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Abstract
The aim of the paper is to define Legendrians and their dual objects, Legendriens™,

as generalizations of Lagrangians and affine Hamiltonians. The structure of Leg-
endrians and some of their properties are also studied.
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Finsler and Lagrange spaces of higher order were studied in [9, 4] using the bundles
of accelerations T*M — M. Related to T*M, we consider in this paper the affine
bundle TFM — TF=1M. A dual theory of higher order Hamilton spaces was recently
studied in [5, 6] using the dual bundles T*~1M x5, T*M = T**M — M. Related to
TkM and T**M, we consider in this paper the affine bundle TM — T*~'M and
the vector bundle T#*M — T*~'M respectively.

The aim of this paper is to define and to investigate some basic properties of a class
of new geometrical objects, called Legendrians, that extends Lagrangians and Hamil-
tonians. There are two kind of Legendrians. The first one, simply called Legendrians,
are 1-forms on T#M. The differential dL of a Lagrangian L of order k on M is an
exact Legendrian of order k on M. The second type, called a Legendrian® is a section

X : T**M — J'I of the first jet bundle of the affine bundle IT : T* Mt — T** M, the
affine dual of the affine bundle T*M — T*~1M . In this case, the class J'h of an affine
Hamiltonian h : T**M — T*MT (that is a section of the affine bundle II, not neces-
sary affine) is an ezact Legendrian® of order k on M. The forms of closed Lagrangians
and Lagrangians® of order k > 1 are given by Propositions 1.1 and 1.5 respectively.
The top components of a Legendrian or of a Legendrian* are particular cases of a top
Legendrian and of a top Legendrian® respectively. If these are non-degenerated, the
Legendrian, respectively the Legendrian* is called regular. We prove that the regular
Legendrians and Legendrians* are in duality by Legendre transformations (Theorem
1.1). The analogy with Lagrangians is pointed out in Proposition 1.3, where a semi-
spray is canonical associated with a regular Legendrian. Some concrete examples are
also given.
The basic ideas used here will be further investigated in forthcoming papers.
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1 Legendrians

A Legendrian of order k on M is an l-form 2 € X*(ﬁ]\//[) In local coordinates,
Q = Q) da’+Q1y;dy D+ - - ++Q(p);dy*". The change rules of the local components
of Q) are:

(r“){I;i/ 6:[/(1)1/ ay(k)i/
Qoyi = Q(O)i’ﬁ + Q(l)i’w +ot QU@)Z"W7
Ay oyR)i’
(11) Q(l)i = Q(l)i/W 4+ .4 Q(k)i/ma
ay(k)i'
Quy = Ly 5w

Considering the vertical vector bundle V¥ | M — T*M of the affine bundle (T*M,
pr, TF~1M) and V,f_lM — TFkM its dual, a top Legendrian of order k on M is a

section of the fibered manifold (ka—1M )* — Tk M. The tensors defined on the fibers
of the vector bundle V¥ | M — T*M (even less the null section) are called d-tensors
of order k. Thus a top Legendrian is a l-covariant d-tensor of order k. If € is a
Legendrian of order & on M, then (£2(;);) defines a top Legendrian. It is easy to see
that in general a top Legendrian is not a Legendrian.

The Legendre map defined by a top Legendrian €2 of order £ on M is the fibered
manifolds map over the base T*~'M, Lg : T*M — T**M, having the local form
Loz, yWi . y®i) = (i y Wi ’y(k—l)i7Q(k)i(xi’y(l)i7.“7y(k)i)).
01y
ay(k)]
tensor, i.e. the change rule of its local components are g;;(z%, y7) = girjr(z%, y7')-
ozt Ozt
oxrt  Oxd
function L such that Q) =

It is easy to see that g;; = are the components of a 2-covariant d-

. It is easy to see that this d-tensor is symmetric iff there is a local

oL
ENOH ; we say that ) is top-closed. In particu-
y (]

lar, if Q@ = dL, where L € F(TFM) (i.e. Q is exact), then L is usually called
a Lagrangian of order £ on M. We say that the Legendrian ) is top-regular if
the tensor g is non-degenerate, i.e. the matrix (gij)i}jzl’im has the rank m. In this
case the Legendre map Lqo : TFM — T*FM is a local diffeomorphism and the
inverse £51 : T**M — T*M has the local form Eél(mi,y(l)i7...,y(k_l)i,pi) =
(zf, yMr, Ly k=i g (i (=1)i )Y We suppose also that Lg is a global
diffeomorphism. Since & (z*,y™M, ..., y(k_l)i,Q(k)i(mi,y(l)i,..., y Py = ¢y e

