The pseudo-Riemannian isometries associated to Sasaki lift

Petre Stavre and Amelia Curcă-Năstăselu

Abstract

In this paper, using a pseudo-Riemannian metric on the base M, of tangent bundle (TM, π, M) and the pseudo-Riemannian Sasaki lift, the results from propositions on the paragraphs 2 and 3 are obtained.

Mathematics Subject Classification: 53C60. Key words: pseudo-Riemannian indicator, homogeneous lift.

1 Introduction

Let consider the tangent bundle $\xi = (TM, \pi, M)$, where $M_n = (M, [A]; \Re^n)$ is a C^{∞} differential manifold, paracompact, connex. Moreover, in the general theory knowing of the tangent bundle, an important role has the case that a Riemannian metric g, on M, is "lifted" to the Sasaki metric G, on TM. For this case are working: Kentaro-Yano, Sasaki, Ianus Stere, R. Miron, etc. A generalization for the cotangent bundle is given by P. Stavre.

Now, let be a pseudo-Riemannian structure (M, g) and $V = (M, g, \nabla)$ the pseudo-(n)

Riemannian space corresponding in these conditions, the Riemannian metrics $\{g\}$ exists on M, globally, but generally, the pseudo-Riemannian metrics, $\{g\}$ do not globally exist. An example is given by Steenrod for n = 2, V-compact. In this case, only (2)

the torus and the Klein bottle admit pseudo-Riemannian metrics. For instance, the existence of an everywhere non-zero vector field is a condition for the existence of pseudo-Riemannian Lorentz metrics, which are essential in the generalized relativity theory. As well, Steenrod showed that this is equivalent with the vanishing of a topological invariant (the Euler-Poincaré characteristic).

We will extend the Sasaki lift in the case of pseudo-Riemannian structure (M, g). The study is difficult because now we have: vectors with zero length; curves (differentiable or differentiable on parts) with zero length (or minimal); the curves with zero length can be or cannot be geodesics; the distance between two points can be zero:

Thế Fifth Conference of Balkan Society of Geometers, Aug. 29 - Sept. 2, 2005, Mangalia, Romania; BSG Proceedings 13, Geometry Balkan Press pp. 148-156.

 $x, y \in M, x \neq y, d(x, y) = 0$. So, the metrization of the topological space (M, τ) is not possible like in the Riemannian case and so, the Hopf-Rinow theory does not work.

We will define in $x \in M$ the pseudo-Riemannian indicator, as follows: $\varepsilon_x = -1$ if g(X, X) < 0; $\varepsilon_x = 0$ if g(X, X) = 0; $\varepsilon_x = 1$ if g(X, X) > 0.

We will note: $C_x^{(-)} = \{X_x \in T_x M | \varepsilon_X = -1\}$ (the set of spatial vectors); $C_x^{(0)} = \{X_x \in T_x M | \varepsilon_X = 0\}$ (the set of isotropic vectors);

 $C_x^{(+)} = \{X_x \in T_x M \mid \varepsilon_X = 1\}$ (the set of temporal vectors) and we will define the length of vector X, by the real number, $|X| \ge 0$, where $|X|^2 = \varepsilon_x g(X, X)$.

length of vector X, by the real number, $|X| \ge 0$, where $|X|^2 = \varepsilon_x g(X, X)$. Evidently, $X_x \in C_x^{(0)} \Leftrightarrow |X| = 0$. The field X, at x, is unitary if $g(X, X) = \varepsilon_x$. The sets $C_x^{(-)}$, $C_x^{(+)}$ are open and $C_x^{(0)}$ is closed. We can write the partitions: $C_x^{(-)} = C_x^{1(-)} \cup C_x^{2(-)}$; $C_x^{1(-)} \cap C_x^{2(-)} = \emptyset$; $C_x^{(0)} = C_x^{1(0)} \cup C_x^{2(0)}$; $C_x^{1(0)} \cap C_x^{2(0)} = \emptyset$; $C_x^{(+)} = C_x^{1(+)} \cup C_x^{2(+)}$; $C_x^{1(+)} \cap C_x^{2(+)} = \emptyset$, where $C_x^{1(-)}$, $C_x^{2(-)}$ are the conexes open sets and analogously, $C_x^{1(+)}$, $C_x^{2(+)}$. If $X_x \in C_x^{1(+)}$ then $-X_x \in C_x^{2(+)} \dots C_x^{1(0)}$, $C_x^{2(0)}$ will be called the isotropic hipercones, with the vertex at x, they are opposite. We consider $C: x \to C_x$.

