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Abstract

The properties of the Multiple Hybrid Laplace-Z transformation are presented.
Using them one obtains a direct method of solving differential-difference equa-
tions. This method is illustrated by its applications to stochastic processes and
to the differential equations of the transition probabilities in queueing theory.
The same hybrid transformation is employed to obtain transfer matrices for
different classes of hybrid linear control systems.
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1 Introduction

A great deal of research is being out today on multidimensional (nD) systems, deter-
mined by their processing, computer tomography, geophysics etc.

An important subclass of nD systems is represented by the multidimensional sys-
tems which are continuous with respect to some variables and descrete with respect
to others. Such hybrid systems were studied in [5], [6], [9], [11], [12]. They were used
as models in the study of linear repetitive processes [1], [3], [15] or of iterative learning
control synthesis [7].

This approach implies the necessity to use a suitable multiple Laplace-type trans-
formation.

In this paper a multiple hybrid Laplace Z-transformation is defined and its prin-
cipal properties are emphasized, by generalizing. The results presented in [12]. These
properties are used for solving multiple differential-difference equations, integral equa-
tions and integro-differential-difference equations.

The advantages of this method are illustrated by appplying it to some differential
recurrence equations which appear in the study of the stochastic processes or in the
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queueing theory can be the same hybrid transformation can be applied to Roesser-
type and Fornasini-Marchesini-type models, including descripter and delayed systems,
to obtain their transfer matrices.

2 Multiple Hybrid Laplace Z-Transformation

The following definitions and theorems extend the usual (1D) Laplace and Z trans-
formations and generalize the 2D transformation studied in [12].

Definition 2.1. A function f : Rq × Zr → C is said to be an original function if
f has the following properties:

i) f(t1, . . . , tq; k1, . . . , kr) = 0 if ti < 0 or kj < 0 for some i ∈ q̄ or j ∈ r̄,
ii) f(·, . . . , ·; k1, . . . , kr) is piecewise smooth on Rq

+ for any (k1, . . . , kr) ∈ Zr
+,

iii) ∃Mf > 0, σfi ≥ 0, i ∈ q̄, Rfi > 0, j ∈ r̄ such that ∀ti > 0, i ∈ q̄, ∀kj ∈ Z+, j ∈ r̄

|f(t1, . . . , tq; k1, . . . , kr)| ≤ Mf

(
exp

(
q∑

i=1

σfiti

)) r∏
j=1

R
kj

fj

 .

Definition 2.2. For any original function f , the function

F (s1, . . . , sq; z1, . . . , zr) =

∫ ∞

0

. . .

∫ ∞

0

∞∑
k1=0

. . .

∞∑
kr=0

f(t1, . . . , tq; k1, . . . , kr)·

·e−s1t1 . . . e−sqtqz−k1
1 . . . z−kr

r dt1 . . . dtr

(2.1)

is said to be the Multiple Hybrid Laplace Z-Transform (MHLZT) of f .
We shall use the notation F (s; z), where s = (s1, . . . , sq) and z = (z1, . . . , zr) and

Lq,r for the operator defined by (2.1), hence F (s; z) = Lq,r[f(t; k)] = Lq,r[f ].
The following results are proved in [13].
Theorem 2.3. (linearity). For any original functions f and g and α, β ∈ C

Lq,r[αf + βg] = αLq,r[f ] + βLq,r[g].

Theorem 2.4. (first time delay theorem). For any a = (a1, . . . , aq) ∈ Rq
+ and

b = (b1, . . . , br) ∈ Zr
+,

Lq,r[f(t1 − a1, . . . , tq − aq ; k1 − b1, . . . , k2 − b2)] =

(
exp

(
−

q∑
i=1

aisi

)) r∏
j=1

z
−bj
j

F (s; z).

Definition 2.5. For α = {i1, . . . , il} ⊂ q̄ and β = {j1, . . . , jh} ⊂ r̄, the (α, β)-
partial MHLZT Lq,r(α, β) is defined by

Lq,r(α, β)[f(t; k)] =

∫ ∞

0

. . .

∫ ∞

0

∞∑
kj1

=0

. . .

