The pseudo-Riemannian isometries associated to Sasaki lift

Petre Stavre and Amelia Curcă-Năstăselu

Abstract

In this paper, using a pseudo-riemannian metric on the base M, of tangent bundle $$(TM, \pi, M)$$ and the pseudo-riemannian Sasaki lift, the results from propositions on the paragraphs 2 and 3 are obtained.

Mathematics Subject Classification: 53C60.

Key words: pseudo-Riemannian indicator, homogeneous lift.

1 Introduction

Let consider the tangent bundle $$(\xi = (TM, \pi, M))$$, where $$M = (M, [A]; \mathbb{R}^n)$$ is a $$C^\infty$$-differential manifold, paracompact, connex. Moreover, in the general theory knowing of the tangent bundle, an important role has the case that a riemannian metric $$g$$, on $$M$$, is "lifted" to the Sasaki metric $$G$$, on $$TM$$. For this case are working: Kentaro-Yano, Sasaki, Ianus Stere, R. Miron... A generalization for the cotangent bundle is given by P. Stavre.

Now, let be a pseudo-riemannian structure $$(M, g)$$ and $$V = (M, g, \nabla)$$ the pseudo-riemannian space corresponding in these conditions, the riemannian metrics $$\{g\}$$ exists on $$M$$, globally, but generally, the pseudo-riemannian metrics, $$\{g\}$$ do not exists, globally. An example is given by Steenrod for $$n = 2$$, $$V$$-compact. In this case, only the torus and the Klein bottle admit the pseudo-riemannian metrics. For instance, the existence of a vectorial field non-null everywhere is a condition for to exists a pseudo-riemannian metrics, Lorentz, which are necessarily in the generalized theory of relativity. Too Steenrod show that this is equivalent with vanishing of a topological invariant (the characteristic Euler-Poincaré).

We will extend the Sasaki lift in the case of pseudo-riemannian structure $$(M, g)$$. The study is difficult because now we have: vectors with null length; curves (differentiable or differentiable on parts) with null length (or minimal); the curves with null length can be or cannot be geodesics; the distance between two points can be zero:
we will note: if \(g(X, X) < 0 \); \(\varepsilon_x = 0 \) if \(g(X, X) = 0 \); \(\varepsilon_x = 1 \) if \(g(X, X) > 0 \).

We will note: \(C_{-}^{(0)} = \{ X_x \in T_x M \mid \varepsilon_x = -1 \} \) (the set of spatial vectors); \(C_{-}^{(0)} = \{ X_x \in T_x M \mid \varepsilon_x = 0 \} \) (the set of isotropic vectors);

\(C_{+}^{(0)} = \{ X_x \in T_x M \mid \varepsilon_x = 1 \} \) (the set of temporal vectors) and we will define the length of vector \(X \), by the real number, \(|X| \geq 0 \), where \(|X|^2 = \varepsilon_x g(X, X) \).

Evidently, \(X_x \in C_{-}^{(0)} \iff |X| = 0 \). \(\varepsilon_x \), in \(x \), is unitary if \(g(X, X) = \varepsilon_x \). The sets \(C_{-}^{(+)} \), \(C_{+}^{(0)} \) are open and \(C_{-}^{(0)} \) is close. We can write the partitions:

\[
C_{-}^{(-)} = C_{-}^{(1(-)} \cup C_{x}^{2(-)}; C_{x}^{1(-)} \cap C_{x}^{2(-)} = \emptyset; C_{x}^{1(-)} = C_{x}^{1(0)} \cup C_{x}^{2(0)}; C_{x}^{1(0)} \cap C_{x}^{2(0)} = \emptyset; C_{x}^{1(+)} = C_{x}^{1(+)} \cup C_{x}^{2(+)}; C_{x}^{2(+)} \cap C_{x}^{2(+)} = \emptyset, \text{where} \ C_{x}^{1(-)}, C_{x}^{2(-)} \text{are the conexes open sets and analogously,} \\
C_{x}^{1(+)}, C_{x}^{2(+)} \text{. If} \ X_x \in C_{x}^{1(+)} \text{then} -X_x \in C_{x}^{2(+)} \ldots C_{x}^{1(0)}, C_{x}^{2(0)} \text{will be called the} \\
isotropic hipercones, \text{with the vertex in} \ x, \text{they are opposite. We consider} \ C : x \to C_x. \\

