently, N is 1-homogeneous relative to the vertical fibres, that is relative to y.
G is the Sasaki lift for the Riemannian g. It seems that there are no differences. But, now, we cannot achieve $g(X, X)=\varepsilon_{X}|X|^{2}, \varepsilon_{X} \in\{-1,0,1\}$.

Definition 2.1. Let note $V_{n}=(T M, g, \nabla)$ the pseudo-Riemannian space, base, $V_{2 n}=$ $(T M, G, D)$ the tangent pseudo-Riemannian space. The submanifold of $V_{2 n}$ defined by the restriction, $g_{x}(y, y)=\varepsilon$, will be called the tangent bundle $(\bar{T} M, \bar{\pi}, M)$, on M, of the pseudo-spheres.

A locally map, in $u \epsilon \bar{T} M$ will be with the geometric zone $\bar{\pi}^{-1}(U) ; u \in \bar{\pi}^{-1}(U)$; $u \in \pi^{-1}(U) ; \bar{\pi}(u)=x \in U, \pi(u)=x \in U$. Result:

Proposition 2.1. The metric \bar{G}, induced by G, on $\bar{T} M$ is 0 -homogeneous, though G is not 0-homogeneous.

So, let be $V_{2 n-1}=(\bar{T} M, \bar{G}, \bar{D})$, the pseudo-Riemannian subspace (or the Riemannian subspace if $\varepsilon=1$).
Proposition 2.2. The horizontal distribution \bar{H}, on $\bar{T} M$, is the restriction of H in the points $u \in \bar{\pi}^{-1}(U)$.

From 2.2-2.5 result $(v G) \circ h_{t} \neq v G$, that is G is not 0 -homogeneous on $\widetilde{T} M=$ $T M \backslash\{0\}\left(h_{t}=\right.$ homothety, $\left.t \in \Re^{+}\right)$.

Proposition 2.3. a) On the connected components of sets $C^{(+)}, C^{(-)}$, the metric 2.1 is not 0-homogeneous. b) Its restriction, on $C^{(0)}$ is 0-homogeneous. c) Its restriction, on $\bar{T} M$ is 0 -homogeneous.

A generalization of Miron's results ([4]) is obtained in this way.
For the tangent bundle, having fixed N , for each $X \in \mathcal{X}(M)$, exists $X^{h} \in H, X^{v} \in$ V, uniquely. Let be the almost complex structure, natural, F, defined by,

$$
\begin{equation*}
F\left(X^{h}\right)=-X^{v} ; F\left(X^{v}\right)=X^{h}\left(F^{2}=-I\right) \tag{2.6}
\end{equation*}
$$

which is $G(F X, F Y)=G(X, Y), \forall X, Y \in \widetilde{T} M$, that is, $(\widetilde{T} M, G, F)$ is an almost complex structure, with the 2-form associated, $\theta(X, Y)=G(F X, Y)$. In this case, result:

Proposition 2.4. a) For 2.1, 2.5, 2.6 we have: $d \theta=0$, that is, the structure is an almost kählerian structure. b) The structure $(\tilde{T} M, G, F)$ is kählerian if and only if V_{n} is a linear Lorentz space, locally (pseudo-euclidian) that is, if and only if the first fundamental form can be write, locally,

$$
\psi=\sum_{i=1}^{n} \varepsilon_{i}\left(d x^{i}\right)^{2}, \varepsilon_{i} \in\{-1,1\}
$$

The homogenization of G must be making only on the connected components $C^{(+)}, C^{(-)}$. Let be $\varepsilon g(y, y)=|y|^{2}(\varepsilon \in\{-1,1\}) ; \bar{H}=\sqrt{\varepsilon H}$.

Proposition 2.5. The 0 -homogeneous metric G is given by:

$$
\tilde{G}=g_{i k} d x^{i} \otimes d x^{k}+\frac{r^{2}}{\varepsilon H} g_{r s} \nabla y^{r} \otimes \nabla y^{s} ; r=c t>0
$$

Proposition 2.6. The 0 -homogeneous metric \widetilde{G} preserve the signature.