∞∑
kjn=0

f(t1, . . . , tq; k1, . . . , kr)·

·
(
exp

(
−
∑

i∈α siti
)) (∏

j∈β z
+kj

j

)
dti1 . . . dtil .
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Obviously, if α = q̄ and β = r̄, Lq,r(q̄, r̄) = Lq,r; if β = ∅ then Lq,r(α, ∅) = Ll =
the multiple Laplace transformation; if α = ∅ then Lq,r(∅, β) = Zh = the multiple z
- transformation; if α = ∅ and β = ∅, Lq,r(∅, ∅)[f ] = f .

We shall use the following notations: if α = {i1, . . . , il} ⊂ q̄

f(0α+; k) = f(t1, . . . , ti1−1, 0+, ti1+1, . . . , til−1, 0+, til+1, . . . , tq; k)

and f(0i+; k) = f(0α+; k) when α = {i}; similar significations have f(t; 0β) for
β = {j1, . . . , jh} ⊂ r̄ and f(t; 0j), j ∈ r̄.

For γ = (γi1 , . . . , γil) ∈ (N∗)l and θ = (θj1 , . . . , θjh) ∈ (N∗)h,
∂γ

∂tγ
(t, k+θ) denotes

∂γi1+...+γil

∂t
γi1
i1

. . . t
γil
il

f

t; k +
∑
j∈β

θjej

 ,

sγ = s
γi1
i1

. . . s
γil
il

, zθ = z
θj1
j1

. . . z
θjh
jh

and |γ| = l.
The family of all non-empty subsets of α = {i1, . . . , il} and β = {j1, . . . , jl}

are denoted by Eγ and Eθ respectively. For ζ = Eθ, ζ̂ = {j ∈ ζ|θj > 0}, Dθ,ζ =∏
j∈ζ̂

{0, 1, . . . , θj − 1} and if ζ̂ = {ζ1, . . . , ζp},
∑
θ,ζ

stands for

θζ1−1∑
kζ1

=0

. . .

θζp−1∑
kζp=0

. If ε ∈ Eγ ,

and ε = {ε1, ε2, . . . , εm}, γε = (γε1 , . . . , γεm) then for ηε = (ηε1 , . . . , ηεm) ∈ Nm,∑
ηε≤γε−1

stands for

γε1
−1∑

ηε1
=0

. . .

γεm−1∑
ηεm=0

.

Theorem 2.6. (differentiation and second time delay). For any i ∈ q̄, j ∈ r̄,
γ = (γi1 , . . . , γil) ∈ (N∗)l and θ = (θj1 , . . . , θjh) ∈ (N∗)h

Lq,r

[
∂f

∂ti
(t; k)

]
= siF (s; z)− Lq,r (̃i, r̃)[f(0i+; k)]

Lq,r[f(t; k + ej)] = ziF (s; z)− Lq,r(q̃, j̃)[f(t; 0j)]

Lq,r

[
∂γf

∂tγ
(t; k + θ)

]
= sγzθF (s; z)+

+zθ
∑
ε∈Eγ

∑
ζ∈Eθ

(−1)|ε|+|ζ|sγε̃
ε̃

∑
ηε≤γε−1

sγε−ηε−1
ε

∑
θ,ζ

Lq,r(ε̃, ζ̃)

[
∂ηεf

∂tηε
(0ε+; 0ζ)

]∏
j∈ζ

z
−kj

j

 .

Definition 2.7.Given two original functions f and g, the (q, r)-hybrid convolution
of f and g is the function denoted by f ∗ g which is given by

(f ∗ g)(t1, . . . , tq; k1, . . . , kr) =
∫ t1

0

. . .

∫ tq

0

k1∑
l1=0

. . .

kr∑
lr=0

f(u1, . . . , uq; l1, . . . , lr)·

·g(t1 − u1, . . . , tq − uq; k1 − l1, . . . , kr − lr)du1 . . . duq

and which equals 0 otherwise.

Theorem 2.8. (convolution). For any original functions f and g

Lq,r[(f ∗ g)(t; k)] = F (s; z)G(s; z).
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3 Multiple differential-difference and integral
equations

Let f be an original function; j ∈ r̄, l ∈ N∗, β = {j1, . . . , jn} ∈ r̄ and θ =
(θj1 , . . . , θjh) ∈ (N∗)h.

Definition 3.1. The j-first difference ((j, 1)-difference) of f is the function

∆jf(t; k) =


0 if ti < 0 or kl < 0 for some i ∈ q̄, l ∈ r̄

f(t1, . . . , tq; k1, . . . , kj−1, kj + 1, kj+1, . . . , kr)−

−f(t1, . . . , tq; k1, . . . , kj−1, kj , kj+1, . . . , kr) otherwise.