9" iy k—1)i i, (1)i k)i Qkyu i, (1)i k)i
havea—m(x7y(),...,y( ),Q(k)i(x,y(),...,y()))-W(a},y(),...,y()):

i . 851 i i —1
d%. It follows that denoting B = g", then (g ])z‘,j:ﬁn = (gij)i,jlen'
In the case when Q2 = dL is regular, the Lagrangian L is called regular and Lgq is
the usual Legendre transformation.

We consider now some examples.
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Consider some local canonical coordinates (t!,t?) € (0,27) x (0,27) on the torus
T?2. The tangent space T'T 2 has as coordinates (t!,¢2, T, T?). Consider the following
1-forms, which are global defined on X (T'T?): Qy = T*dT* + T?dT?, Qs = T?dT* +
THT?, Q3 = T?dT' — THdT?, Qy = dt' + dt?> + THdT* + T%dT?, Q5 = dt' + dt? +
T2dT' +T1dT?, Qg = dt! + dt? + T?dT' — T1dT?. The forms Q;, Qs, Q4 and Q5 are
all closed, but only the forms €; and Qy are exact: ; = dLy, Ly (t',t2,T1,T?) =
% ((T1)2 + (T2)2) and Qo = dLo, Ly(t',t2, T, T?) = T'T?. Since the global 1-forms
dt' and dt? are not exact, the 1-forms 4 and Qs are not exact. All the above 1-forms
define Legendrians on 72. The forms Q;, {23 and Q3 are also the top Legendrians of
the Legendrians 24, {25 and g respectively. But, in general, the top Legendrians are
not Legendrians.

The following 1-forms are globally defined on X (T®)7?), for k > 1: Q; =
TELqrL L pR)2qrR)2 Q, = T®2qr®)L L plgpF)2 Q. = TE2qrH)1 _
TENGT®?2 Q= dtt 4+ dt? + TE1R T 4 TR29T2 Of = dt' + dt? + TR2qT 1 4
TELATHE?2 Qg = dt* + dt? + T*2qT*1 — 7(R1gT(R)2 They have similar properties
as in the case k = 1.

In general, if L : T"M — IR is a Lagrangian of order k on M and wyp is a
differentiable form on the manifold 7%~ M, then the 1-form dL+7m*wy is a Legendrian
of order k on M, where 7 : TFM — T*~1M is the canonical projection. Notice that
in a similar way we can take wy a differentiable form on M and 7 : T*M — M the
canonical projection.

In the case k = 1, if L : TM — R is a Lagrangian (of order 1) on M and
wo € X*(M) is a 1-form on M, then dL + m*wy is a 1-Legendrian on M. It is the case
of the above examples of Legendrians.

Let € X(m), d2 = 0. Then, according to the Poincaré lemma, §2 is locally
closed, thus there is an open cover U = {U} of TM such that the restriction Qu
is exact, i.e. Qy = dfy, fu € F(U). We can take U such that U' = n(U) C M is
open and {U’ = «(U)} is an open cover of M, where 7 : TM — M is the canonical
projection. Let {¢y;, } be a partition of unity on M, which is subordinated to this cover.
The family {or = (70 ) v} C ]-"(f]\vi) is a partition of unity on 7'M, subordinate

to the cover U. Using local coordinates, it is easy to see that the Lagrangian Lo = >
veu

ovfv € F (f]\v/[) has the same top Legendrian as €2, thus the Legendrian Q¢ = Q—dLyg
has a null top Legendrian and it is also closed. It has the local form Qo = Q; (27, y?)dx".
Since dQ)y = 0, it easy follows that Q; = w;(27)dz?, thus Qp = T*wp, wo € X*(M),
dwo = 0. Thus Q = dLg + 7*wg.

