
Hopf bifurcation for the rigid body

with time delay
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Abstract

In this paper we define the differential equations with time delay for the rigid
body by using eight 2-covariant tensor fields on R3 × R3. We prove the exis-
tence of the revised system and investigate the existence of a Hopf bifurcation
in the neighborhood of the equilibrium point M1(m, 0, 0). The normal form is
described.
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1. The differential equations for rigid body with time delay

The differential equations for the rigid body in R3 are described by a 2-contravariant
tensor field P0 and by the Hamiltonian function h0 given by:

P0 = (P ij
0 (x)) =


0 x3 −x2

−x3 0 x1

x2 −x1 0

 (1)

h0(x) =
1

2
a1(x1)

2 +
1

2
a2(x

2)2 +
1

2
a3(x

3)2

where (x1, x2, x3) ∈ R3, a1, a2, a3 ∈ R, a1 > a2 > a3. These differential equations are

ẋ(t) = P0(x(t))▽x h0(x(t)) (2)

where ẋ(t) = (ẋ1(t), ẋ2(t), ẋ3(t))T and ▽h0 is the gradient of h0 with respect to the
canonical metric on R3. The differential equations (2) have the equilibrium points
M1(m, 0, 0), M2(0,m, 0), M3(0, 0,m), m ∈ R∗ and have been studied in [5].

The revised differential equations for the rigid body have been studied in [6] and
[3]. They are described by: two 2-contravariant tensor fields P0, g0, the Hamiltonian
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function h0 and the Casimir function l0, where P0 and h0 were given by (1) and g0 is
defined by:

g0(x) = (gij0 (x)), l0(x) =
1

2
(x1)2 +

1

2
(x2)2 +

1

2
(x3)2

gij0 (x) =
∂h0(x)

∂xi
∂h0(x)

∂xj
, i ̸= j

gij0 (x) = −
3∑

k=1

(
∂h0(x)

∂xk

)2

, i, j = 1, 2, 3.

The revised differential equations for the rigid body are:

ẋ(t) = P0(x(t))∇xh0(x) + g0(x(t))∇xl0(x(t)). (3)

The equations (3) has the same equilibrium points M1(m, 0, 0), M2(0,m, 0),
M3(0, 0,m), m ∈ R∗.

The differential equations with time delay are described with the vector field X ∈
X (R3 × R3) that satisfy the property X(π∗

1f) = 0, for all f ∈ C∞(R3), where π1 is
the canonical projection on the first argument π1 : R3 ×R3 −→ R3 and we denote by
C∞(R3) the ring of smooth real valued functions on R3 and by X (R3 × R3) the Lie
algebra of all smooth vector fields on R3 × R3. The differential equations with time
delay associated to vector field X(x̃, x) are

ẋ(t) = X(x(t− τ), x(t)) (4)

where (x̃, x) ∈ R3 × R3, x̃(t) = x(t − τ), τ ≥ 0, with initial value x(θ) = φ(θ),
θ ∈ [−τ, 0], where φ : [−τ, 0] → R3, φ ∈ C∞(R3).

The definition of differential equations with time delay on differential manifolds
was given in [4] and it was studied by [1,2].

The differential equations with time delay for the rigid body are generated by an
antisymetric 2-contravariant tensor field P on the manifold R3 ×R3 that satisfies the
following relations:

P (π∗
1df1, π

∗
1df2) = 0, P (π∗

1df1, π
∗
2dh) = 0

for all f1, f2 ∈ C∞(R3), where π1, π2 : M ×M → M are canonical projections and
h ∈ C∞(M ×M). The 2-contravariant tensor field P is:

P (x̃, x) =

7∑
i=o

εiPi(x̃, x) (5)

where

P0(x) =


0 x3 −x2

−x3 0 x1

x2 −x1 0

 , P1(x̃, x) =


0 x3 −x2

−x3 0 x̃1

x2 −x̃1 0

 ,
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P2(x̃, x) =


0 x3 −x̃2

−x3 0 x1

x̃2 −x1 0

 , P3(x̃, x) =


0 x̃3 −x2

−x̃3 0 x1

x2 −x1 0

 , (6)

