# Measuring how far from fibrations are certain pairs of manifolds 

Cornel Pintea


#### Abstract

Recall that the $\varphi$-category of a pair $(M, N)$ of differentiable manifolds is defined as $\varphi(M, N):=\min \left\{\#\left(C(f) \mid f \in C^{\infty}(M, N)\right\}\right.$, where $C(f)$ is the critical set of $f$. In this paper we provide, by using the main results of [2], new pairs of manifolds with infinite $\varphi$-category. For the equivariant case we also provide new pairs of manifolds with infinitely many critical orbits.


Mathematics Subject Classification: 55Q05, 55N10.
Key words: critical points and critical orbits, fibrations, equivariant mappings.

## 1 Introduction

In this section we just recall some results that have been proved in [2] as well as the definitions of the Stiefel and the Brieskorn manifolds.

Theorem 1.1 ([2])

1. Assume that $M^{n+1}, N^{n}$ are compact connected differentiable manifolds.
(a) If $n \geq 4, \pi_{1}(M)$ is a torsion group and $\pi_{2}(N) \simeq 0$, then $\varphi(M, N)=\infty$;
(b) If $n \geq 5$ and $\pi_{q}(M) \nsucceq \pi_{q}(N)$ for some $q \in\{3, \ldots, n-2\}$, then $\varphi(M, N)=$ $\infty$;
2. Let $M^{n+2}, N^{n}$ be compact connected differentiable manifolds. If $n \geq 4, \pi_{2}(N) \simeq$ $0, \pi_{1}(M)$ is a torsion group such that $\# \pi_{1}(M) \geq 3$ and also $\operatorname{Hom}\left(\pi_{1}(M), \pi_{1}(N)\right)=$ $\{0\}$, then $\varphi(M, N)=\infty$;
3. Assume that $M^{n+2}, N^{n}$ are compact connected differentiable manifolds such that $n \geq 5, \pi_{2}(M) \simeq 0$ and $\pi_{3}(N)$ is a torsion group..
(a) If $\pi_{2}(N) \simeq 0$ and $\pi_{1}(M)$ is a torsion group, then $\varphi(M, N)=\infty$;
(b) If $\pi_{q}(M) \not 千 \pi_{q}(N)$ for some $q \in\{3, \ldots, n-2\}$, then $\varphi(M, N)=\infty$.

[^0]4. Assume that $M^{n+k}, N^{n}$ are compact differentiable manifolds such that $\pi_{1}(M) \simeq$ 0 and $N$ is ( $k+1$ )-connected. If $n \geq 4,1 \leq k \leq n-3$ and $H_{k}(M) \simeq 0$, then $\varphi(M, N)=\infty$.

Let $\bar{G}, G$ be two Lie groups acting on the manifolds $M$ and $N$ respectively. If $\rho: \bar{G} \rightarrow G$ is a Lie group homomorphism, recall that a mapping $f: M \rightarrow N$ is said to be $\rho$-equivariant if $f(\bar{g} x)=\rho(\bar{g}) f(x)$ for all $\bar{g} \in \bar{G}$ and all $x \in M$. If $\bar{G}=G$, then any $i d_{G}$-equivariant mapping $f: M \rightarrow N$ is simply called equivariant.

Theorem 1.2 ([2]) Let $\bar{G}, G$ be compact Lie groups acting freely on the compact connected manifolds $M^{m}$, $N^{n}$ respectively and $\psi: \bar{G} \rightarrow G$ be a Lie group homomorphism. Assume that $\bar{G}$ is either $G$ or its universal covering Lie group $\tilde{G}$ and that $\psi$ is either $i d_{G}$ or the covering Lie group homomorphism $\rho: \tilde{G} \rightarrow G$ and denote by $k$ the common dimension of $\tilde{G}$ and $G$.