If Q is a top Legendrian which is closed, then the local Lagrangians Ly glue
together to a Lagrangian Lo = 3. @yLy € F(TM), and Q is the top Legendrian of

Ueu
dLy.

For k > 1, a similar argument can be used to prove the following result.

Proposition 1.1. 1. If Qs a top Legendrian of order k which is closed, then
there is a Lagrangian Lo € F(TFM) such that Q is the top Legendrian of dLq.
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2. If Q € X*(]Tk\]\/i) is a closed Legendrian, then there is a Lagrangian Lo €
F(T*M) and a closed 1-form wy € X*(M) such that Q = dLy + miwo, where

i : TEM — M is the canonical projection.

Proof. If Qs a top Legendrian which is closed, then the local Lagrangians Ly glue
together to a Lagrangian Lo = Y. ¢yLy € F(TM), and €2 is the top Legendrian of

Ueu
dLg. Thus 1. follows.

Let Q2 € X(fk\]\/@, dQ) = 0. We use similar argument as in the case £ = 1. Thus,
using Poincaré lemma,  is locally closed, thus there is an open cover U = {U} of
T*M such that the restriction Q) = dfy, fu € F(U). We can take U such that U’ =
7 (U) C M is open and {U’ = 7, (U)} is an open cover of M, where my, : TM — M
is the canonical projection. If we consider a partition of unity {¢}; } on M, which is

subordinated to this cover, then the family {py = 7}, } C F(T*M) is a partition

—

of unity on T*M, subordinate to the cover U. Using local coordinates, it is easy to

see that considering the Lagrangian Lo = > ¢y fu € .7:(7:;]\/4), then the Legendrian
Ueu
Qo = Q—dLyg is closed and it has the form Q¢ = 7*wyg, wg € X* (M), dwy = 0. Indeed,

it has the local form Qg = Q(O)i(xj, y Wiy RN dat since oy = 75y . Using that
dQy = 0, it easy follows that Q) = wi(z7)dx?, thus Qo = mTiwo, wo € X*(M),
dwg = 0. Thus the conclusion of 2. follows. [

The first statement can be reformulated as: a top Legendrian is locally exact iff it
is globally exact.

Examples of Le§e\rldrians which are not closed are those in the form 2 = « - dLy,
when «, Ly € F(TFM). Since dQ = da A dLg, these Legendrians do not come, in
general, from a Lagrangian, also from a local or a/gélﬁ)bal viewpoint. Let us suppose

that the Lagrangian Lg is top-regular and o € F(T*M) has the property that o > 0.

. . aLO -1
Using local coordinates, let us denote by v = (*yij = 6y(k)i8y(’“)j>ij_1 _ e

y da g dLg S

ij o i ATy J— — ) i AAT(O) . :
(’y )i,jzl,m , a = Gy o' =yMay, Q; = aay(k)i = a; and ' = yY§);; notice

?

that (£2;) is the top component of Q. Then 3,007

= a;; + ays;. Let us denote by
B=a+tayn’ =atan =a+aly;.
Proposition 1.2. Let us suppose that the Lagrangian Lo is top-reqular and o €

F(T*M) has the property that o > 0 and 8 = a + a;v;v7 # 0 on T*M. Then
Q =« -dLg is a top-reqular Legendrian on T*M.

Proof. The condition 3 # 0 reads 8 = a+a;v;7" # 0, thus there exists the inverse

o \ ! 1 .. 1 ..
_— = —~AW — A~
<3y<’°)j> (057 ap’ ) -

Notice that we can consider instead T*M the points where 3 = 0.
Let us take kK = 1. We are going to consider some particular cases, which leads
also to other applications.
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First, let Lo be a Finsler metric on T'M, i.e. Ly : TM — IR and o € ]—'(m) Since
) ) ) .0 (1)
Lo is 2-homogenous, we have that 4" = y* = y()?, thus § = a—&—ylia =a+ T («).