P4(x̃, x) =


0 x3 −x̃2

−x3 0 x̃1

x̃2 −x̃1 0

 , P5(x̃, x) =


0 x̃3 −x2

−x̃3 0 x̃1

x2 −x̃1 0

 ,

P6(x̃, x) =


0 x̃3 −x̃2

−x̃3 0 x1

x̃2 −x1 0

 , P7(x̃, x) =


0 x̃3 −x̃2

−x̃3 0 x̃1

x̃2 −x̃1 0

 ,

and ε = (εi) ∈ [0, 1]8, i = 0, 1, 2, ..., 7 with
7∑

i=0

εi = 1.

The function h(x̃, x) is called the Hamiltonian function and it has the following
form:

h(x̃, x) =

7∑
i=0

δihi(x̃, x) (7)

where

h0(x)=
1

2
a1(x

1)2+
1

2
a2(x

2)2+
1

2
a3(x

3)2,

h1(x̃, x) =
1

2
a1x

1x̃1 +
1

2
a2(x

2)2 +
1

2
a3(x

3)2,

h2(x̃, x) =
1

2
a1(x

1)2 + a2x
2x̃2 +

1

2
a3(x

3)2,

h3(x̃, x) =
1

2
a1(x

1)2 +
1

2
a2(x

2)2 + a3x
3x̃3,

h4(x̃, x) = a1x
1x̃1 + a2x

2x̃2 +
1

2
a3(x

3)2,

h5(x̃, x) = a1x
1x̃1 +

1

2
a2(x

2)2 + a3x
3x̃3,

h6(x̃, x) =
1

2
a1(x

1)2 + a2x
2x̃2 + a3x

3x̃3,

h7(x̃, x) = a1x
1x̃1 + a2x

2x̃2 + a3x
3x̃3,

and δ = (δi) ∈ [0, 1]8, with
7∑

i=o

δi = 1.

The differential equations with time delay for the rigid body are given by:

ẋ(t) = P (x̃(t), x(t))∇xh(x̃(t), x(t)) (8)

where x̃(t) = x(t − τ), τ ≥ 0 with initial value x(θ) = ϕ(θ), θ ∈ [−τ, 0], where
ϕ : [−τ, 0] → R3, ϕ ∈ C∞(R3). The differential equations (8) have the equilibrium
points M1(m, 0, 0), M2(0,m, 0), M3(0, 0,m), m ∈ R∗.
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In what follows, we consider the function l ∈ C∞(R3 × R3) given by:

l(x̃, x) =

7∑
i=o

εihi(x̃, x) (9)

where

l0(x̃, x) =
1

2
(x1)2 +

1

2
(x2)2 +

1

2
(x3)2, l1(x̃, x) = x1x̃1 +

1

2
(x2)2 +

1

2
(x3)2,

l2(x̃, x) =
1

2
(x1)2 + x2x̃2 +

1

2
(x3)2, l3(x̃, x) =

1

2
(x1)2 +

1

2
(x2)2 + x3x̃3,

l4(x̃, x) = x1x̃1 + x2x̃2 +
1

2
(x3)2, l5(x̃, x) = x1x̃1 +

1

2
(x2)2 + x3x̃3,

l6(x̃, x) =
1

2
(x1)2 + x2x̃2 + x3x̃3, l7(x̃, x) = x1x̃1 + x2x̃2 + x3x̃3

Proposition 1. (i) The function l(x̃, x) given by (9) satisfies the following relation

∇xl(x̃, x)P (x̃, x)∇xf(x̃, x) = 0 (10)

for all f ∈ C∞(M ×M).
(ii) The revised differential equations with time delay have the form:

ẋ(t) = P (x̃(t), x(t))∇xh(x̃(t), x(t)) + g(x̃(t), x(t))∇x̃l(x̃(t), x(t)) (11)

where x̃(t) = x(t− τ), τ ≥ 0 and g(x̃, x) is a 2-contravariant tensor field given by:

g(x̃, x) = (gij(x̃, x)),

gij(x̃, x) =
∂h(x̃, x)

∂xi
∂h(x̃, x)

∂xj
, i ̸= j

gii(x̃, x) = −
3∑

h=1,k ̸=i

(
∂h(x̃, x)

∂xk

)2

.

