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Abstract

Recall that the φ-category of a pair (M,N) of differentiable manifolds is defined
as φ(M,N) := min{#(C(f) | f ∈ C∞(M,N)}, where C(f) is the critical set
of f . In this paper we provide, by using the main results of [2], new pairs of
manifolds with infinite φ-category. For the equivariant case we also provide new
pairs of manifolds with infinitely many critical orbits.

Mathematics Subject Classification: 55Q05, 55N10.
Key words: critical points and critical orbits, fibrations, equivariant mappings.

1 Introduction

In this section we just recall some results that have been proved in [2] as well as the
definitions of the Stiefel and the Brieskorn manifolds.

Theorem 1.1 ([2])

1. Assume that Mn+1, Nn are compact connected differentiable manifolds.

(a) If n ≥ 4, π1(M) is a torsion group and π2(N) ≃ 0, then φ(M,N) = ∞;

(b) If n ≥ 5 and πq(M) ̸≃ πq(N) for some q ∈ {3, . . . , n−2}, then φ(M,N) =
∞;

2. Let Mn+2, Nn be compact connected differentiable manifolds. If n ≥ 4, π2(N) ≃
0, π1(M) is a torsion group such that #π1(M) ≥ 3 and also Hom

(
π1(M), π1(N)

)
=

{0}, then φ(M,N) = ∞;

3. Assume thatMn+2, Nn are compact connected differentiable manifolds such that
n ≥ 5, π2(M) ≃ 0 and π3(N) is a torsion group..

(a) If π2(N) ≃ 0 and π1(M) is a torsion group, then φ(M,N) = ∞;

(b) If πq(M) ̸≃ πq(N) for some q ∈ {3, . . . , n− 2}, then φ(M,N) = ∞.
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4. Assume that Mn+k, Nn are compact differentiable manifolds such that π1(M) ≃
0 and N is (k+1)-connected. If n ≥ 4, 1 ≤ k ≤ n − 3 and Hk(M) ≃ 0, then
φ(M,N) = ∞.

Let Ḡ, G be two Lie groups acting on the manifolds M and N respectively. If
ρ : Ḡ → G is a Lie group homomorphism, recall that a mapping f : M → N is said
to be ρ-equivariant if f(ḡx) = ρ(ḡ)f(x) for all ḡ ∈ Ḡ and all x ∈ M . If Ḡ = G, then
any id

G
-equivariant mapping f :M → N is simply called equivariant.

Theorem 1.2 ([2]) Let Ḡ, G be compact Lie groups acting freely on the compact con-
nected manifolds Mm, Nn respectively and ψ : Ḡ→ G be a Lie group homomorphism.
Assume that Ḡ is either G or its universal covering Lie group G̃ and that ψ is either
id

G
or the covering Lie group homomorphism ρ : G̃→ G and denote by k the common

dimension of G̃ and G.

1. If m = n + 1 ≥ k + 6 and πq(M) ̸≃ πq(N) for some q ∈ {3, . . . , n − k − 2},
then any ψ-equivariant smooth mapping f :M → N has infinitely many critical
orbits.

2. If m = n+ 2 ≥ k + 7, π2(M/Ḡ) ≃ 0, π3(N/G) is a torsion group and πq(M) ̸≃
πq(N) for some q ∈ {3, . . . , n− k− 2}, then any ψ-equivariant smooth mapping
f :M → N has infinitely many critical orbits.

3. Assume that Ḡ = G = S1.

(a) If m = n+2 ≥ 8, N is a homotopy n-sphere and πq(S
2) ̸≃ πq(M), πq(M) ̸≃

0 for some q ∈ {3, . . . , n − 3}, then any equivariant smooth mapping f :
M → N has infinitely many critical orbits.

(b) If m = n + 2 ≥ 8, M is a homotopy m-sphere and πq−1(S
2) ̸≃ πq(N),

πq(N) ̸≃ 0 for some q ∈ {3, . . . , n−3}, then any equivariant smooth mapping
f :M → N has infinitely many critical orbits.

The Stiefel manifold Vm+n,m consists of all m-frames in Rm+n. The compact or-
thogonal group O(m + n) is obviously acting transitively on Vm+n and the isotropy
group of any point of Vm+n,m is a subgroup of O(m + n) isomorphic with O(n).
Therefore the Stiefel manifold Vm+n,m is diffeomorphic with the compact homoge-

neous space O(m+ n)
/
O(n), its dimension being mn+ m(m−1)

2 .

