Measuring how far from fibrations are certain pairs of manifolds

Cornel Pintea

Abstract

Recall that the φ -category of a pair (M, N) of differentiable manifolds is defined as $\varphi(M, N) := \min\{\#(C(f) \mid f \in C^{\infty}(M, N)\}\)$, where C(f) is the critical set of f. In this paper we provide, by using the main results of [2], new pairs of manifolds with infinite φ -category. For the equivariant case we also provide new pairs of manifolds with infinitely many critical orbits.

Mathematics Subject Classification: 55Q05, 55N10. Key words: critical points and critical orbits, fibrations, equivariant mappings.

1 Introduction

In this section we just recall some results that have been proved in [2] as well as the definitions of the Stiefel and the Brieskorn manifolds.

Theorem 1.1 ([2])

- 1. Assume that M^{n+1} , N^n are compact connected differentiable manifolds.
 - (a) If $n \ge 4$, $\pi_1(M)$ is a torsion group and $\pi_2(N) \simeq 0$, then $\varphi(M, N) = \infty$;
 - (b) If $n \ge 5$ and $\pi_q(M) \not\simeq \pi_q(N)$ for some $q \in \{3, \ldots, n-2\}$, then $\varphi(M, N) = \infty$;
- 2. Let M^{n+2} , N^n be compact connected differentiable manifolds. If $n \ge 4$, $\pi_2(N) \simeq 0$, $\pi_1(M)$ is a torsion group such that $\#\pi_1(M) \ge 3$ and also $Hom(\pi_1(M), \pi_1(N)) = \{0\}$, then $\varphi(M, N) = \infty$;
- 3. Assume that M^{n+2} , N^n are compact connected differentiable manifolds such that $n \ge 5$, $\pi_2(M) \simeq 0$ and $\pi_3(N)$ is a torsion group.

(a) If
$$\pi_2(N) \simeq 0$$
 and $\pi_1(M)$ is a torsion group, then $\varphi(M, N) = \infty$;

(b) If
$$\pi_q(M) \not\simeq \pi_q(N)$$
 for some $q \in \{3, \ldots, n-2\}$, then $\varphi(M, N) = \infty$.

Th
* Fifth Conference of Balkan Society of Geometers, Aug. 29 - Sept. 2, 2005, Mangalia, Romania;
BSG Proceedings 13, Geometry Balkan Press pp. 110-114.

[©] Balkan Society of Geometers, 2006.

Measuring how far from fibrations are certain pairs of manifolds

4. Assume that M^{n+k} , N^n are compact differentiable manifolds such that $\pi_1(M) \simeq 0$ and N is (k+1)-connected. If $n \geq 4$, $1 \leq k \leq n-3$ and $H_k(M) \simeq 0$, then $\varphi(M, N) = \infty$.

Let \overline{G} , G be two Lie groups acting on the manifolds M and N respectively. If $\rho: \overline{G} \to G$ is a Lie group homomorphism, recall that a mapping $f: M \to N$ is said to be ρ -equivariant if $f(\overline{g}x) = \rho(\overline{g})f(x)$ for all $\overline{g} \in \overline{G}$ and all $x \in M$. If $\overline{G} = G$, then any id_{G} -equivariant mapping $f: M \to N$ is simply called equivariant.

Theorem 1.2 ([2]) Let \overline{G} , G be compact Lie groups acting freely on the compact connected manifolds M^m , N^n respectively and $\psi : \overline{G} \to G$ be a Lie group homomorphism. Assume that \overline{G} is either G or its universal covering Lie group \widetilde{G} and that ψ is either id_G or the covering Lie group homomorphism $\rho : \widetilde{G} \to G$ and denote by k the common dimension of \widetilde{G} and G.