2 Considerations on $\xi = (TM, \pi, M)$

On the space TM, considered as a paracompact 2n-dimensional differentiable manifold, there exists a pseudo-Riemannian metric, which has the local form:

(2.1)
$$G = g_{ik}(x)dx^i \otimes dx^k + g_{rs}\delta y^r \otimes \delta y^s,$$

where, $\delta y = \nabla y$ (the covariant differential, relative to the pseudo-Levi-Civita connection defined by the pseudo-Riemannian g, for $y \in T_x M$, $x \in M$) $(u = (x^i, y^i) \in \pi^{-1}(U)$, where $x \in U$ has the local coordinates $x^i = x^i(x), \pi^{-1}(U)$ is the geometric zone of a local chart at u, on TM). So, we have a Whitney decomposition, $T_uTM = H_uTM \bigoplus V_uTM, u \in TM$ and the distributions, $H : u \to H_uTM$ (horizontal) and $V : u \to V_uTM$ (vertical). The metric G is the generalized Sasaki metric for the pseudo-Riemannian case.

We have globally and locally, for G,

$$(2.2) G = hG + vG,$$

$$hG = g_{ik}(x)dx^i \otimes dx^k,$$

(2.4)
$$vG = g_{rs}(dy^{r} + N_{k}^{r}(x, y)dx^{k})(dy^{s} + N_{i}^{s}(x, y)dx^{i})$$

with,

(2.5)
$$N_k^r(x,y) = y^l \gamma_{kl}^r(x),$$

the coefficients of a nonlinear connection in ξ , defined by g from the Levi-Civita coefficients $\{\gamma\}$, of the Levi-Civita connection ∇ . Evidently, N is 1-homogeneous relative to the vertical fibres, that is relative to y.

G is the Sasaki lift for the Riemannian g. It seems that there are no differences. But, now, we cannot achieve $g(X, X) = \varepsilon_X |X|^2$, $\varepsilon_X \in \{-1, 0, 1\}$. **Definition 2.1.** Let note $V_n = (TM, g, \nabla)$ the pseudo-Riemannian space, base, $V_{2n} = (TM, G, D)$ the tangent pseudo-Riemannian space. The submanifold of V_{2n} defined by the restriction, $g_x(y, y) = \varepsilon$, will be called the tangent bundle $(\overline{T}M, \overline{\pi}, M)$, on M, of the pseudo-spheres.

A locally map, in $u \in \overline{T}M$ will be with the geometric zone $\overline{\pi}^{-1}(U)$; $u \in \overline{\pi}^{-1}(U)$; $u \in \pi^{-1}(U)$; $\overline{\pi}(u) = x \in U$, $\pi(u) = x \in U$. Result:

Proposition 2.1. The metric \overline{G} , induced by G, on $\overline{T}M$ is 0-homogeneous, though G is not 0-homogeneous.

So, let be $V_{2n-1} = (\overline{T}M, \overline{G}, \overline{D})$, the pseudo-Riemannian subspace (or the Riemannian subspace if $\varepsilon = 1$).

Proposition 2.2. The horizontal distribution \overline{H} , on $\overline{T}M$, is the restriction of H in the points $u \in \overline{\pi}^{-1}(U)$.

From 2.2 - 2.5 result $(vG) \circ h_t \neq vG$, that is G is not 0-homogeneous on $\widetilde{T}M = TM \setminus \{0\}$ $(h_t = \text{homothety}, t \in \Re^+)$.

Proposition 2.3. a) On the connected components of sets $C^{(+)}$, $C^{(-)}$, the metric 2.1 is not 0-homogeneous. b) Its restriction, on $C^{(0)}$ is 0-homogeneous. c) Its restriction, on $\overline{T}M$ is 0-homogeneous.

A generalization of Miron's results ([4]) is obtained in this way.