1. If $m=n+1 \geq k+6$ and $\pi_{q}(M) \nsucceq \pi_{q}(N)$ for some $q \in\{3, \ldots, n-k-2\}$, then any $\psi$-equivariant smooth mapping $f: M \rightarrow N$ has infinitely many critical orbits.
2. If $m=n+2 \geq k+7, \pi_{2}(M / \bar{G}) \simeq 0, \pi_{3}(N / G)$ is a torsion group and $\pi_{q}(M) \nsucceq$ $\pi_{q}(N)$ for some $q \in\{3, \ldots, n-k-2\}$, then any $\psi$-equivariant smooth mapping $f: M \rightarrow N$ has infinitely many critical orbits.
3. Assume that $\bar{G}=G=S^{1}$.
(a) If $m=n+2 \geq 8, N$ is a homotopy $n$-sphere and $\pi_{q}\left(S^{2}\right) \not \not \pi_{q}(M), \pi_{q}(M) \nsucceq$ 0 for some $q \in\{3, \ldots, n-3\}$, then any equivariant smooth mapping $f$ : $M \rightarrow N$ has infinitely many critical orbits.
(b) If $m=n+2 \geq 8, M$ is a homotopy m-sphere and $\pi_{q-1}\left(S^{2}\right) \not \not \pi_{q}(N)$, $\pi_{q}(N) \nsucceq 0$ for some $q \in\{3, \ldots, n-3\}$, then any equivariant smooth mapping $f: M \rightarrow N$ has infinitely many critical orbits.

The Stiefel manifold $V_{m+n, m}$ consists of all $m$-frames in $\mathbf{R}^{m+n}$. The compact orthogonal group $O(m+n)$ is obviously acting transitively on $V_{m+n}$ and the isotropy group of any point of $V_{m+n, m}$ is a subgroup of $O(m+n)$ isomorphic with $O(n)$. Therefore the Stiefel manifold $V_{m+n, m}$ is diffeomorphic with the compact homogeneous space $O(m+n) / O(n)$, its dimension being $m n+\frac{m(m-1)}{2}$.

The Brieskorn manifold $W_{d}^{2 n-1}$, where $n \geq 2$ and $d \geq 1$ are integers, is defined as the ( $2 n-1$ )-dimensional real algebraic submanifolds of $\mathbf{C}^{n+1}$ defined by the equations

$$
z_{0}^{d}+z_{1}^{2}+\cdots+z_{n}^{2}=0 \text { and }\left|z_{0}\right|^{2}+\left|z_{1}\right|^{2}+\cdots+\left|z_{n}\right|^{2}=1
$$

If $n=2 m$ is even, then $W_{d}^{4 m-1}$ is a rational homology sphere whose only nontrivial integral homology groups are, according to [1, Corollary 9.3, pp. 275], given by

$$
H_{2 m-1}\left(W_{d}^{4 m-1}\right) \simeq \mathbf{Z}_{d} \text { and } H_{0}\left(W_{d}^{4 m-1}\right) \simeq H_{4 m-1}\left(W_{d}^{4 m-1}\right) \simeq \mathbf{Z}
$$

All manifolds $W_{d}^{2 n-1}$ are invariant under the standard linear action of $O(n)$ on the $\left(z_{1}, \ldots, z_{n}\right)$-coordinates. If $n=2 m$ is even there is a free circle action on $W_{d}^{4 m-1}$ given by the action of the circle group $S^{1}=Z(U(m)) \subset O(2 m)$ where $Z$ denotes the center. Moreover if $n=4 m$, then $S p(1)$ realized as subgroup of $O(4 m)$ by the scalar multiplication on $\mathbf{R}^{4 m} \simeq \mathbf{H}^{m}$, acts also freely on $W_{d}^{8 m-1}$. The quotient manifolds $N_{d}^{4 m-2}:=W_{d}^{4 m-1} / S^{1}$ and $\tilde{N}_{d}^{8 m-4}:=W_{d}^{8 m-1} / S p(1)$ are simply connected. For more details see also [3].