The Brieskorn manifold W 2n−1
d , where n ≥ 2 and d ≥ 1 are integers, is defined as

the (2n−1)-dimensional real algebraic submanifolds of Cn+1 defined by the equations

zd0 + z21 + · · ·+ z2n = 0 and |z0|2 + |z1|2 + · · ·+ |zn|2 = 1.

If n = 2m is even, then W 4m−1
d is a rational homology sphere whose only nontrivial

integral homology groups are, according to [1, Corollary 9.3, pp. 275], given by

H2m−1(W
4m−1
d ) ≃ Zd and H0(W

4m−1
d ) ≃ H4m−1(W

4m−1
d ) ≃ Z.



112 Cornel Pintea

All manifolds W 2n−1
d are invariant under the standard linear action of O(n) on

the (z1, . . . , zn)-coordinates. If n = 2m is even there is a free circle action on W 4m−1
d

given by the action of the circle group S1 = Z(U(m)) ⊂ O(2m) where Z denotes the
center. Moreover if n = 4m, then Sp(1) realized as subgroup of O(4m) by the scalar
multiplication on R4m ≃ Hm, acts also freely on W 8m−1

d . The quotient manifolds

N4m−2
d :=W 4m−1

d

/
S1 and Ñ8m−4

d :=W 8m−1
d

/
Sp(1) are simply connected. For more

details see also [3].

2 New pairs of manifolds with infinite φ-category

In this section we apply theorem 1.1 in order to provide some new pairs of manifolds
with infinite φ-category and theorem 1.2 to provide some new pairs of G-manifolds
having the property that all equivariant mappings between them have infinitely many
critical orbits.

Proposition 2.1 If m,n ≥ 2 and d := dim(Vm+n,m) = p + q, where p = mn, q =
m(m−1)

2 , then we have the following infinite φ-categories:

1. (a) φ
(
Vm+n,m, S

d−1
)
= ∞ and φ

(
Sd+1, Vm+n,m

)
= ∞ for n ≥ 3;

(b)

{
φ
(
Vm+n,m, P

d−1(R)
)
= ∞;

φ
(
P d+1(R), Vm+n,m

)
= ∞ for n ≥ 3;

(c)

{
φ
(
Vm+n,m, S

p−1 × Sq
)
= ∞;

φ
(
Sp+1 × Sq, Vm+n,m

)
= ∞ for n ≥ 3;

(d)

{
φ
(
Vm+n,m, P

p−1(R)× P q(R)
)
= ∞;

φ
(
P p+1(R)× P q(R), Vm+n,m

)
= ∞ for n ≥ 3;

(e)

{
φ
(
Sp+1 × SO(m), Vm+n,m

)
= ∞;

φ
(
P p+1(R)× SO(m), Vm+n,m

)
= ∞ for n ≥ 3;

(f)

{
φ
(
Vm+n,m, S

p−1 × SO(m)
)
= ∞ for m ≥ 5;

φ
(
Vm+n,m, P

p−1(R)× SO(m)
)
= ∞ for m ≥ 5;

(g) φ
(
V2n+2,2, L

2n+1
p × L2n−1

p

)
= ∞ and φ

(
L2n+1
p × L2n+1

p , V2n+2,2

)
= ∞.

2. (a)

{
φ
(
P p+2(R)× P q(R), Vm+n,m

)
= ∞;

φ
(
P p+2(R)× SO(m), Vm+n,m

)
=∞ for m ≥ 5;

(b) φ
(
L2n+1
p , L2n−1

q

)
= ∞ for n, p ≥ 3 and p ̸= q.