For the tangent bundle, having fixed N, for each $X \in \mathcal{X}(M)$, exists $X^h \in H, X^v \in V$, uniquely. Let be the almost complex structure, natural, F, defined by,

(2.6)
$$F(X^{h}) = -X^{v}; F(X^{v}) = X^{h} (F^{2} = -I),$$

which is G(FX, FY) = G(X, Y), $\forall X, Y \in \widetilde{T} M$, that is, $(\widetilde{T}M, G, F)$ is an almost complex structure, with the 2-form associated, $\theta(X, Y) = G(FX, Y)$. In this case, result:

Proposition 2.4. a) For 2.1, 2.5, 2.6 we have: $d\theta = 0$, that is, the structure is an almost kählerian structure. b) The structure $(\widetilde{T} \ M, G, F)$ is kählerian if and only if V_n is a linear Lorentz space, locally (pseudo-euclidian) that is, if and only if the first fundamental form can be write, locally,

$$\psi = \sum_{i=1}^{n} \varepsilon_i (dx^i)^2, \, \varepsilon_i \in \{-1, 1\}$$

The homogenization of G must be making only on the connected components $C^{(+)}, C^{(-)}$. Let be $\varepsilon g(y, y) = |y|^2$ ($\varepsilon \in \{-1, 1\}$); $\overline{H} = \sqrt{\varepsilon H}$.

Proposition 2.5. The 0-homogeneous metric G is given by:

$$\tilde{G} = g_{ik} dx^i \otimes dx^k + \frac{r^2}{\varepsilon H} g_{rs} \nabla y^r \otimes \nabla y^s; r = ct > 0$$

Proposition 2.6. The 0-homogeneous metric \widetilde{G} preserve the signature.

The pseudo-Riemannian isometries associated to Sasaki lift

On the connected components $C^{(+)}$, $C^{(-)}$ is defined an almost complex structure, \widetilde{F} , associated to \widetilde{G} , locally, from: $\widetilde{F}(\delta_k) = -\frac{\overline{H}}{r}\partial_k$; $\widetilde{F}(\partial_k) = \frac{r}{\overline{H}}\delta_k$, where, $(\delta_k = \frac{\partial}{\partial x^k} - y^s \gamma_{ks}^i \partial_i; \partial_k = \frac{\partial}{\partial y^k})$ in $u \in \pi^{-1}(U)$, who is given, from $\varepsilon = 1$ (the Riemannian case), by R. Miron. Result:

Proposition 2.7. We have, a) $\tilde{\theta}(X,Y) = \tilde{G}(FX,Y)$; $d\tilde{\theta} = rd(\frac{1}{\overline{H}}) \wedge \theta$ b) $\tilde{G}(\tilde{F}X,\tilde{F}Y) = \tilde{G}(X,Y)$, that is (\tilde{G},\tilde{F}) is an almost hermitian structure.

For, $V_n = (M, g, \nabla)$ a Riemannian space, $\varepsilon = 1$ and (a) (b) are result from [4].

Proposition 2.8. If $N_{\widetilde{F}} = 0$, $(N_{\widetilde{F}} \text{ is the Nijenhuis tensor})$ that is \widetilde{F} , is complex, then we have, equivalently:

(2.7)
$$r_{jkl}^i(x) = \frac{\varepsilon}{r^2} (g_{jk} \delta_l^i - g_{jl} \delta_k^i), \ \varepsilon \in \{-1, 1\},$$

where $r(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]}Z$, $X,Y,Z \in \mathcal{X}(M)$ is the curvature tensor of the pseudo-Riemannian space, base, $V_n = (M, g, \nabla)$.

Proposition 2.9. If *H* is an integrable distribution, then we have 2.7, that is on the connected components, the curvature is $R = \frac{\varepsilon}{r^2}$, $\varepsilon \in \{-1, 1\}$, constant but with contrary sign.

Proposition 2.10. If (\hat{G}, \hat{F}) is a hermitian structure, then the first fundamental form ψ , of V_n , will be bring in to the Riemann form:

$$\psi = \frac{1}{A} \sum_{i=1}^{n} \varepsilon_i (dx^i)^2; \ \varepsilon_i \in \{-1, 1\}, \ where, \ A = \left(1 + \frac{\varepsilon}{4r^2} \sum_{i=1}^{n} \varepsilon_i (x^i)^2\right)^2$$

In the case (T^*M) these results will be much difficult to obtain. We will study the generalization of these results in the Lagrange theory in to another paper (the pseudo-Lagrange case).