2 Considerations on \(\xi = (TM, \pi, M) \)

On \(TM \), like a differentiable manifold, \(2n \)-dimensional, paracompact, exist a pseudo-riemannian metric, who has the local form:

\[
G = g_{ik}(x)dx^i \otimes dx^k + g_{rs}dy^r \otimes dy^s,
\]

where, \(\delta y = \nabla y \) (the covariant differential, relative to the pseudo-Levi-Civita connection defined by the pseudo-riemannian \(g \), for \(y \in T_u M, x \in M \) \(u = (x^i, y^j) \in \pi^{-1}(U) \), where \(x \in U \) has the local coordinates \(x^i = x^i(x) \), \(\pi^{-1}(U) \) is the geometric zone of a local chart in \(u \), on \(TM \)). So, we have a Whitney decomposition, \(T_u TM = H_u TM \oplus V_u TM, u \in TM \) and the distributions, \(H : u \to H_u TM \) (horizontal) and \(V : u \to V_u TM \) (vertical). The metric \(G \) is the generalized Sasaki metric for the pseudo-riemannian case.

We have globally and locally, for \(G \),

\[
G = hG + vG,
\]

\[
hG = g_{ik}(x)dx^i \otimes dx^k;
\]

\[
vG = g_{rs}(dy^r + N^r_k(x, y)dx^k)(dy^s + N^s_i(x, y)dx^i),
\]

with,

\[
N^r_k(x, y) = y^r \gamma^r_{kl}(x),
\]

the coefficients of a nonlinear connection in \(\xi \), defined by \(g \) from the Levi-Civita coefficients \(\{ \gamma \} \), of the Levi-Civita connection \(\nabla \). Evidently, \(N \) is 1-homogeneous relative to the vertical fibres, that is relative to \(y \).

\(G \) is even the Sasaki lift for the riemannian \(g \). Seeming is not differences. But really, now, we cant have \(g(X, X) = \varepsilon_x |X|^2, \varepsilon_x \in \{-1, 0, 1\} \).
Definition 2.1. Let note $V_n = (TM, g, \nabla)$ the pseudo-riemannian space, base, $V_{2n} = (TM, G, D)$ the tangent pseudo-riemannian space. The submanifold of V_{2n} defined by the restriction, $g_x(y, y) = \varepsilon$, will be called the tangent bundle $(\tilde{TM}, \tilde{\pi}, M)$, on M, of the pseudo-spheres.

A locally map, in $u \in TM$ will be with the geometric zone $\tilde{\pi}^{-1}(U)$; $u \in \pi^{-1}(U)$; $\pi(u) = x \in U$, $\pi(u) = x \in U$. Result:

Proposition 2.1. The metric \tilde{G}, induced by G, on \tilde{TM} is 0-homogeneous, though G is not 0-homogeneous.

Proposition 2.2. The horizontal distribution \tilde{H}, on \tilde{TM}, is the restriction of H in the points $u \in \tilde{\pi}^{-1}(U)$.

From 2.2 - 2.5 result $(vG) \circ h_t \neq vG$, that is G is not 0-homogeneous on $\tilde{TM} = TM \setminus \{0\}$ ($h_t=$homothety, $t \in \mathbb{R}^+$).

Proposition 2.3. a) On the connected components of sets $C^{(+)}$, $C^{(-)}$, the metric 2.1 is not 0-homogeneous. b) Its restriction, on $C^{(0)}$ is 0-homogeneous. c) Its restriction, on TM is 0-homogeneous.

A generalization of Miron’s results ([4]) is obtained in this way.

For the tangent bundle, having fixed N, for each $X \in X(M)$, exists $X^h \in H, X^v \in V$, uniquely. Let be the almost complex structure, natural, F, defined by

\[F(X^h) = -X^v, \quad F(X^v) = X^h (F^2 = -I), \]

which is $G(FX, FY) = G(X, Y), \forall X, Y \in \tilde{TM}$, that is, (\tilde{TM}, G, F) is an almost complex structure, with the 2-form associated, $\theta(X, Y) = G(FX, FY)$. In this case, result:

Proposition 2.4. a) For 2.1, 2.5, 2.6 we have: $d\theta = 0$, that is, the structure is an almost kählerian structure. b) The structure (\tilde{TM}, G, F) is kählerian if and only if V_n is a linear Lorentz space, locally (pseudo-euclidian) that is, if and only if the first fundamental form can be write, locally,

\[\psi = \sum_{i=1}^{n} \varepsilon_i (dx^i)^2, \quad \varepsilon_i \in \{-1, 1\} \]

The homogenization of G must be making only on the connected components $C^{(+)}$, $C^{(-)}$. Let be $g(y, y) = |y|^2 (\varepsilon \in \{-1, 1\}); \tilde{H} = \sqrt{\varepsilon H}$.