8y(1)i
(€9)
Thus the condition 8 # 0 means that T' («) # —a. It is obvious that this condition is
0 1
independent of the Finsler metric. If we take o = €27, the condition is g aa, #* —5
yl

In particular, if ¢ is 0-homogeneous, this condition is satisfied on ™ (for example,
in the case of Antonelly metric, according to [10, XI.6]).
An other case comes from a 2-covariant d-tensor of the form g;; = ~vi; + dy:y;,

2
) .
where v;; = 3 '507' comes from a Finsler metric Lo : TM — IR, § > 0 is a real
y' oy
_ ) OL . oL
function on TM and y; = ;90 = a—(.). Let Q; = y7¢g;; = (1+ 6L0)a—9. Taking
Y Y

a =14 0Ly, we get to the case discussed previously. In the particular case when

6=1 > 0 is a positive function on f]\?, the 2-covariant d-tensor g is used

~n2(x,y)
by R. Miron [10, XI.6] to construct a model in optics.
The following result can be proved by a straightforward verification.

Proposition 1.3. If Q is a reqular Legendrian, then the local formula
(1.2) ' =g” (F(k) () — Q(k—l)j)
defines a k-semi-spray on M.

In the case when €2 = dL is the differential of a regular Lagrangian L of order k on
M, one obtain the Miron-Atanasiu semi-spray, canonically associated with L [8, 9]:

Corollary 1.1. If L is a regular Lagrangian of order k on M, then the local formula

) L oL oL
i i (k) _
) o (o () 0

defines a k-semi-spray on M.

Taking into account of Proposition 1.1, we obtain the following result.

Proposition 1.4. If Q is a reqular Legendrian of order k > 2 on M and Q =
dLo 4 mjwo s a decomposition of Q given by Proposition 1.1, then the Lagrangian Lo
is also regular and it has the same semispray as €.

A top Legendrian* of order k on M is a continuous bundle map over TF=1 M, H :

—_~—

T* M — T*M, differentiable on T** M. We say that H is regular if it is a local diffeo-
morphism. Using local coordinates, H has the local form (z°, yMi ,y(k_l)i7pi) —
(zf,yMe Ly (7 g7y ). The condition that H is regular
OH?
8pj
of the local inverse H ~!defines obviously a top Legendrian €);; if a regular Legendrian
Q has ; as its top Legendrian, we say that H is the top Legendrian* of (2.

reads that the matrix (gij ) is non-degenerate. The local form (£;),_15,
ij=1n '



120 Marcela Popescu and Paul Popescu

We say that a top Legendrian H is ezact if there is a section (as a fibered man-

P

ifold) h : T**M — T*M?t (called an affine k-Hamiltonian) having the local form
h(xi7 y(l)ia cee ay(kil)iap’i) = (xia y(l)i7 ce 7y(k71)iapi7 _HO(xia y(l)ia cee y(kil)ia pz))
, H
such that Hi = ——2.
Op;
Using a suitable partition of unity, it can be proved that a locally exact Legendrian®
is (globally), exactly as in the case of Legendrians.

Let us suppose that E = M is an affine bundle with fiber the affine line IR,
such that there is an affine atlas on F whose affine maps induces the identity of the
associate vector line IR. It means that if (x%) and (2%, ) are the local coordinates on
M and on E respectively, then the local change of coordinates are 2" = z?" () and
V' = Q+ f(z*). Using [13, Proposition 4.1.7] it can be easily proved that there is an
affine bundle E, — M, such that the induced affine bundle 7*E, 3 F is canonically
isomorphic with the first jet bundle J'E — E. Every section s € T'(E) lifts to a
section S € I'(E,); using local coordinates, if s has the local form s = s(z?), then

. ; S . .
S has as local coordinates S* = ek It is also easy to see that the corresponding
x

section on 7* E, corresponds to the first prolongation jls € T'(J'E) ( [13, Definition
4.2.1]). Let us consider a section £ € I'(E;), that have local components (&;). On

0 , ort
the intersection of two charts one has & = (afl(]ﬂ) + fl) el It is easy to see
x x
o0& 085 . . . . )
that n;; = 9 Dai is an antisymmetric tensor, which we call the curvature of &;
7 x

the section £ is locally the lift of a section s € T'(E) iff it has a vanishing curvature.
The name ,,curvature” has an explicit meaning, since every section S € I'(E, oM )
corresponds to a jet field S’ € T'(n*E, 3 E) = I'(J'E), thus to a connection on
E (according to [13, Proposition 4.6.3]); the curvature of this connection is just the
induced tensor from M to E.