The (j, l)-difference of f is defined by induction by

∆l
jf(t; k) = ∆j(∆

l−1
j f(t, k))

The (β, θ)-difference of f is defined by induction by

∆θ
βf(t; k) = ∆

θjn
jn

. . .∆
θj1
j1

f(t; k).

Let Γ be a subset of

q⋃
i=1

Ri
+ and Θ a subset of

r⋃
j=1

Zj
+. For γ = (γi1 , . . . , γih) ∈ Γ

and θ = (θj1 , . . . , θjl) ∈ Θ we denote a coefficient aγi1
,...,γin

; θj1 , . . . , θjl) by aγθ. A
multiple differential-difference equation has the form

∑
γ∈Γ

∑
θ∈Θ

aγθ
∂γ

∂tγ
∆θx(t; k) = f(t; k)(3.1)

where aγθ ∈ R, ∀γ ∈ Γ, θ ∈ Θ, x(t; k) is un unknown original function and f(t; k) is
a given original function.

We consider the boundary conditions

∂ηεf

∂tηε
(0ε+; 0ζ) = gε,ζ(tε̃; kζ̃), ε = Eγ , ζ ∈ Eθ(3.2)

where tα and kβ stand for tα1,...,αl
and kβ1,...,βn

if α = (α1, . . . , αl) and β =
(β1, . . . , βn).

By using Definition 3.1, the equation (3.1) can be rewritten as∑
γ∈Γ

∑
θ∈Θ

bγθ
∂γ

∂tγ
x(t; k + θ) = f(t, k)(3.3)

By Theorem 2.6 and by applying the MHLZT to the equation (3.3) with boundary
conditions (3.2) it is transformed into the algebraic equation

B(s; z)X(s; z) + C(s; z) = F (s; z)
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having the solution X(s; z) =
F (s; z)− C(s; z)

B(s; z)
, where B(s; z) and C(s; z) are the

polynomials

B(s; z) =
∑
γ∈Γ

∑
θ∈Θ

bγθs
γzθ =

∑
γ∈Γ

∑
θ∈Θ

bγi1
,...,γil

;θj1 ,...,θjn
s
γi1
i1

. . . s
γil
il

z
θj1
j1

. . . z
θjn
jn

and
C(s, z) =

∑
γ∈Γ

∑
θ∈Θ

bγθz
θ
∑
ε∈Eγ

∑
ζ∈Eθ

(−1)|ε|+|ζ|sγε̃

ε̃

∑
ηε≤γε−1

sγε−ηε−1
ε ·

·
∑
Dθ,η

Lq,r(ε̃, ζ̃)gε,η(tε̃, kζ̃)(
∏
j∈ζ

z
−kj

j )

Application 3.2. A Poisson process (Xt)t∈R+ is described by the probabilities
Pk(t) = P (Xt = k), k ∈ N, which verify the system of differential equations

P ′
0(t) = −λP0(t)(3.4)

P ′
k+1(t) = −λPk+1(t) + λPk(t), k = 0, 1, . . .(3.5)

with the initial conditions P0(0) = 1 and Pk(0) = 0, k = 1, 2, . . . .
By using the notation Pk(t) = x(t, k) the system (3.4), (3.5) becomes a differential-

difference system which is transformed (by Theorem 2.6) as above, by applying the
MHLZT to the second equation and the usual (1D) Laplace transform L to the first
one, into an algebraic system

sL[x(t, 0)]− x(0, 0) = −λL[x(t, 0)]

szX(s, z)− szL[x(t, 0)]− zZ[x(0, h)] + zx(0, 0) =

= −λz(X(s, z)− L[x(t, 0)]) + λX(s, z).

Since x(0, 0) = P0(0) = 1 and the 1D Z-transform Z[x(0, k)] equals

∞∑
k=0

x(0, k)z−k =

∞∑
k=0

Pk(0)z
−k = 1,

this system has the solution L[x(t, 0)] = 1

s+ λ
and

X(s, z) =
z(s+ λ)

sz + λz − λ
L[x(t, 0)] = z

sz + λz − λ

whose original is the usual solution Pk(t) = x(t, k) = e−λt (λt)
k

k!
, k ∈ N.