3 The pseudo-Riemannian associated isometries

We will start with the observation that, for n = 2, M_2 -compact is not possible to talk about the pseudo-Riemannian isometries or the pseudo-Riemannian infinitesimal isometries, only if M_2 is the torus or the Klein bottle.

In the relativistic mechanic, a vector field $\xi \in \mathcal{X}(M)$, with the null divergente, $div\xi = 0$ has an important roll (will be called incompressible). As is known any ξ -Killing has this property.

Let be $V = (M, g, \nabla)$ a pseudo-Riemannian space and I(M, g) the group of all (n)

isometries of (M, g). Like in the Riemannian case, I(M, g) is a Lie group who act differential on (M, g), it is a subgroup of the diffeomorphisms group on M. Like in the Riemannian case, because, $\varphi \in I(M, g)$ preserve g, hence preserve ∇ (the Levi-Civita connection) and also preserve the geodesics of ∇ , the elementary volume, etc. When g is Riemannian, φ also preserves the distances (the property is reciprocal). But, in the pseudo-Riemannian case for g, we cannot talk about such property. Tis is another difference between the g-Riemannian and the g-pseudo-Riemannian cases. Let be ξ and $\underset{(\xi)}{\omega}$, dual 1-form, given by $g(\xi, X) = \underset{(\xi)}{\omega}(X); \forall X$. We have, $div\xi = \delta \underset{(\xi)}{\omega}$ (the codifferential of $\underset{(\xi)}{\omega}$).

Lemma 3.1. If $\xi_x \in C_x^{(0)}$, then, locally, the equation, $\omega = 0$, admit a set of $\binom{n-1}{(\xi)_x}$ 1)-uples $\{(\xi, ..., \xi)\}$, where $\xi, ..., \xi$ are in x, linear independent and the $\binom{n-1}{(1)(n-1)}$ $\binom{n-1}{(1)(n-1)}$ directions given by ξ , $(a = \overline{1, n-1})$, through x, cannot be g-conjugate, mutually. We $\binom{a}{(a)}$ have, locally, $g_{ik}\xi^i\xi^k = 0$; $g_{ik}\xi^i\xi^k = 0(a = \overline{1, n-1})$, and ξ is a linear combination of $\binom{\xi}{(a)}$ $(a = \overline{1, n-1})$.

Lemma 3.2. Let be a frame, in $x, \{ \begin{array}{c} V \\ (a) \end{array} \}$ $(a = \overline{1, n - 1})$ orthogonal, $g(\begin{array}{c} V \\ (a) \end{array}, \begin{array}{c} V \\ (a) \end{array})$ = 0; $\forall a \neq b$; $a, b = \overline{1, n}$. Then we have, $\begin{array}{c} V \\ (a)_x \end{array} \notin C_x^{(0)}, \ \forall a \neq b$; $a, b = \overline{1, n}$.

That is neither of vectors from the orthogonal frame cannot be with null length. So, it can be normalized, because $\begin{vmatrix} V \\ (a) \end{vmatrix} = \sqrt{\varepsilon_a g(V, V)} \neq 0$. Let be this (U, ..., V). We can write:

$$g(\begin{array}{c}U\\(a)\end{array}, \begin{array}{c}U\\(b)\end{array}) = 0; \forall a \neq b; a, b = \overline{1, n}; \ g(\begin{array}{c}U\\(a)\end{array}, \begin{array}{c}U\\(a)\end{array}) = \varepsilon_a; a = \overline{1, n}, \varepsilon_a \in \{-1, 1\}$$
$$div\xi = \sum_{a=1}^n \varepsilon_a g(\nabla_{\begin{array}{c}U\\(a)\end{array}} \xi, \begin{array}{c}U\\(a)\end{array}) = \delta \begin{array}{c}\omega\\(\xi)\end{array} = \sum_{a=1}^n \varepsilon_a (\nabla_{\begin{array}{c}U\\(a)\end{array}} \omega)(\begin{array}{c}U\\(a)\end{array})$$

Remark. Sometimes, in the geometry, the codifferential is with (-).

In the case when g is Riemannian, we have $\varepsilon_a = 1$ (a= $\overline{1,n}$) and we will obtain the formula for $div\xi$ in the orthonormal frame.