## 2 New pairs of manifolds with infinite $\varphi$-category

In this section we apply theorem 1.1 in order to provide some new pairs of manifolds with infinite $\varphi$-category and theorem 1.2 to provide some new pairs of $G$-manifolds having the property that all equivariant mappings between them have infinitely many critical orbits.

Proposition 2.1 If $m, n \geq 2$ and $d:=\operatorname{dim}\left(V_{m+n, m}\right)=p+q$, where $p=m n, q=$ $\frac{m(m-1)}{2}$, then we have the following infinite $\varphi$-categories:

1. (a) $\varphi\left(V_{m+n, m}, S^{d-1}\right)=\infty$ and $\varphi\left(S^{d+1}, V_{m+n, m}\right)=\infty$ for $n \geq 3$;
(b) $\left\{\begin{array}{l}\varphi\left(V_{m+n, m}, P^{d-1}(\mathbf{R})\right)=\infty ; \\ \varphi\left(P^{d+1}(\mathbf{R}), V_{m+n, m}\right)=\infty \text { for } n \geq 3 ;\end{array}\right.$
(c) $\left\{\begin{array}{l}\varphi\left(V_{m+n, m}, S^{p-1} \times S^{q}\right)=\infty ; \\ \varphi\left(S^{p+1} \times S^{q}, V_{m+n, m}\right)=\infty \text { for } n \geq 3 ;\end{array}\right.$
(d) $\left\{\begin{array}{l}\varphi\left(V_{m+n, m}, P^{p-1}(\mathbf{R}) \times P^{q}(\mathbf{R})\right)=\infty ; \\ \varphi\left(P^{p+1}(\mathbf{R}) \times P^{q}(\mathbf{R}), V_{m+n, m}\right)=\infty \text { for } n \geq 3 ;\end{array}\right.$
(e) $\left\{\begin{array}{l}\varphi\left(S^{p+1} \times S O(m), V_{m+n, m}\right)=\infty ; \\ \varphi\left(P^{p+1}(\mathbf{R}) \times S O(m), V_{m+n, m}\right)=\infty \text { for } n \geq 3 \text {; }\end{array}\right.$
(f) $\left\{\begin{array}{l}\varphi\left(V_{m+n, m}, S^{p-1} \times S O(m)\right)=\infty \text { for } m \geq 5 ; \\ \varphi\left(V_{m+n, m}, P^{p-1}(\mathbf{R}) \times S O(m)\right)=\infty \text { for } m \geq 5 ;\end{array}\right.$
(g) $\varphi\left(V_{2 n+2,2}, L_{p}^{2 n+1} \times L_{p}^{2 n-1}\right)=\infty$ and $\varphi\left(L_{p}^{2 n+1} \times L_{p}^{2 n+1}, V_{2 n+2,2}\right)=\infty$.
2. (a) $\left\{\begin{array}{l}\varphi\left(P^{p+2}(\mathbf{R}) \times P^{q}(\mathbf{R}), V_{m+n, m}\right)=\infty ; \\ \varphi\left(P^{p+2}(\mathbf{R}) \times S O(m), V_{m+n, m}\right)=\infty \text { for } m \geq 5 \text {; }\end{array}\right.$
(b) $\varphi\left(L_{p}^{2 n+1}, L_{q}^{2 n-1}\right)=\infty$ for $n, p \geq 3$ and $p \neq q$.

(b) $\varphi\left(V_{m+n, m}, P^{d-2}(\mathbf{R})\right)=\infty$ for $m \geq 3$ and $n \geq 4$;
(c) $\left\{\begin{array}{l}\varphi\left(V_{m+n, m}, S^{p-2} \times S^{q}\right)=\infty \text { for } m \geq 3 ; \\ \varphi\left(S^{p+2} \times S^{q}, V_{m+n, m}\right)=\infty ;\end{array}\right.$
(d) $\varphi\left(V_{n+2,2}, W_{d}^{2 n-1}\right)=\infty$, and $\varphi\left(W_{d}^{2 n+3}, V_{n+2,2}\right)=\infty$.