Application 3.3. In Queueing theory, the transition probabilities pij(t) =
P (ξτ+t = j|ξτ = i) of a system M/M/1 verify the system of differential equations
(see [8])

p′i0(t) = −λpi0(t) + µpi1(t)

p′ij(t) = λpi,j−1(t)− (λ+ µ)pij(t) + µpi,j+1(t)
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with the initial conditions pij(0) = δij , where 0 < λ < µ.
By denoting pij(t) = xi(t, j) and L[xi(t, j)] = Xi(s, z) and by applying the MH-

LZT and Theorem 2.6 as in Application 3.2, the differential-difference system is trans-
formed directly intoa set of algebraic equations having the solutions

Xi(s, z) =
z−i+1 + L[xi(t, 0)]µz(1− z)

(s+ λ+ µ)z − λ− µz2

whose original has the usual expression of the probabilities pij(t).
A multiple continuous-discrete convolution integral equation has the form

Ax(t1, . . . , tq; k1, . . . , k2) +

∫ t1

0

. . .

∫ tq

0

k1∑
l1=0

. . .

k2∑
l2=0

x(u1, . . . , uq; l1, . . . , lr)·

·g(t1 − u1, . . . , tq − uk; k1 − l1, . . . , k2 − l2)du1 . . . duq = f(t1, . . . , tq; k1, . . . , kr)

(3.6)

where A ∈ R, x(t; k) is an unknown original function and f and g are given original
functions.

By applying MHLZT, due to Theorem 2.8 (3.6) is transformd into the algebraic
equation

AX(s; z) +X(s; z)G(s; z) = F (s; z)

and the solution of (3.6) is the original of the function

X(s; z) =
F (s; z)

A+G(s; z)
.

Similarly, by combining the equations (3.1) and (3.6) one obtains multiple integro-
differential-difference equations which can easily by solved following the same ap-
proach.

4 Transfer matrices of multiple hybrid control
systems

The 2D discrete-time Roesser [14] and Fornasini-Marchesini [2] models were extended
to 2D or nD continuous-discrete linear systems in [4], [5], [6], [10] and [11]. The
MHLZT can be applied to obtain the transfer matrices of different classes of such
systems.

Because of lack of space, we limit ourselves to present only the transfer matrices
of the descriptor and delayed systems, obtained from the state space representations
by using MHLZT and Theorems 2.3, 2.4 and 2.6.

The Roesse type multiple hybrid descriptor and delayed systems has the transfer
matrix

H(s; z) =

C0 + C1

(
exp

(
q∑

i=1

aisi

)) r∏
j=1

z
−bj
j

×

×

E( q⊕
i=1

siInci

)
⊕

 r⊕
j=1

zjIndj

−A0 −A1

(
exp

(
−

q∑
i=1

aisi

)) r∏
j=1

z
−bj
j

−1

×

×

B0 +B1

(
exp

(
−

q∑
i=1

aisi

)) r∏
j=1

z
−bj
j

+D0 +D1

(
exp

(
−

q∑
i=1

aisi

)) r∏
j=1

z
−bj
j
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and the transfer matrix of the corresponding Fornasini-Marchesini system is

H(s; z) = (C0 + C1e
−asz−b)(Esq̄r̄ −

∑
(τ,δ)⊂(q̄,r̄)

A0,τ,δs
zzδ −

∑
(τ,δ)⊂(q̄,r̄)

A1,τ,δs
τzδe−asz−b)−1·

·

 ∑
(τ,δ)⊂(q̄,r̄)

B0,τ,δs
τzδ +

∑
(τ,δ)⊂(q̄,r̄)

B1,τ,δs
τzδe−asz−b

+D0 +D1e
−asz−b,

where e−as denotes exp

(
−

q∑
i=1

aisi

)
and z−b denotes

r∏
j=1

z
−bj
j .
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[13] V. Prepeliţă, Multiple (q,r) Hybrid Laplace Transformation and Applications to
Multidimensional Hybrid Systems. (to appear)

[14] R.P. Roesser, A Discrete state-space model for linear image processing, IEEE
Trans. Aut. Control, AC-20, (1975), 1-10.

[15] E. Rogers, D.H. Owens, Stability Analysis for Linear Repetitive Processes, Lec-
ture Notes in Control and Information Sciences, 175, Ed. Thoma H, Wyner W.,
Springer Verlag Berlin, 1999.

Authors’ address:
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