We consider a Killing vector field ξ defined with by means of infinitesimal isometries. Let be $V_{(n)}$ a pseudo-Riemannian space and let $\xi \in \mathcal{X}(M)$. If the local 1-parametric group of diffeomorphisms, generated by ξ is locally given by isometries, then ξ is called Killing vector field. The local isometries will be called the infinitesimal isometries or infinitesimal motions.

Equivalently, like in the Riemannian case, we obtain the Killing equations:

(3.-6)
$$(\nabla_X \underset{(\xi)}{\omega})(Y) + (\nabla_Y \underset{(\xi)}{\omega})(X) = 0$$

In the definition of ξ being Killing we start from 3.-6, to clarify the infinitesimal character of the definition. Using the Lie derivative, we have, like in the Riemannian case, $L_{\xi}g = 0$.

Formally, there are no differences relative to the Riemannian case, while taking into account the previous remarks. Moreover, we must take into account the case

152

 $\xi : x \to \xi_x \in C_x^{(0)}$ and ξ is Killing, particularly, when $\nabla \xi = 0$ and its orbits are geodesics (the case of infinitesimal translations).

From all these we can observe the difficulty of studying pseudo-Riemannian isometries, infinitesimal isometries, on $V_{2n} = (TM, G, D)$, where G is the pseudo-Riemannian Sasaki lift.

It is normal not to study the infinitesimal isometries $\tilde{\varphi} \in I(TM, G)$ using the general model, but using the correspondence with the infinitesimal isometries, $\varphi \in I(M, g)$. The study will be similar with the Riemannian Sasaki case, but now we shall be using the adapted basis $\left\{\frac{\delta}{\delta x^i}, \frac{\partial}{\partial y^i}\right\}$. This leads to specific results, like in §2, because: $\xi_x \in C_x^{(-)}$ or $\xi_x \in C_x^{(0)}$ or $\xi_x \in C_x^{(+)}$.

Consider the infinitesimal transformation on base,

(3.-5)
$$\xi_x f = \frac{d}{dt} f(\varphi_t(x))|_{t=0}; x \in M, f \in \mathcal{F}(M),$$

 $\{\varphi_t(x)\}\$ is an 1-parametric group generate from ξ , which is generally local $(t \in (-\varepsilon, \varepsilon) = I, \varepsilon > 0)$. It is global if ξ is complete and conversely. If ξ is Killing, then the local group of diffeomorphisms consists of local isometries $\varphi \in I(M, g)$.

Let be the infinitesimal transformation on TM,

(3.-4)
$$\overline{\xi_u f} = \frac{d}{dt} \overline{f}(\overline{\varphi_t}(u))|_{t=0}; \pi(u) = x; u \in \pi^{-1}(U); x \in U,$$

If $\overline{\xi}$ is Killing then the diffeomorphisms of 1-parametric group generate from $\overline{\xi}$, are isometries (local) $\overline{\varphi} \in I(TM, G)$.

Generally, the orbit of x is an immersion $\gamma_x : I \to M$ given by $\gamma_x(t) = \varphi_t(x)$ and $\xi(\gamma_x(t)) = \dot{\gamma}_x(t)$ (γ_x is an integral curve of ξ , through x). Their family $\{\gamma_x(t)\}, x \in M$ ($x \in U$), $t \in I$, is a congruence of curves on M (if ξ is complete) or locally, through each $x \in U$ passes one curve of the family, in opposite case. The similar happens for $\overline{\xi}$.

Problem 1 If $\xi \notin C^{(0)}$, then we consider the infinitesimal isometries (local), $\overline{\varphi} \in I(TM, G)$ natural prolongations of infinitesimal isometries (local), $\varphi \in I(M, g)$? **Problem 2** If these prolongations are infinitesimal translations (infinitesimal motions, who are translations) local, on the base, what infinitesimal motions (local) correspond on TM?

Problem 3 In both cases, do they induce induces on V_{2n-1} infinitesimal motions? **Problem 4** In this natural prolongation, if the orbits of ξ are geodesics (local) of V_n , then are the orbits of $\overline{\xi}$ geodesics of V_{2n} ?

Problem 5 Considering the unique decomposition $\overline{\xi} = h\overline{\xi} + v\overline{\xi}$ (with respect to the nonlinear connection N), when do $h\overline{\xi}$ and $v\overline{\xi}$ locally generate the infinitesimal isometries?