- 1. If $m = n + 1 \ge k + 6$ and $\pi_q(M) \not\simeq \pi_q(N)$ for some $q \in \{3, \ldots, n k 2\}$, then any ψ -equivariant smooth mapping $f : M \to N$ has infinitely many critical orbits.
- 2. If $m = n + 2 \ge k + 7$, $\pi_2(M/\overline{G}) \simeq 0$, $\pi_3(N/G)$ is a torsion group and $\pi_q(M) \not\simeq \pi_q(N)$ for some $q \in \{3, \ldots, n-k-2\}$, then any ψ -equivariant smooth mapping $f: M \to N$ has infinitely many critical orbits.
- 3. Assume that $\overline{G} = G = S^1$.
 - (a) If $m = n+2 \ge 8$, N is a homotopy n-sphere and $\pi_q(S^2) \not\simeq \pi_q(M), \pi_q(M) \not\simeq 0$ for some $q \in \{3, \ldots, n-3\}$, then any equivariant smooth mapping $f : M \to N$ has infinitely many critical orbits.
 - (b) If $m = n + 2 \ge 8$, M is a homotopy m-sphere and $\pi_{q-1}(S^2) \not\simeq \pi_q(N)$, $\pi_q(N) \not\simeq 0$ for some $q \in \{3, \ldots, n-3\}$, then any equivariant smooth mapping $f: M \to N$ has infinitely many critical orbits.

The Stiefel manifold $V_{m+n,m}$ consists of all *m*-frames in \mathbb{R}^{m+n} . The compact orthogonal group O(m+n) is obviously acting transitively on V_{m+n} and the isotropy group of any point of $V_{m+n,m}$ is a subgroup of O(m+n) isomorphic with O(n). Therefore the Stiefel manifold $V_{m+n,m}$ is diffeomorphic with the compact homogeneous space O(m+n)/O(n), its dimension being $mn + \frac{m(m-1)}{2}$.

The Brieskorn manifold W_d^{2n-1} , where $n \ge 2$ and $d \ge 1$ are integers, is defined as the (2n-1)-dimensional real algebraic submanifolds of \mathbf{C}^{n+1} defined by the equations

$$z_0^d + z_1^2 + \dots + z_n^2 = 0$$
 and $|z_0|^2 + |z_1|^2 + \dots + |z_n|^2 = 1$.

If n = 2m is even, then W_d^{4m-1} is a rational homology sphere whose only nontrivial integral homology groups are, according to [1, Corollary 9.3, pp. 275], given by

$$H_{2m-1}(W_d^{4m-1}) \simeq \mathbf{Z}_d$$
 and $H_0(W_d^{4m-1}) \simeq H_{4m-1}(W_d^{4m-1}) \simeq \mathbf{Z}.$

All manifolds W_d^{2n-1} are invariant under the standard linear action of O(n) on the (z_1, \ldots, z_n) -coordinates. If n = 2m is even there is a free circle action on W_d^{4m-1} given by the action of the circle group $S^1 = Z(U(m)) \subset O(2m)$ where Z denotes the center. Moreover if n = 4m, then Sp(1) realized as subgroup of O(4m) by the scalar multiplication on $\mathbf{R}^{4m} \simeq \mathbf{H}^m$, acts also freely on W_d^{8m-1} . The quotient manifolds $N_d^{4m-2} := W_d^{4m-1}/S^1$ and $\tilde{N}_d^{8m-4} := W_d^{8m-1}/Sp(1)$ are simply connected. For more details see also [3].

2 New pairs of manifolds with infinite φ -category

In this section we apply theorem 1.1 in order to provide some new pairs of manifolds with infinite φ -category and theorem 1.2 to provide some new pairs of *G*-manifolds having the property that all equivariant mappings between them have infinitely many critical orbits.

Proposition 2.1 If $m, n \ge 2$ and $d := \dim(V_{m+n,m}) = p + q$, where p = mn, $q = \frac{m(m-1)}{2}$, then we have the following infinite φ -categories:

1. (a)
$$\varphi(V_{m+n,m}, S^{d-1}) = \infty$$
 and $\varphi(S^{d+1}, V_{m+n,m}) = \infty$ for $n \ge 3$;
(b) $\begin{cases} \varphi(V_{m+n,m}, P^{d-1}(\mathbf{R})) = \infty; \\ \varphi(P^{d+1}(\mathbf{R}), V_{m+n,m}) = \infty$ for $n \ge 3$;
(c) $\begin{cases} \varphi(V_{m+n,m}, S^{p-1} \times S^q) = \infty; \\ \varphi(S^{p+1} \times S^q, V_{m+n,m}) = \infty$ for $n \ge 3$;
(d) $\begin{cases} \varphi(V_{m+n,m}, P^{p-1}(\mathbf{R}) \times P^q(\mathbf{R})) = \infty; \\ \varphi(P^{p+1}(\mathbf{R}) \times P^q(\mathbf{R}), V_{m+n,m}) = \infty$ for $n \ge 3$;
(e) $\begin{cases} \varphi(S^{p+1} \times SO(m), V_{m+n,m}) = \infty; \\ \varphi(P^{p+1}(\mathbf{R}) \times SO(m), V_{m+n,m}) = \infty \text{ for } n \ge 3$;
(f) $\begin{cases} \varphi(V_{m+n,m}, S^{p-1} \times SO(m)) = \infty \text{ for } m \ge 5; \\ \varphi(V_{m+n,m}, P^{p-1}(\mathbf{R}) \times SO(m)) = \infty \text{ for } m \ge 5; \end{cases}$
(g) $\varphi(V_{2n+2,2}, L_p^{2n+1} \times L_p^{2n-1}) = \infty$ and $\varphi(L_p^{2n+1} \times L_p^{2n+1}, V_{2n+2,2}) = \infty$.
2. (a) $\begin{cases} \varphi(P^{p+2}(\mathbf{R}) \times P^q(\mathbf{R}), V_{m+n,m}) = \infty; \\ \varphi(P^{p+2}(\mathbf{R}) \times SO(m), V_{m+n,m}) = \infty \text{ for } m \ge 5; \end{cases}$
(b) $\varphi(L_p^{2n+1}, L_q^{2n-1}) = \infty \text{ for } n, p \ge 3 \text{ and } p \ne q$.
3. (a) $\begin{cases} \varphi(V_{m+n,m}, S^{d-2}) = \infty; \\ \varphi(S^{d+2}, V_{m+n,m}) = \infty \text{ for } m \ge 3 \text{ and } n \ge 4; \end{cases}$
(b) $\varphi(V_{m+n,m}, P^{d-2}(\mathbf{R})) = \infty \text{ for } m \ge 3 \text{ and } n \ge 4; \end{cases}$
(c) $\begin{cases} \varphi(V_{m+n,m}, S^{p-2} \times S^q) = \infty \text{ for } m \ge 3; \\ \varphi(S^{p+2} \times S^q, V_{m+n,m}) = \infty; \end{cases}$
(d) $\varphi(V_{n+2,2}, W_d^{2n-1}) = \infty, \text{ and } \varphi(W_d^{2n+3}, V_{n+2,2}) = \infty.$

Proof. Indeed (1a), (1b), (1c), (1d), (1e), (1f), (1g) follows by using theorem 1.1 (1a) taking into account that $V_{m+n,m}$ is, (n-1)-connected [5, pp. 203], the homotopy groups

$$\pi_{2}(S^{d-1}), \ \pi_{2}(P^{d-1}(\mathbf{R})), \\ \pi_{2}(S^{p-1} \times S^{q}), \\ \pi_{2}(P^{p-1}(\mathbf{R}) \times P^{q}(\mathbf{R})), \\ \pi_{2}(S^{p-1} \times SO(m)), \\ \pi_{2}(P^{p-1}(\mathbf{R}) \times SO(m)), \\ \pi_{2}(L_{p}^{2n-1})$$

are obviously trivial, while the fundamental groups

$$\pi_1(S^{d+1}), \pi_1(P^{d+1}(\mathbf{R})), \pi_1(S^{p+1} \times S^q), \pi_1(P^{p+1}(\mathbf{R}) \times P^q(\mathbf{R})), \\ \pi_1(S^{p+1} \times SO(m)), \pi_1(P^{p+1}(\mathbf{R}) \times SO(m)), \pi_1(L_p^{2n+1} \times L_p^{2n+1})$$

are obviously finite. Similarly (2a), (2b) follows by using theorem 1.1 (2) while (3a), (3b), (3c) and (3d) follows by using theorem 1.1 (4). \Box

Proposition 2.2 Consider the previously defined S^1 free action on W_d^{4m-1} , $m \ge 3$ and the $Sp(1) = S^3$ free action on W_d^{8m-1} , $m \ge 3$ as well as the usual free actions of S^1 on S^{4m+1} and on S^{4m-3} and that of $Sp(1) = S^3$ on S^{4m-6} and on S^{4m+3} .