On the connected components $C^{(+)}, C^{(-)}$is defined an almost complex structure, \widetilde{F}, associated to \widetilde{G}, locally, from: $\widetilde{F}\left(\delta_{k}\right)=-\frac{\bar{H}}{r} \partial_{k} ; \widetilde{F}\left(\partial_{k}\right)=\frac{r}{\bar{H}} \delta_{k}$, where, $\left(\delta_{k}=\right.$ $\left.\frac{\partial}{\partial x^{k}}-y^{s} \gamma_{k s}^{i} \partial_{i} ; \partial_{k}=\frac{\partial}{\partial y^{k}}\right)$ in $u \in \pi^{-1}(U)$, who is given, from $\varepsilon=1$ (the Riemannian case), by R. Miron. Result:

Proposition 2.7. We have, a) $\widetilde{\theta}(X, Y)=\widetilde{G}(F X, Y) ; d \widetilde{\theta}=r d\left(\frac{1}{\bar{H}}\right) \wedge \theta$
b) $\widetilde{G}(\widetilde{F} X, \widetilde{F} Y)=\widetilde{G}(X, Y)$, that is $(\widetilde{G}, \widetilde{F})$ is an almost hermitian structure.

For, $V_{n}=(M, g, \nabla)$ a Riemannian space, $\varepsilon=1$ and (a) (b) are result from [4].
Proposition 2.8. If $N_{\widetilde{F}}=0,\left(N_{\widetilde{F}}\right.$ is the Nijenhuis tensor) that is \widetilde{F}, is complex, then we have, equivalently:

$$
\begin{equation*}
r_{j k l}^{i}(x)=\frac{\varepsilon}{r^{2}}\left(g_{j k} \delta_{l}^{i}-g_{j l} \delta_{k}^{i}\right), \varepsilon \in\{-1,1\} \tag{2.7}
\end{equation*}
$$

where $r(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z, X, Y, Z \in \mathcal{X}(M)$ is the curvature tensor of the pseudo-Riemannian space, base, $V_{n}=(M, g, \nabla)$.

Proposition 2.9. If H is an integrable distribution, then we have 2.7, that is on the connected components, the curvature is $R=\frac{\varepsilon}{r^{2}}, \varepsilon \in\{-1,1\}$, constant but with contrary sign.
Proposition 2.10. If $(\widetilde{G}, \widetilde{F})$ is a hermitian structure, then the first fundamental form ψ, of V_{n}, will be bring in to the Riemann form:
$\psi=\frac{1}{A} \sum_{i=1}^{n} \varepsilon_{i}\left(d x^{i}\right)^{2} ; \varepsilon_{i} \in\{-1,1\}$, where, $A=\left(1+\frac{\varepsilon}{4 r^{2}} \sum_{i=1}^{n} \varepsilon_{i}\left(x^{i}\right)^{2}\right)^{2}$
In the case $\left(T^{*} M\right)$ these results will be much difficult to obtain. We will study the generalization of these results in the Lagrange theory in to another paper (the pseudo-Lagrange case).

3 The pseudo-Riemannian associated isometries

We will start with the observation that, for $n=2, M_{2}$-compact is not possible to talk about the pseudo-Riemannian isometries or the pseudo-Riemannian infinitesimal isometries, only if M_{2} is the torus or the Klein bottle.

In the relativistic mechanic, a vector field $\xi \in \mathcal{X}(M)$, with the null divergente, $\operatorname{div} \xi=0$ has an important roll (will be called incompressible). As is known any ξ-Killing has this property.

Let be $V=(M, g, \nabla)$ a pseudo-Riemannian space and $I(M, g)$ the group of all (n)
isometries of (M, g). Like in the Riemannian case, $I(M, g)$ is a Lie group who act differential on (M, g), it is a subgroup of the diffeomorphisms group on M. Like in the Riemannian case, because, $\varphi \in I(M, g)$ preserve g, hence preserve ∇ (the Levi-Civita connection) and also preserve the geodesics of ∇, the elementary volume, etc. When g is Riemannian, φ also preserves the distances (the property is reciprocal). But, in the pseudo-Riemannian case for g, we cannot talk about such property. Tis is another difference between the g-Riemannian and the g-pseudo-Riemannian cases.