Because $\xi \notin C^{(0)}$ we can write, in $x \in U$, $\varepsilon_{\xi} \in \{-1, 1\}$ and $\xi \in C^{(-)}$ or $\xi \in C^{(+)}$,

$$(3.-3) |\xi|^2 = \varepsilon_{\xi} g_{ik} \xi^i \xi^k,$$

Let be $\overline{\xi}$ defined by,

(3.-2)
$$\overline{\xi} = h\overline{\xi} + v\overline{\xi}$$

where, in $u \in \pi^{-1}(U)$, $\pi(u) = x \in U$,

(3.-1)
$$h\overline{\xi} \stackrel{\text{def}}{=} \xi^h = \xi^i \frac{\delta}{\delta x^i}; v\overline{\xi} \stackrel{\text{def}}{=} (y^s \nabla_s \xi^r) \frac{\partial}{\partial y^r}$$

if,

(3.0)
$$\xi = \xi^i(x) \frac{\partial}{\partial x^i},$$

Let note $G(u^{\alpha}, u^{\beta}) = G_{\alpha\beta}(x, y)$, where $u^{\alpha} = (u^i = x^i, u^{n+i} = y^i)$.

Theorem 3.1. Let be $V_n = (M, g, \nabla)$ -pseudo-Riemannian and $V_{2n} = (TM, G, D)$, with the pseudo-Riemannian Sasaki lift G. The necessary and sufficient condition for to exists infinitesimal motions (that is local isometries, infinitesimal) $\varphi \in I(M,g)$, $\tilde{\varphi} \in I(TM,G)$, who correspond one the other, is to exist a system of local coordinates (x,y), on TM, such as $G_{n+i n+k}(x,y)$ is not depend form a local coordinate, x^r (r, fixed). That is,

(3.1)
$$\frac{\partial G_{n+in+k}}{\partial x^r} = 0; \forall i, k = \overline{1, n}(r, fixed),$$

Theorem 3.2. In the conditions of theorem 1, the equations $L_{\xi}g = 0$ admit one solution ξ , who is Killing and for who the diffeomorphisms of 1-parametric group 3.-5, given by ξ , are the infinitesimal motions. Let be ξ 3.0. Then $\xi_x \notin C_x^{(0)}$ $(x \in U)$. Because ξ is Killing, result that $\overline{\xi}$ 3.-2, 3.-1 is Killing, for the space V_{2n} and so $L_{\overline{\xi}}G = 0$, and reciprocally. So, the 1-parametric group, local, generated by $\overline{\xi}$ is given by local isometries. We have the reciprocal.

In the local coordinates for 3.1, we have:

$$|\xi|^2 = \varepsilon_{\xi} g_{rr}; g_{ik} = g_{ik}(x^1, \dots, x^{r-1}, x^{r+1}, \dots, x^n), i, k = \overline{1, n}$$

Evidently, $\varepsilon_{\xi} \in \{-1, 1\}$, if $g_{rr} < 0$ or $g_{rr} > 0$. We cannot have $g_{rr} = 0$ because g is nondegenerate. $|\xi| \neq 0$, so the infinitesimal motion is not minimal.

The infinitesimal motion is a translation, $|\xi| = ct$ if and only if $g_{rr} = ct \neq 0$. From that result $G_{n+r\,n+r} = ct$ for the first fundamental form of V_n , such as, of V_{2n} . The linear element will be: $ds^2 = \varepsilon g_{ik} dx^i dx^k + \varepsilon_r g_{rr} (dx^r)^2$; $g_{ii} \neq g_{rr} (i = \overline{1, n})$ (without summation from r) with $\frac{\partial g_{jl}}{\partial x^r} = 0$; $j, l = \overline{1, n}$.

Theorem 3.3. If exist a local chart in u, on TM ($u \in \pi^{-1}(U)$, $\pi(u) = x \in U$), thus we have 3.1, then exist ξ , $\overline{\xi}$ 3.-2 3.-1, thus we have the relations:

(3.2)
$$D_{XY}^2 \overline{\xi} = R(X,\xi)Y; \forall X, Y \in \mathcal{X}(TM),$$

$$(3.3) L_{\overline{\epsilon}}D = 0,$$

 $(\overline{\xi} \text{ is an affine collineation, infinitesimal of space } V_{2n})$ and we have the relations for ξ , analogously.