Proposition 2.5. The 0-homogeneous metric \tilde{G} is given by:

\[\tilde{G} = g_{ik} dx^i \otimes dx^k + \frac{r^2}{\varepsilon H} g_{rs} \nabla y^r \otimes \nabla y^s; \quad r = ct > 0 \]

Proposition 2.6. The 0-homogeneous metric \tilde{G} preserve the signature.
On the connected components $C^{(+)}$, $C^{(-)}$ is defined an almost complex structure, \tilde{F}, associated to \tilde{G}, locally, from: $\tilde{F}(\delta_k) = -\frac{\partial}{\partial x}^r\delta_k$; $\tilde{F}(\partial_k) = \frac{\partial}{\partial y}\delta_k$, where, $(\delta_k = \frac{\partial}{\partial x}^r - y^s\gamma^r_{ks}\partial_i; \partial_k = \frac{\partial}{\partial y})$ in $u \in \pi^{-1}(U)$, who is given, from $\varepsilon = 1$ (the riemannian case), by R. Miron. Result:

Proposition 2.7. We have, a) $\tilde{\theta}(X,Y) = \tilde{G}(FX,Y)$; $d\tilde{\theta} = rd(\frac{1}{\sqrt{r}}) \wedge \theta$

b) $\tilde{G}(FX, FY) = \tilde{G}(X,Y)$, that is (\tilde{G}, \tilde{F}) is an almost hermitian structure.

For, $V_n = (M, g, \nabla)$ a riemannian space, $\varepsilon = 1$ and (a) (b) are result from [4].

Proposition 2.8. If $N_{\tilde{F}} = 0$, $(N_{\tilde{F}}$ is the Nijenhuis tensor) that is \tilde{F}, is complex, then we have, equivalently:

\[
(2.7) \quad r^i_{jkl}(x) = \varepsilon \frac{r}{r^2}(g_{jk}\delta^i_l - g_{jl}\delta^i_k), \varepsilon \in \{-1, 1\},
\]

where $r(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]}Z$, $X,Y,Z \in \mathcal{X}(M)$ is the curvature tensor of the pseudo-riemannian space, base, $V_n = (M, g, \nabla)$.

Proposition 2.9. If H is an integrable distribution, then we have 2.7, that is on the connected components, the curvature is $R = \frac{\varepsilon}{r}$, $\varepsilon \in \{-1, 1\}$, constant but with contrary sign.

Proposition 2.10. If (\tilde{G}, \tilde{F}) is a hermitian structure, then the first fundamental form ψ, of V_n, will be bring in to the Riemann form:

\[
\psi = \frac{1}{A} \sum_{i=1}^{n} \varepsilon_i (dx^i)^2 ; \varepsilon_i \in \{-1, 1\}, \text{ where, } A = \left(1 + \frac{\varepsilon}{4r^2} \sum_{i=1}^{n} \varepsilon_i (x^i)^2 \right)^2
\]

In the case (T^*M) these results will be much difficult to obtain. We will study the generalization of these results in the Lagrange theory in to another paper (the pseudo-Lagrange case).

3 The pseudo-riemannian isometries associated

We will start with the observation that, for $n = 2$, M_2-compact is not possible to talk about the pseudo-riemannian isometries or the pseudo-riemannian infinitesimal isometries, only if M_2 is the torus or the Klein bottle.

In the relativistic mechanic, a vectorial field $\xi \in \mathcal{X}(M)$, with the null divergente, $div\xi = 0$ has an important roll (will be called incompressible). As is known any ξ-Killing has this property.

Let be $V = (M, g, \nabla)$ a pseudo-riemannian space and $I(M,g)$ the group of all isometries of (M,g). Like in the riemannian case, $I(M,g)$ is a Lie group who act differential on (M,g), it is a subgroup of the diffeomorphisms group on M. Like in the riemannian case, because, $\varphi \in I(M,g)$ preserve g, then preserve ∇ (the Levi-Civita connection) and so, preserve the geodesies of ∇, preserve the elementary volume... In the case g riemannian, φ preserve also the distances (the property is reciprocally). But, in the pseudo-riemannian case, g, we cannot talk about such property. So, look, another difference between the g-riemannian and g-pseudo-riemannian.
Let be ξ and ω, 1-form, dual, given by, $g(\xi, X) = \omega(X); \forall X$.