Let be ξ and $\underset{(\xi)}{\omega}$, dual 1-form, given by $g(\xi, X)=\underset{(\xi)}{\omega}(X) ; \forall X$.
We have, $\operatorname{div} \xi=\delta \underset{(\xi)}{\omega}$ (the codifferential of $\underset{(\xi)}{\omega}$).
Lemma 3.1. If $\xi_{x} \in C_{x}^{(0)}$, then, locally, the equation, $\underset{(\xi)_{x}}{\omega}=0$, admit a set of (n -1)-uples $\{(\underset{(1)}{\xi}, \ldots, \underset{(n-1)}{\xi})\}$, where $\underset{(1)}{\xi}, \ldots, \underset{(n-1)}{\xi}$ are in x, linear independent and the (1) $\quad(n-1) \quad(1) \quad(n-1)$
directions given by $\xi,(a=\overline{1, n-1})$, through x, cannot be g-conjugate, mutually. We (a)
have, locally, $g_{i k} \xi^{i} \xi^{k}=0 ; g_{i k} \xi^{i} \xi^{k}=0(a=\overline{1, n-1})$, and ξ is a linear combination of (a)
(ξ) $(a=\overline{1, n-1})$.
(a)

Lemma 3.2. Let be a frame, in $x,\{\underset{(a)}{V}\} \quad(a=\overline{1, n-1})$ orthogonal, $g(\underset{(a)}{V}, \underset{(b)}{V})$
$=0 ; \forall a \neq b ; a, b=\overline{1, n}$. Then we have, $\underset{(a)_{x}}{V} \notin C_{x}^{(0)}, \forall a \neq b ; a, b=\overline{1, n}$.
That is neither of vectors from the orthogonal frame cannot be with null length. So, it can be normalized, because $\left|\begin{array}{c}V \\ (a)\end{array}\right|=\sqrt{\varepsilon_{a} g\left(\underset{(a)}{V}, V_{(a)}\right)} \neq 0$. Let be this $\left(\underset{(1)}{U}, \ldots,{ }_{(a)}^{V}\right)$. We can write:

$$
\begin{aligned}
& g(\underset{(a)}{U}, \underset{(b)}{U})=0 ; \forall a \neq b ; a, b=\overline{1, n} ; g \underset{(a)}{(U,}, \underset{(a)}{U})=\varepsilon_{a} ; a=\overline{1, n}, \varepsilon_{a} \in\{-1,1\} \\
& \operatorname{div} \xi=\sum_{a=1}^{n} \varepsilon_{a} g\left(\underset{(a)}{\underset{U}{U}} \underset{(a)}{\underset{(a)}{U})}=\delta \underset{(\xi)}{\omega}=\sum_{a=1}^{n} \varepsilon_{a}\left(\nabla_{(a)(\underset{J}{U})}^{\omega}\right)(\underset{(a)}{U})\right.
\end{aligned}
$$

Remark. Sometimes, in the geometry, the codifferential is with (-).
In the case when g is Riemannian, we have $\varepsilon_{a}=1(\mathrm{a}=\overline{1, n})$ and we will obtain the formula for $\operatorname{div} \xi$ in the orthonormal frame.

We consider a Killing vector field ξ defined with by means of infinitesimal isometries. Let be $V_{(n)}$ a pseudo-Riemannian space and let $\xi \in \mathcal{X}(M)$. If the local 1parametric group of diffeomorphisms, generated by ξ is locally given by isometries, then ξ is called Killing vector field. The local isometries will be called the infinitesimal isometries or infinitesimal motions.
Equivalently, like in the Riemannian case, we obtain the Killing equations:

$$
\begin{equation*}
\left(\nabla_{X}^{X} \underset{(\xi)}{\omega}\right)(Y)+\left(\nabla_{Y} \underset{(\xi)}{\omega}\right)(X)=0 \tag{3.-6}
\end{equation*}
$$

In the definition of ξ being Killing we start from 3.-6, to clarify the infinitesimal character of the definition. Using the Lie derivative, we have, like in the Riemannian case, $L_{\xi} g=0$.

Formally, there are no differences relative to the Riemannian case, while taking into account the previous remarks. Moreover, we must take into account the case
$\xi: x \rightarrow \xi_{x} \in C_{x}^{(0)}$ and ξ is Killing, particulary, when $\nabla \xi=0$ and its orbits are geodesics (the case of infinitesimal translations).

From all these we can observe the difficulty of studying pseudo-Riemannian isometries, infinitesimal isometries, on $V_{2 n}=(T M, G, D)$, where G is the pseudoRiemannian Sasaki lift.