Proof. The conditions are equivalent with the existence of a Killing vector field ξ on V_n and hence, with the existence of a Killing vector field $\overline{\xi}$, on V_{2n} , who has the form 3.-2 3.-1. So we have 3.2, 3.3 and the similar relations, $\nabla^2_{XY}\xi = r(X,\xi)Y$; $\forall X, Y \in \mathcal{X}(M), L_{\xi}\nabla = 0.$

If $\xi_x \notin C_x^{(0)}$ then, like in the Sasaki-Riemannian case, we can show that, taking into account the transformations $(x, y) \to (\overline{x}, \overline{y})$, for the relations 3.-5, 3.-3 are obtain the infinitesimal transformations:

(3.4)
$$\overline{x}^i = x^i + \xi^i(x)\delta t,$$

(3.5)
$$\overline{x}^i = x^i + \xi^i(x)\delta t, \overline{y}^i = y^i + (y^s \nabla_s \xi^i - N_r^i \xi^r)\delta t,$$

Starting from here we can prove that if 3.4 are the isometries (local) $\varphi \in I(M, g)$, then 3.5 are the isometries (local) $\tilde{\varphi} \in I(TM, G)$. So, if $\xi \notin C^{(0)}$ is Killing, then $\bar{\xi}$ 3.-2 3.-1 is Killing and reciprocally. Other aspects relative to the previously discussed problems will be provided in a forecoming paper.

Proposition 3.1. If $V_n = (M, g, \nabla)$ -pseudo-Riemannian has ξ parallel with $\nabla \xi = 0$, then $\overline{\xi} = \xi^h$ is Killing.

Moreover, the orbits of ξ are the geodesics of space V_n and the orbits of $\overline{\xi}$ are the horizontal lifts of the orbits of ξ , and these are the geodesics of V_{2n} . Their restrictions to V_{2n-1} are the geodesics of V_{2n-1} .

The general problem of geodesics on V_{2n} -pseudo-Riemannian, tied to the geodesics on V_n , is solved. We show that, the equations of geodesics on V_{2n} can be written locally using ∇ , only in terms of V_n . The problem of general translations for V_n , V_{2n} is subject of further research.

References

- A.C. Curcă-Năstăselu, A. Morar *Relativistic Sasaki Lift*, National Conference of SSMR, Lugoj, 2005.
- [2] S. Ianus, Differential Geometry and Applications to Theory of Relativity (in Romanian), Ed. Acad. Rom., 1980.
- [3] R. Miron, M. Anastasiei, Vector Bundles. Lagrange Spaces. Applications to Relativity, (in Romanian), Ed. Academiei Romane, 1987.
- [4] R. Miron, The homogeneous lift of a Riemannian metric, National Conference of Finsler- Lagrange Spaces, Iasi, 1998.
- [5] A. C. Năstăselu, A. Lupu On some structures F, F*, National Conference of Finsler-Lagrange-Hamilton Spaces, Brasov, 2004.
- [6] P. Stavre, On the integrability of the structures (T^*M, G, F) , Rev. Alg. Groups and Geom., Hadronic Press USA 16, 1 (1999), 107-114.
- [7] P. Stavre, Vector Bundles (in Romanian), Ed. Univ. Craiova, 2004.

- [8] P. Stavre, Aprofundări în geometria diferențială (in Romanian), Ed. Univ. Craiova, 2004.
- [9] P. Stavre, On some structures (E = TM, G, F, F), National Conference of Finsler-Lagrange-Hamilton Spaces, Braşov, Romania, 2004.
- [10] N. Steenrod, Topology of fibre bundle, Princeton Univ., 1951.
- [11] K. Yano, S. Ishihara, Tangent and Cotangent Bundles, Marcel Dekker, 1973.

Authors' addresses:

Petre Stavre Departament of Matematics, University of Craiova, 13 Al. I. Cuza str., Craiova 200585, Romania. email: pstavre@hotmail.com

Amelia Cristina Curcă-Năstăselu Palatul Copiilor Craiova, 18 Simion Bărnuțiu str., Craiova 200382, Romania. email: cristamenc@yahoo.com