We have, \(\text{div} \xi = \delta \omega\) (the codifferential of ω).

Lemma 3.1. If $\xi_x \in C_x^{(0)}$, then, locally, the equation, $\omega = 0$, admit a set of $(n-1)$-uples \(\{ (\xi, \ldots, \xi) \}_{(a)} \), where ξ, \ldots, ξ are in x, linear independent and the directions given by ξ, $(a = 1, n-1)$, through x, cannot be g-conjugate, mutually. We have, locally, $g_{ik} \xi^i \xi^k = 0; g_{ik} \xi^i \xi^k = 0(a = 1, n-1)$, and ξ is a linear combination of $(\xi)_{(a)}$ $(a = 1, n-1)$.

Lemma 3.2. Let be a frame, in x, \(\{ V \}_{(a)} \) (a = 1, n-1) orthogonal, $g(V_a, V_b) = 0; \forall a \neq b; a, b = 1, n$. Then we have, $V \notin C_x^{(0)} \forall a \neq b; a, b = 1, n$.

That is neither of vectors from the orthogonal frame cannot be with null length.

So, it can be normalized, because $\left| V \right| = \sqrt{\varepsilon_a g(V_a, V_b)} \neq 0$. Let be this (U_1, \ldots, V_1).

We can write:

$g(U_a, U_b) = 0; \forall a \neq b; a, b = 1, n; g(U_a, U_b) = \varepsilon_a; a = 1, n, \varepsilon_a \in \{-1, 1\}$

\[
\text{div} \xi = \sum_{a=1}^{n} \varepsilon_a g(\nabla U_a, \xi) = \delta \omega = \sum_{a=1}^{n} \varepsilon_a (\nabla U_a \omega)(U_a) \omega(\xi)
\]

Observation. Sometimes, in the geometry, the codifferential is with (-).

In the case g-riemannian, $\varepsilon_a = 1 \ (a=1, n)$ and we will obtain the formula how is know for $\text{div} \xi$, in the orthonormated frame.

A vectorial field, ξ Killing, will be now defined with infinitesimal isometries. Let be $V_{(a)}$ a pseudo-riemannian space and $\xi \in X(M)$. If the 1-parametric group, local, of diffeomorphisms, generate from ξ, is given by isometries, local, then ξ will be called vectorial field Killing. The local isometries will be called the infinitesimal isometries or infinitesimal motions.

Equivalently, like for riemannian case we will obtain the Killing equations:

\[
(\nabla_X \omega)(Y) + (\nabla_Y \omega)(X) = 0,
\]

In the definition of ξ-Killing we not start from 3.-6 because it is not clear the infinitesimal character of the definition. Using the Lie derivative, we have, like in the riemannian case, $L_\xi g = 0$.

Formal, here is not appear neither differences relative to the riemannian case, just if we take into account the observations make before. Moreover, we must take into
account the case $\xi: x \rightarrow \xi_x \in C^{(0)}_2$ and ξ is Killing. Particulary, when $\nabla \xi = 0$, and its orbits are geodesics (the case of infinitesimal translations).

Only from before we can observe the difficulty of study of pseudo-riemannian isometries, infinitesimal isometries, on $V_{2n} = (TM, G, D)$ where G is the pseudo-riemannian Sasaki lift.

It is normal to not study the infinitesimal isometries $\varphi \in I(TM, G)$ using the general model, so that we study them from correspondence with the infinitesimal isometries, $\varphi \in I(M, g)$. The way of work will be analogously with the riemannian Sasaki case, but, now we will using the adapted basis $\{\frac{\delta}{\delta x^i}, \frac{\partial}{\partial \theta^j}\}$. Will appear so the specific results, like in §2, because: $\xi_x \in C^{(-)}_2$ or $\xi_x \in C^{(0)}_2$ or $\xi_x \in C^{(+)}_2$.

Let be the infinitesimal transformation on base,

$$
(3.-5) \quad \xi_x f = \frac{d}{dt} f(\varphi_t(x))|_{t=0}; x \in M, f \in F(M),
$$

$\{\varphi_t(x)\}$ is an 1-parametric group generate from ξ, who, in generally, is local $(t \in (-\varepsilon, \varepsilon) = I, \varepsilon > 0)$. It is global if ξ is complete and reciprocally. If ξ is Killing then, the local diffeomorphisms of group are isometries (local), $\varphi \in I(M, g)$.