3. (a)

{
φ
(
Vm+n,m, S

d−2
)
= ∞;

φ
(
Sd+2, Vm+n,m

)
= ∞ for m ≥ 3 and n ≥ 4;

(b) φ
(
Vm+n,m, P

d−2(R)
)
= ∞ for m ≥ 3 and n ≥ 4;

(c)

{
φ
(
Vm+n,m, S

p−2 × Sq
)
= ∞ for m ≥ 3;

φ
(
Sp+2 × Sq, Vm+n,m

)
= ∞;

(d) φ
(
Vn+2,2,W

2n−1
d

)
= ∞, and φ

(
W 2n+3

d , Vn+2,2

)
= ∞.
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Proof. Indeed (1a), (1b), (1c), (1d), (1e), (1f), (1g) follows by using theorem 1.1 (1a)
taking into account that Vm+n,m is, (n − 1)-connected [5, pp. 203], the homotopy
groups

π2

(
Sd−1

)
, π2

(
P d−1(R)

)
, π2

(
Sp−1 × Sq

)
, π2

(
P p−1(R)× P q(R)

)
,

π
2

(
Sp−1 × SO(m)

)
, π

2

(
P p−1(R)× SO(m)

)
, π

2

(
L2n−1
p

)
are obviously trivial, while the fundamental groups

π
1

(
Sd+1

)
, π

1

(
P d+1(R)

)
, π

1

(
Sp+1 × Sq

)
, π

1

(
P p+1(R)× P q(R)

)
,

π1

(
Sp+1 × SO(m)

)
, π1

(
P p+1(R)× SO(m)

)
, π1

(
L2n+1
p × L2n+1

p

)
are obviously finite. Similarly (2a), (2b) follows by using theorem 1.1 (2) while (3a),
(3b), (3c) and (3d) follows by using theorem 1.1 (4). □

Proposition 2.2 Consider the previously defined S1 free action on W 4m−1
d , m ≥ 3

and the Sp(1) = S3 free action on W 8m−1
d , m ≥ 3 as well as the usual free actions of

S1 on S4m+1 and on S4m−3 and that of Sp(1) = S3 on S4m−6 and on S4m+3.

1. Any S1-equivariant mapping f : S4m+1 → W 4m−1
d has infinitely many critical

orbits whenever d is an odd number. Also any equivariant mapping g :W 4m−1
d →

S4m−3 has infinitely many critical orbits.

2. Considering the S3 free action on S4m−6 × S4m+3

S3 ×
(
S4m−6 ×S4m+3) → S4m−6 ×S4m+3, (q, (z1, z2)) 7→ q(z1, z2) = (qz1, qz2),

any S3-equivariant mapping f :W 8m−1
d → S4m−6×S4m+3, m ≥ 3 has infinitely

many critical orbits.

Proof. (1) Indeed W 4m−1
d is a homotopy sphere whenever d is an odd number

and π2m−1(W
4m−1
d ) ̸≃ 0 since H2m−1(W

4m−1
d ) ≃ Zd ̸≃ 0 and W 4m−1

d is (2m − 2)-
connected. On the other hand π3(S

2) ≃ Z while π4(W
4m−1
d ) ≃ 0 ≃ π3(W

4m−1
d ) for

m ≥ 3. Therefore f has, according to theorem 1.2 (3b), infinitely many critical orbits
and g has, according to theorem 1.2 (3a), infinitely many critical orbits as well.

(2) By using the exact homotopy sequence of the fibration

S3 ↪→W 8m−1
d →W 8m−1

d

/
S3 = Ñ8m−4

d

we get the exact sequence

π3(W
8m−1
d ) → π3(Ñ

8m−4
d ) → π2(S

3) → π2(W
8m−1
d ) → π2(Ñ

8m−4
d ) → π1(S

3)

which ensures us that π3(Ñ
8m−4
d ) ≃ 0 ≃ π2(Ñ

8m−4
d ) taking into account that S3 is

2-connected and W 8m−1
d is, according to [1, Corollary 9.3, pp. 275] and the Hurewicz

theorem, (4m − 2)-connected. In a completely similar way, by considering the exact
homotopy sequence of the fibration

S3 ↪→ S4m−6 × S4m+3 −→ S4m−6 × S4m+3

S3
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and by taking into account that S3 is 2-connected while S4m−6 × S4m+3 is (4m− 7)-
connected, one can immediately deduce that

π2

(S4m−6 × S4m+3

S3

)
≃ 0 ≃ π3

(S4m−6 × S4m+3

S3

)
.

On the other hand we obviously have that

π4m−6

(S4m−6 × S4m+3

S3

)
≃ Z ̸≃ 0 ≃ π4m−6(W

8m−1
d ),

namely the quotient manifolds Ñ8m−4
d ,

(
S4m−6 × S4m+3

)/
S3 satisfy the conditions

of theorem 1.2 (2) such that the proof of (2) is now finished. □
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