It is normal not to study the infinitesimal isometries $\widetilde{\varphi} \in I(T M, G)$ using the general model, but using the correspondence with the infinitesimal isometries, $\varphi \in$ $I(M, g)$. The study will be similar with the Riemannian Sasaki case, but now we shall be using the adapted basis $\left\{\frac{\delta}{\delta x^{i}}, \frac{\partial}{\partial y^{i}}\right\}$. This leads to specific results, like in $\S 2$, because: $\xi_{x} \in C_{x}^{(-)}$or $\xi_{x} \in C_{x}^{(0)}$ or $\xi_{x} \in C_{x}^{(+)}$.

Consider the infinitesimal transformation on base,

$$
\begin{equation*}
\xi_{x} f=\left.\frac{d}{d t} f\left(\varphi_{t}(x)\right)\right|_{t=0} ; x \in M, f \in \mathcal{F}(M) \tag{3.-5}
\end{equation*}
$$

$\left\{\varphi_{t}(x)\right\}$ is an 1-parametric group generate from ξ, which is generally local $(t \in$ $(-\varepsilon, \varepsilon)=I, \varepsilon>0)$. It is global if ξ is complete and conversely. If ξ is Killing, then the local group of diffeomorphisms consists of local isometries $\varphi \in I(M, g)$.

Let be the infinitesimal transformation on $T M$,

$$
\begin{equation*}
\overline{\xi_{u} f}=\left.\frac{d}{d t} \bar{f}\left(\overline{\varphi_{t}}(u)\right)\right|_{t=0} ; \pi(u)=x ; u \in \pi^{-1}(U) ; x \in U \tag{3.-4}
\end{equation*}
$$

If $\bar{\xi}$ is Killing then the diffeomorphisms of 1-parametric group generate from $\bar{\xi}$, are isometries (local) $\bar{\varphi} \in I(T M, G)$.

Generally, the orbit of x is an immersion $\gamma_{x}: I \rightarrow M$ given by $\gamma_{x}(t)=\varphi_{t}(x)$ and $\xi\left(\gamma_{x}(t)\right)=\dot{\gamma}_{x}(t)\left(\gamma_{x}\right.$ is an integral curve of ξ, through $\left.x\right)$. Their family $\left\{\gamma_{x}(t)\right\}, x \in M$ $(x \in U), t \in I$, is a congruence of curves on M (if ξ is complete) or locally, through each $x \in U$ passes one curve of the family, in opposite case. The similar happens for $\bar{\xi}$.

Problem 1 If $\xi \notin C^{(0)}$, then we consider the infinitesimal isometries (local), $\bar{\varphi} \in I(T M, G)$ natural prolongations of infinitesimal isometries (local), $\varphi \in I(M, g)$? Problem 2 If these prolongations are infinitesimal translations (infinitesimal motions, who are translations) local, on the base, what infinitesimal motions (local) correspond on TM?
Problem 3 In both cases, do they induce induces on $V_{2 n-1}$ infinitesimal motions?
Problem 4 In this natural prolongation, if the orbits of ξ are geodesics (local) of V_{n}, then are the orbits of $\bar{\xi}$ geodesics of $V_{2 n}$?
Problem 5 Considering the unique decomposition $\bar{\xi}=h \bar{\xi}+v \bar{\xi}$ (with respect to the nonlinear connection N), when do $h \bar{\xi}$ and $v \bar{\xi}$ locally generate the infinitesimal isometries?

Because $\xi \notin C^{(0)}$ we can write, in $x \in U, \varepsilon_{\xi} \in\{-1,1\}$ and $\xi \in C^{(-)}$or $\xi \in C^{(+)}$,

$$
\begin{equation*}
|\xi|^{2}=\varepsilon_{\xi} g_{i k} \xi^{i} \xi^{k} \tag{3.-3}
\end{equation*}
$$

Let be $\bar{\xi}$ defined by,

$$
\begin{equation*}
\bar{\xi}=h \bar{\xi}+v \bar{\xi} \tag{3.-2}
\end{equation*}
$$

where, in $u \in \pi^{-1}(U), \pi(u)=x \in U$,

$$
\begin{equation*}
h \bar{\xi} \stackrel{\text { def }}{=} \xi^{h}=\xi^{i} \frac{\delta}{\delta x^{i}} ; v \bar{\xi} \stackrel{\text { def }}{=}\left(y^{s} \nabla_{s} \xi^{r}\right) \frac{\partial}{\partial y^{r}}, \tag{3.-1}
\end{equation*}
$$

if,

$$
\begin{equation*}
\xi=\xi^{i}(x) \frac{\partial}{\partial x^{i}} \tag{3.0}
\end{equation*}
$$