An affine Hamiltonian h is a section in the affine bundle IT : T*MT — Tk M
with canonical fiber IR. Since its associated vector bundle is the trivial vector bundle
over TH* M with fiber IR, we can consider the affine bundle Eyy = T** M constructed

above in the general case. A Legendrian* of order k on M is a section x : T**M — Epn
(excluding the image of the null section). We say that the Legendrian* x is ezxact if
there is a section h of the affine bundle defined by II such that the correspond-
ing section on I'(7*E,) corresponds to the first prolongation j's. Using local coor-

dinates, x has the local form (z) = (2, X(2), X(0)i (), - - - s X(h—1)i (%), X" (%)), where
= (28, yM .. y*=Di p). The exactness of x means that there is h : T** M —

_ _ _ OHy _ OHy
TFMT, h(z) = (%, —Ho(¥)) such that X0y = ~ g X(k—1)i(T) = _7@(#1)1-’
4 H
xX'(z) = —%. The machinery of the differentials used in the case of a Legendrian
D;

3
(which is a 1-form) is replaced in the case of a Legendrian* by its curvature, as defined
above.

As in the case of Legendrians, the following result can be proved.



From Hamiltonians and Lagrangians to Legendrians 121

Proposition 1.5. If a k-Legendrian™ x has a vanishing curvature, then there is an
affine k-Hamiltonian h and a closed 1-form w on M such that x = J'h + m*w, where

m: T**M — M is the canonical projection.

Notice that the sum J'h + 7*w must be read in the sense that on the first local

components X (gy; = _Txio of x are added w; (%), the components of w, i.e. J'h+7*w
Hy 0H, 0Hy 0H)
w + wy, *ay(l)i caey 78y(k_1)i, — api .

Let Q € X*(T*M) be a Legendrian of order k that has (Qqy;, ..., Q) as lo-
cal components. If Q is regular (i.e. the Legendre map is a global diffeomorphism),
the inverse £, : T**M — T*M has the local form L5 (z?,y™M7 ... yF=Di p,) =
(zf, g,y gi(gt Wi (=11 )Y Let us consider the local real func-
tions on T**M:

X(O)i(‘riu yi y(k—l)i 0 = —Q0); (g Wiy =D i i (=D
pl))a ceey X(k 1) = _Q(k 1)¢ (x y(l)z P y(k_l)i7 pz) = gi(xi’ y(l)i7- ) y(k_l)ia

pi). Then the local map (x?, y( iy D ) (2t gDy B X (035

<oy X(k=1)is X %) defines a global section y : T**M — J'II in the first jet bundle of
I1, thus a Legendrian® .
We say that a Legendrlan X, having the local form (zf, yM? ... y=11

pi) — (2%, yWi, ..y s X(0)is -5 X(k—=1)is X X*), is top regular if the matrix

has as components —

)

ax" —
<BX > is non-singular. A top-Legendrian x defines a map H : TF*M — T* M, using
Pj

the local formulas (z%, y(M? ...y p)) 3 (2f, gD yF=Di y¥) called the
Legendre® map of x. If the Legendrian® y is top regular, then the Legendre® map is
a local diffeomorphism; if it is a global diffeomorphism, we say that x is regular. Let
us assume that x is regular. The inverse E;_l : T*M — T** M has the local form
Lot @,y y By = (28, yW Ly =1, (8 y M y(R)T), Let us also con-
sider the local real functions on T*M: Qg (2%, y M7, ..., y®1) = —x gy (af, yP7, ..,
y(_ki?)% wi-(aﬁ? y(l)lv c y(k)l))’ cey Q(k—l)i = _X(k—l)iﬂﬂ(k)i(xza‘y(l)l 1o y(k)l) =
it yMi Ly B0 Q). Then the local map (2, y(M, ... y®9) = (28, M
yk), Qoyis ---» Q1):) defines a global 1-form Q : T*M — T*T*M, i.e. a Legendrian
Q. The regular Legendrian ) and the regular Legendrian® x are called dual each to
the other.

Theorem 1.1. The reqular Legendrians correspond one to one to their dual reqular
Legendrians® via Legendre and Legendre® maps respectively.
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