- 1. Any S^1 -equivariant mapping $f: S^{4m+1} \to W_d^{4m-1}$ has infinitely many critical orbits whenever d is an odd number. Also any equivariant mapping $g: W_d^{4m-1} \to S^{4m-3}$ has infinitely many critical orbits.
- 2. Considering the S^3 free action on $S^{4m-6} \times S^{4m+3}$

$$S^3 \times \left(S^{4m-6} \times S^{4m+3}\right) \to S^{4m-6} \times S^{4m+3}, \ (q, (z_1, z_2)) \mapsto q(z_1, z_2) = (qz_1, qz_2),$$

any S^3 -equivariant mapping $f: W_d^{8m-1} \to S^{4m-6} \times S^{4m+3}, m \ge 3$ has infinitely many critical orbits.

Proof. (1) Indeed W_d^{4m-1} is a homotopy sphere whenever d is an odd number and $\pi_{2m-1}(W_d^{4m-1}) \not\simeq 0$ since $H_{2m-1}(W_d^{4m-1}) \simeq \mathbf{Z}_d \not\simeq 0$ and W_d^{4m-1} is (2m-2)connected. On the other hand $\pi_3(S^2) \simeq \mathbf{Z}$ while $\pi_4(W_d^{4m-1}) \simeq 0 \simeq \pi_3(W_d^{4m-1})$ for $m \ge 3$. Therefore f has, according to theorem 1.2 (3b), infinitely many critical orbits and g has, according to theorem 1.2 (3a), infinitely many critical orbits as well.

(2) By using the exact homotopy sequence of the fibration

$$S^3 \hookrightarrow W_d^{8m-1} \to W_d^{8m-1} / S^3 = \tilde{N}_d^{8m-4}$$

we get the exact sequence

$$\pi_3(W_d^{8m-1}) \to \pi_3(\tilde{N}_d^{8m-4}) \to \pi_2(S^3) \to \pi_2(W_d^{8m-1}) \to \pi_2(\tilde{N}_d^{8m-4}) \to \pi_1(S^3)$$

which ensures us that $\pi_3(\tilde{N}_d^{8m-4}) \simeq 0 \simeq \pi_2(\tilde{N}_d^{8m-4})$ taking into account that S^3 is 2-connected and W_d^{8m-1} is, according to [1, Corollary 9.3, pp. 275] and the Hurewicz theorem, (4m-2)-connected. In a completely similar way, by considering the exact homotopy sequence of the fibration

$$S^3 \hookrightarrow S^{4m-6} \times S^{4m+3} \longrightarrow \frac{S^{4m-6} \times S^{4m+3}}{S^3}$$

and by taking into account that S^3 is 2-connected while $S^{4m-6} \times S^{4m+3}$ is (4m-7)-connected, one can immediately deduce that

$$\pi_2\Big(\frac{S^{4m-6} \times S^{4m+3}}{S^3}\Big) \simeq 0 \simeq \pi_3\Big(\frac{S^{4m-6} \times S^{4m+3}}{S^3}\Big).$$

On the other hand we obviously have that

$$\pi_{^{4m-6}}\Big(\frac{S^{4m-6}\times S^{4m+3}}{S^3}\Big)\simeq \mathbf{Z}\not\simeq 0\simeq \pi_{^{4m-6}}(W_d^{8m-1}),$$

namely the quotient manifolds \tilde{N}_d^{8m-4} , $(S^{4m-6} \times S^{4m+3})/S^3$ satisfy the conditions of theorem 1.2 (2) such that the proof of (2) is now finished.

References

- G.E. Bredon, Introduction to Compact Transformation Groups, Academic Press, 1972.
- [2] C. Pintea, A measure of the deviation from there being fibrations between a pair of compact manifolds, to be published in Differential Geometry and its Applications.
- [3] L.J. Schwachhöfer, and W. Tuchmann, Metrics of positive Ricci Curvature on quotient spaces, Preprintreihe des SFB 478-Geometrische Strukturen in der Mathematik, 2003.
- [4] E.H. Spanier, Algebraic Topology, McGraw-Hill Book Company, 1966.
- [5] G.W. Whitehead, *Elements of Homotopy Theory*, Springer-Verlag, 1978.

Author's address:

Cornel Pintea "Babeş-Bolyai" University, Department of Geometry, 400084 M. Kogălniceanu 1, Cluj-Napoca, Romania. and Eastern Mediterranean University, Gazimağusa, North Cyprus, via Mersin 10, Turkey. email: cpintea@math.ubbcluj.ro, cornel.pintea@emu.edu.tr