Let note $G\left(u^{\alpha}, u^{\beta}\right)=G_{\alpha \beta}(x, y)$, where $u^{\alpha}=\left(u^{i}=x^{i}, u^{n+i}=y^{i}\right)$.
Theorem 3.1. Let be $V_{n}=(M, g, \nabla)$-pseudo-Riemannian and $V_{2 n}=(T M, G, D)$, with the pseudo-Riemannian Sasaki lift G. The necessary and sufficient condition for to exists infinitesimal motions (that is local isometries, infinitesimal) $\varphi \in I(M, g), \widetilde{\varphi} \in I(T M, G)$, who correspond one the other, is to exist a system of local coordinates (x, y), on TM, such as $G_{n+i n+k}(x, y)$ is not depend form a local coordinate, x^{r} (r, fixed). That is,

$$
\begin{equation*}
\frac{\partial G_{n+i n+k}}{\partial x^{r}}=0 ; \forall i, k=\overline{1, n}(r, \text { fixed }) \tag{3.1}
\end{equation*}
$$

Theorem 3.2. In the conditions of theorem 1, the equations $L_{\xi} g=0$ admit one solution ξ, who is Killing and for who the diffeomorphisms of 1-parametric group 3.5, given by ξ, are the infinitesimal motions. Let be ξ 3.0. Then $\xi_{x} \notin C_{x}^{(0)}(x \in U)$. Because ξ is Killing, result that $\bar{\xi}$ 3.-2, 3.-1 is Killing, for the space $V_{2 n}$ and so $L_{\bar{\xi}} G=0$, and reciprocally. So, the 1-parametric group, local, generated by $\bar{\xi}$ is given by local isometries. We have the reciprocal.

In the local coordinates for 3.1, we have:

$$
|\xi|^{2}=\varepsilon_{\xi} g_{r r} ; g_{i k}=g_{i k}\left(x^{1}, \ldots, x^{r-1}, x^{r+1}, \ldots, x^{n}\right), i, k=\overline{1, n}
$$

Evidently, $\varepsilon_{\xi} \in\{-1,1\}$, if $g_{r r}<0$ or $g_{r r}>0$. We cannot have $g_{r r}=0$ because g is nondegenerate. $|\xi| \neq 0$, so the infinitesimal motion is not minimal.

The infinitesimal motion is a translation, $|\xi|=c t$ if and only if $g_{r r}=c t \neq 0$. From that result $G_{n+r n+r}=c t$ for the first fundamental form of V_{n}, such as, of $V_{2 n}$. The linear element will be: $d s^{2}=\varepsilon g_{i k} d x^{i} d x^{k}+\varepsilon_{r} g_{r r}\left(d x^{r}\right)^{2} ; g_{i i} \neq g_{r r}(i=\overline{1, n})$ (without summation from r) with $\frac{\partial g_{j l}}{\partial x^{r}}=0 ; j, l=\overline{1, n}$.
Theorem 3.3. If exist a local chart in u, on $T M\left(u \in \pi^{-1}(U), \pi(u)=x \in U\right)$, thus we have 3.1, then exist $\xi, \bar{\xi}$ 3.-2 3.-1, thus we have the relations:

$$
\begin{gather*}
D_{X Y}^{2} \bar{\xi}=R(X, \xi) Y ; \forall X, Y \in \mathcal{X}(T M) \tag{3.2}\\
L_{\bar{\xi}} D=0 \tag{3.3}
\end{gather*}
$$

$\overline{(}$ is an affine collineation, infinitesimal of space $V_{2 n}$) and we have the relations for ξ, analogously.

Proof. The conditions are equivalent with the existence of a Killing vector field ξ on V_{n} and hence, with the existence of a Killing vector field $\bar{\xi}$, on $V_{2 n}$, who has the form 3.-2 3.-1. So we have 3.2, 3.3 and the similar relations, $\nabla_{X Y}^{2} \xi=r(X, \xi) Y$; $\forall X, Y \in \mathcal{X}(M), L_{\xi} \nabla=0$.