Let be the infinitesimal transformation on TM,

$$
(3.-4) \quad \bar{\xi}_v \bar{f} = \frac{d}{dt} \bar{f}(\varphi_t(u))|_{t=0}; \pi(u) = x; u \in \pi^{-1}(U); x \in U,
$$

If $\bar{\xi}$ is Killing then the diffeomorphisms of 1-parametric group generate from $\bar{\xi}$, are isometries (local) $\varphi \in I(TM, G)$.

In generally, the orbit of x is an immersion $\gamma_x : I \rightarrow M$ given by $\gamma_x(t) = \varphi_t(x)$ and $\xi(\gamma_x(t)) = \gamma_x(t)$ (γ_x is an integral curve of ξ, through x). Theirs family $\{\gamma_x(t)\}$, $x \in M$ ($x \in U$), $t \in I$, is a congruence of curves on M (if ξ is complete) or locally, through each $x \in U$ pass one curve from family, in contrary case. Analogously for $\bar{\xi}$.

Problem 1 If $\xi \notin C^{(0)}$, then when are the infinitesimal isometries (local), $\varphi \in I(TM, G)$ a natural prolongation of infinitesimal isometries (local), $\varphi \in I(M, g)$?

Problem 2 In this prolongation to the infinitesimal translations (infinitesimal motions, who are translations) local, on base, what infinitesimal motions (local) correspond on TM?

Problem 3 In both cases, induces they on V_{2n-1} infinitesimal motions?

Problem 4 In this natural prolongation, if the orbits of ξ are geodesics (local) of V_n, then the orbits of $\bar{\xi}$ are they the geodesics of V_{2n}?

Problem 5 Because we have the unique decomposition $\bar{\xi} = h\xi + v\xi$ (with respect to the nonlinear connection N), then when $h\xi$ and $v\xi$ generate the infinitesimal isometries (local)?

Because $\xi \notin C^{(0)}$ we can write, in $x \in U$, $\varepsilon \xi \in \{-1, 1\}$ and $\xi \in C^{(-)}$ or $\xi \in C^{(+)}$,

$$
(3.-3) \quad |\xi|^2 = \varepsilon \delta_{ik}\xi^i\xi^k,
$$

Let be ξ defined by,

$$
(3.-2) \quad \bar{\xi} = h\xi + v\xi,
$$

where, in $u \in \pi^{-1}(U), \pi(u) = x \in U$,
\(h_{\xi} \overset{\text{def}}{=} \xi^h = \xi^i \frac{\partial}{\partial x^i}; v_{\xi} \overset{\text{def}}{=} (y^s \nabla_s \xi^r) \frac{\partial}{\partial y^r}, \)

if,

\[
\xi = \xi^i(x) \frac{\partial}{\partial x^i},
\]

Let note \(G(u^\alpha, u^\beta) = G_{\alpha\beta}(x, y) \), where \(u^\alpha = (u^i = x^i, u^{n+i} = y^i) \).

Theorem 3.1. Let be \(V_n = (TM, G, D), \) with the pseudo-riemannian Sasaki lift \(G \). The necessary and sufficient condition for to exists infinitesimal motions (that is local isometries, infinitesimal) \(\varphi \in I(M, g), \tilde{\varphi} \in I(TM, G), \) who correspond one the other, is to exist a system of local coordinates \((x, y) \), on \(TM \), such as \(G_{n+i n+k}(x, y) \) is not depend form a local coordinate, \(x^r \) (r, fixed). That is,

\[
\frac{\partial G_{n+i n+k}}{\partial x^r} = 0; \forall i, k = \overline{1, n} (r, \text{fixed}).
\]

Theorem 3.2. In the conditions of theorem 1, the equations \(L_{\xi} g = 0 \) admit one solution \(\xi \), who is Killing and for who the diffeomorphisms of 1-parametric group 3.-5, given by \(\xi \), are the infinitesimal motions. Let be \(\xi \). Then \(\xi \not\in \mathcal{C}_c^{(0)}(x \in U) \).

Because \(\xi \) is Killing, result that \(\xi \) 3.-2, 3.-1 is Killing, for the space \(V_{2n} \) and so \(L_{\xi} G = 0 \), and reciprocally. So, the 1-parametric group, local, generated by \(\xi \) is given by local isometries. We have the reciprocal.