Proof. Indeed (1a), (1b), (1c), (1d), (1e), (1f), (1g) follows by using theorem 1.1 (1a) taking into account that $V_{m+n, m}$ is, $(n-1)$-connected [5, pp. 203], the homotopy groups

$$
\begin{gathered}
\pi_{2}\left(S^{d-1}\right), \pi_{2}\left(P^{d-1}(\mathbf{R})\right), \pi_{2}\left(S^{p-1} \times S^{q}\right), \pi_{2}\left(P^{p-1}(\mathbf{R}) \times P^{q}(\mathbf{R})\right) \\
\pi_{2}\left(S^{p-1} \times S O(m)\right), \pi_{2}\left(P^{p-1}(\mathbf{R}) \times S O(m)\right), \pi_{2}\left(L_{p}^{2 n-1}\right)
\end{gathered}
$$

are obviously trivial, while the fundamental groups

$$
\begin{aligned}
& \pi_{1}\left(S^{d+1}\right), \pi_{1}\left(P^{d+1}(\mathbf{R})\right), \pi_{1}\left(S^{p+1} \times S^{q}\right), \pi_{1}\left(P^{p+1}(\mathbf{R}) \times P^{q}(\mathbf{R})\right), \\
& \pi_{1}\left(S^{p+1} \times S O(m)\right), \pi_{1}\left(P^{p+1}(\mathbf{R}) \times S O(m)\right), \pi_{1}\left(L_{p}^{2 n+1} \times L_{p}^{2 n+1}\right)
\end{aligned}
$$

are obviously finite. Similarly (2a), (2b) follows by using theorem 1.1 (2) while (3a), (3b), (3c) and (3d) follows by using theorem 1.1 (4).

Proposition 2.2 Consider the previously defined $S^{1}$ free action on $W_{d}^{4 m-1}, m \geq 3$ and the $S p(1)=S^{3}$ free action on $W_{d}^{8 m-1}, m \geq 3$ as well as the usual free actions of $S^{1}$ on $S^{4 m+1}$ and on $S^{4 m-3}$ and that of $S p(1)=S^{3}$ on $S^{4 m-6}$ and on $S^{4 m+3}$.

1. Any $S^{1}$-equivariant mapping $f: S^{4 m+1} \rightarrow W_{d}^{4 m-1}$ has infinitely many critical orbits whenever $d$ is an odd number. Also any equivariant mapping $g: W_{d}^{4 m-1} \rightarrow$ $S^{4 m-3}$ has infinitely many critical orbits.
2. Considering the $S^{3}$ free action on $S^{4 m-6} \times S^{4 m+3}$

$$
S^{3} \times\left(S^{4 m-6} \times S^{4 m+3}\right) \rightarrow S^{4 m-6} \times S^{4 m+3},\left(q,\left(z_{1}, z_{2}\right)\right) \mapsto q\left(z_{1}, z_{2}\right)=\left(q z_{1}, q z_{2}\right)
$$

any $S^{3}$-equivariant mapping $f: W_{d}^{8 m-1} \rightarrow S^{4 m-6} \times S^{4 m+3}, m \geq 3$ has infinitely many critical orbits.

Proof. (1) Indeed $W_{d}^{4 m-1}$ is a homotopy sphere whenever $d$ is an odd number and $\pi_{2 m-1}\left(W_{d}^{4 m-1}\right) \nsucceq 0$ since $H_{2 m-1}\left(W_{d}^{4 m-1}\right) \simeq \mathbf{Z}_{d} \nsucceq 0$ and $W_{d}^{4 m-1}$ is $(2 m-2)$ connected. On the other hand $\pi_{3}\left(S^{2}\right) \simeq \mathbf{Z}$ while $\pi_{4}\left(W_{d}^{4 m-1}\right) \simeq 0 \simeq \pi_{3}\left(W_{d}^{4 m-1}\right)$ for $m \geq 3$. Therefore $f$ has, according to theorem 1.2 (3b), infinitely many critical orbits and $g$ has, according to theorem 1.2 (3a), infinitely many critical orbits as well.
(2) By using the exact homotopy sequence of the fibration