If $\xi_{x} \notin C_{x}^{(0)}$ then, like in the Sasaki-Riemannian case, we can show that, taking into account the transformations $(x, y) \rightarrow(\bar{x}, \bar{y})$, for the relations 3.-5, 3.-3 are obtain the infinitesimal transformations:

$$
\begin{gather*}
\bar{x}^{i}=x^{i}+\xi^{i}(x) \delta t, \tag{3.4}\\
\bar{x}^{i}=x^{i}+\xi^{i}(x) \delta t, \bar{y}^{i}=y^{i}+\left(y^{s} \nabla_{s} \xi^{i}-N_{r}^{i} \xi^{r}\right) \delta t, \tag{3.5}
\end{gather*}
$$

Starting from here we can prove that if 3.4 are the isometries (local) $\varphi \in I(M, g)$, then 3.5 are the isometries (local) $\widetilde{\varphi} \in I(T M, G)$. So, if $\xi \notin C^{(0)}$ is Killing, then $\bar{\xi}$ $3 .-23 .-1$ is Killing and reciprocally. Other aspects relative to the previously discussed problems will be provided in a forecoming paper.
Proposition 3.1. If $V_{n}=(M, g, \nabla)$-pseudo-Riemannian has ξ parallel with $\nabla \xi=0$, then $\bar{\xi}=\xi^{h}$ is Killing.

Moreover, the orbits of ξ are the geodesics of space V_{n} and the orbits of $\bar{\xi}$ are the horizontal lifts of the orbits of ξ, and these are the geodesics of $V_{2 n}$. Their restrictions to $V_{2 n-1}$ are the geodesics of $V_{2 n-1}$.
The general problem of geodesics on $V_{2 n}$-pseudo-Riemannian, tied to the geodesics on V_{n}, is solved. We show that, the equations of geodesics on $V_{2 n}$ can be written locally using ∇, only in terms of V_{n}. The problem of general translations for $V_{n}, V_{2 n}$ is subject of further research.

References

[1] A.C. Curcă-Năstăselu, A. Morar Relativistic Sasaki Lift, National Conference of SSMR, Lugoj, 2005.
[2] S. Ianus, Differential Geometry and Applications to Theory of Relativity (in Romanian), Ed. Acad. Rom., 1980.
[3] R. Miron, M. Anastasiei, Vector Bundles. Lagrange Spaces. Applications to Relativity, (in Romanian), Ed. Academiei Romane, 1987.
[4] R. Miron, The homogeneous lift of a Riemannian metric, National Conference of Finsler- Lagrange Spaces, Iasi, 1998.
[5] A. C. Năstăselu, A. Lupu On some structures F, F^{*}, National Conference of Finsler-Lagrange-Hamilton Spaces, Brasov, 2004.
[6] P. Stavre, On the integrabiliy of the structures $\left(T^{*} M, G, \stackrel{*}{F}\right)$, Rev. Alg. Groups and Geom., Hadronic Press USA 16, 1 (1999), 107-114.
[7] P. Stavre, Vector Bundles (in Romanian), Ed. Univ. Craiova, 2004.
[8] P. Stavre, Aprofundări în geometria diferenţială (in Romanian), Ed. Univ. Craiova, 2004.
[9] P. Stavre, On some structures $(E=T M, G, F, \stackrel{*}{F})$, National Conference of Finsler-Lagrange-Hamilton Spaces, Braşov, Romania, 2004.
[10] N. Steenrod, Topology of fibre bundle, Princeton Univ., 1951.
[11] K. Yano, S. Ishihara, Tangent and Cotangent Bundles, Marcel Dekker, 1973.
Authors' addresses:
Petre Stavre
Departament of Matematics, University of Craiova, 13 Al. I. Cuza str., Craiova 200585, Romania.
email: pstavre@hotmail.com
Amelia Cristina Curcă-Năstăselu
Palatul Copiilor Craiova, 18 Simion Bărnuţiu str.,
Craiova 200382, Romania.
email: cristamenc@yahoo.com

[^0]: Thê Fifth Conference of Balkan Society of Geometers, Aug. 29 - Sept. 2, 2005, Mangalia, Romania; BSG Proceedings 13, Geometry Balkan Press pp. 148-156.
 (C) Balkan Society of Geometers, 2006.