In the local coordinates for 3.1, we have:

\[
|\xi|^2 = \varepsilon \xi_{g_{rr}}; g_{ik} = g_{ik}(x^1, \ldots, x^{r-1}, x^{r+1}, \ldots, x^n), i, k = \overline{1, n}
\]

Evidently, \(\varepsilon \in \{-1, 1\} \), if \(g_{rr} < 0 \) or \(g_{rr} > 0 \). We cannot have \(g_{rr} = 0 \) because \(g \) is nondegenerate. \(|\xi| \neq 0 \), so the infinitesimal motion is not minimal.

The infinitesimal motion is a translation, \(|\xi| = ct \) if and only if \(g_{rr} = ct \neq 0 \). From that result \(G_{n+r n+r} = ct \) for the first fundamental form of \(V_n \), such as, of \(V_{2n} \). The linear element will be: \(ds^2 = \varepsilon g_{ik} dx^i dx^k + \varepsilon_r g_{rr} (dx^r)^2; g_{ii} \neq g_{rr}(i = \overline{1, n}) \) (without summation from r) with \(\frac{\partial g_{ll}}{\partial x^r} = 0; j, l = \overline{1, n} \).

Theorem 3.3. If exist a local chart in \(u \), on \(TM (u \in \pi^{-1}(U), \pi(u) = x \in U) \), thus we have 3.1, then exist \(\xi, \tilde{\xi} \) 3.-2 3.-1, thus we have the relations:

\[
D^2_{\xi Y} \tilde{\xi} = R(X, \xi) Y; \forall X, Y \in \mathcal{X}(TM),
\]

\[
L_{\xi} D = 0,
\]

(\(\tilde{\xi} \) is an affine colliniation, infinitesimal of space \(V_{2n} \)) and we have the relations for \(\xi \), analogously.

Proof. The conditions given are equivalent with the existence of a vectorial field, Killing \(\xi \) on \(V_n \) and so, with the existence of a vectorial field Killing \(\tilde{\xi} \), on \(V_{2n} \), who has
The pseudo-Riemannian isometries associated to Sasaki lift

the form 3.-2 3.-1. So we have 3.2 3.3 and the homologue relations, \(\nabla^2_{XY} \xi = r(X, \xi)Y; \)
\(\forall X, Y \in \mathcal{X}(M), L_\xi \nabla = 0. \)\(\square \)

If \(\xi \notin C^{(0)}_x \), then like in the Sasaki-riemannian case, we can show that, taking into account the transformations \((x, y) \to (\tau, \varphi) \), for the relations 3.-5, 3.-3 are obtain the infinitesimal transformations:

\[
(3.4) \quad \tau^i = x^i + \xi^i(x) \delta t,
\]
\[
(3.5) \quad \tau^i = x^i + \xi^i(x) \delta t, \varphi^i = y^i + (y^s \nabla_s \xi^i - N^i \xi^r) \delta t,
\]

Starting from here we can prove that if 3.4 are the isometries (local) \(\varphi \in I(M, g) \), then 3.5 are the isometries (local) \(\tilde{\varphi} \in I(TM, G) \). So, if \(\xi \notin C^{(0)} \) is Killing, then \(\xi \) 3.-2 3.-1 is Killing and reciprocally. Other aspects relative to the problems who appear before will be given in another paper.

Proposition 3.1. If \(V_n = (M, g, \nabla) \)-pseudo-riemannian has \(\xi \) parallel, \(\nabla \xi = 0 \), then result \(\tilde{\xi} = \xi^h \) and \(\xi = \xi^h \) is Killing.

Moreover, the orbits of \(\xi \) are the geodesics of space \(V_n \) and the orbits of \(\tilde{\xi} \) are the horizontal lifts of the orbits of \(\xi \), and these are the geodesics of \(V_2n \). Their restrictions to \(V_{2n-1} \) are the geodesics of \(V_{2n-1} \).

The general problem of geodesics on \(V_{2n} \)-pseudo-riemannian, who is tie from geodesics on \(V_n \), is solve. We show that, local, the equations of geodesics, on \(V_{2n} \) can be write only in the terms of \(V_n \), using \(\nabla \). The problem of general translations for \(V_n, V_{2n} \) is follow to solve.

References

Authors’ addresses:

Petre Stavre
Department of Mathematics, University of Craiova,
13 Al. I. Cuza str., Craiova 200585, Romania.
e-mail: pstavre@hotmail.com

Amelia Cristina Curcă-Năstăseelu
Palatul Copiilor Craiova, 18 Simion Bărnuţiu str.,
Craiova 200382, Romania
email: CRISTAMENC@yahoo.com