$$
S^{3} \hookrightarrow W_{d}^{8 m-1} \rightarrow W_{d}^{8 m-1} / S^{3}=\tilde{N}_{d}^{8 m-4}
$$

we get the exact sequence

$$
\pi_{3}\left(W_{d}^{8 m-1}\right) \rightarrow \pi_{3}\left(\tilde{N}_{d}^{8 m-4}\right) \rightarrow \pi_{2}\left(S^{3}\right) \rightarrow \pi_{2}\left(W_{d}^{8 m-1}\right) \rightarrow \pi_{2}\left(\tilde{N}_{d}^{8 m-4}\right) \rightarrow \pi_{1}\left(S^{3}\right)
$$

which ensures us that $\pi_{3}\left(\tilde{N}_{d}^{8 m-4}\right) \simeq 0 \simeq \pi_{2}\left(\tilde{N}_{d}^{8 m-4}\right)$ taking into account that $S^{3}$ is 2-connected and $W_{d}^{8 m-1}$ is, according to [1, Corollary 9.3, pp. 275] and the Hurewicz theorem, $(4 m-2)$-connected. In a completely similar way, by considering the exact homotopy sequence of the fibration

$$
S^{3} \hookrightarrow S^{4 m-6} \times S^{4 m+3} \longrightarrow \frac{S^{4 m-6} \times S^{4 m+3}}{S^{3}}
$$

and by taking into account that $S^{3}$ is 2 -connected while $S^{4 m-6} \times S^{4 m+3}$ is $(4 m-7)$ connected, one can immediately deduce that

$$
\pi_{2}\left(\frac{S^{4 m-6} \times S^{4 m+3}}{S^{3}}\right) \simeq 0 \simeq \pi_{3}\left(\frac{S^{4 m-6} \times S^{4 m+3}}{S^{3}}\right)
$$

On the other hand we obviously have that

$$
\pi_{4 m-6}\left(\frac{S^{4 m-6} \times S^{4 m+3}}{S^{3}}\right) \simeq \mathbf{Z} \not \nsimeq 0 \simeq \pi_{4 m-6}\left(W_{d}^{8 m-1}\right)
$$

namely the quotient manifolds $\tilde{N}_{d}^{8 m-4},\left(S^{4 m-6} \times S^{4 m+3}\right) / S^{3}$ satisfy the conditions of theorem $1.2(2)$ such that the proof of (2) is now finished.

## References

[1] G.E. Bredon, Introduction to Compact Transformation Groups, Academic Press, 1972.
[2] C. Pintea, A measure of the deviation from there being fibrations between a pair of compact manifolds, to be published in Differential Geometry and its Applications.
[3] L.J. Schwachhöfer, and W. Tuchmann, Metrics of positive Ricci Curvature on quotient spaces, Preprintreihe des SFB 478-Geometrische Strukturen in der Mathematik, 2003.
[4] E.H. Spanier, Algebraic Topology, McGraw-Hill Book Company, 1966.
[5] G.W. Whitehead, Elements of Homotopy Theory, Springer-Verlag, 1978.
Author's address:
Cornel Pintea
"Babeş-Bolyai" University, Department of Geometry, 400084 M. Kogălniceanu 1, Cluj-Napoca, Romania.
and
Eastern Mediterranean University, Gazimağusa,
North Cyprus, via Mersin 10, Turkey.
email: cpintea@math.ubbcluj.ro, cornel.pintea@emu.edu.tr


[^0]:    Thể Fifth Conference of Balkan Society of Geometers, Aug. 29 - Sept. 2, 2005, Mangalia, Romania; BSG Proceedings 13, Geometry Balkan Press pp. 110-114.
    (C) Balkan Society of Geometers, 2006.