The system (11) has the equilibrium points M1(m, 0, 0), M2(0,m, 0), M3(0, 0,m),
m ∈ R∗.

In order to analyze system (11) in the neighborhood of equilibrium pointM1(m, 0, 0)
we will consider ε1 = ε4 = ε5 = ε7 = 0, ε0, ε2, ε3, ε6 ∈ [0, 1] with α1 =
ε0 + ε2 + ε3 + ε6 = 1 and δi ∈ [0, 1], i = 0, ...7 so that

δ0 + δ1 + δ2 + δ4 =
a1
a3

(ε0 + ε2), δ0 + δ1 + δ3 + δ5 =
a1
a2

(ε0 + ε3),

7∑
i=0

δi = 1. (12)

From the above conditions we obtain:

α1 = 1, β1 = 0, α2 = ε0 + ε3, β2 = ε2 + ε6, α3 = ε0 + ε2,
β3 = ε3 + ε6, a3µ3 = a1α3, a2µ2 = a1α2, µ3 = δ0 + δ1 + δ2 + δ4,
η3 = 1− µ3, µ2 = δ0 + δ1 + δ3 + δ5, η2 = 1− µ2,
µ1 = δ0 + δ2 + δ3 + δ6, µ1 = δ1 + δ4 + δ5 + δ7.

(13)
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The Hopf bifurcation in M1(m, 0, 0)

Fist we consider the linear system associated to the differential equations with time
delay (11) in M1(m, 0, 0):

u̇(t) = A1u(t) +B1u(t− τ) (14)

where

A1 =


0 0 0

0 a22 0

0 0 a33

 , B1 =


0 0 0

0 0 b23

0 b32 0

 , (15)

u(t) = (u1(t), u2(t), u3(t))
T and

a22=−β2a21m2, a33=−β3a21m2, b23=m(a3 − a1), b32=m(a1 − a2).

The characteristic equation corresponding to (14) is given by

det(λI −A1 −B1e
−λτ ) = −λ∆1(λ, τ) = 0 (16)

where
∆1(λ, τ) = λ2 + aλ+ b+ ce−2λτ (17)

and
a = (β2 + β3)a

2
1m

2, b = β2β3a
4
1m

4, c = m2(a1 − a2)(a1 − a3).

Proposition 2. (i) If τ = 0 then the equation ∆1(λ, 0) = 0 has the roots with
negative real parts.

(ii) If m ∈
(
a1 − a3
β2a21

,
a1 − a2
β3a21

)
then the equation ∆1(λ, τ) = 0 has the roots with

negative real parts for any τ > 0.
(iii) If m ∈ (0, p) then there exists τ0 and ω0 such that λ1 = iω0, λ2 = λ̄1 are

simple roots for ∆1(λ, τ0) = 0 and the other roots have negative real part, where

p =
1

a1

√
(a1 − a2)(a1 − a3)

β2β3
, τ0 =

1

2ω0
arctan

aω0

ω2
0 − b

(18)

and ω0 is one positive root of the following equation:

ω4 + (a2 − 2b)ω2 + b2 − c2 = 0.

Proposition 3. For m0 ∈ (0, p) and τ0 = τ0(ω0) given by (18), τ is a Hopf
bifurcation for system (11).
Proof. The roots of equation ∆1(λ, τ) = 0 are continuously dependent on τ so that
we consider λ = λ(τ). Deriving (21) with respect to τ and computing the derivative
in τ = τ0, λ1 = iω, it results that:

M = Re

(
dλ

dτ

)
τ=τ0,λ=λ1

=
2ω0τ0[a(a+ b− 2ω2

0) + 2ω0(a+ 1)(ω2
0 − b)]

(a+ b− 2ω2
0)

2 + 4ω2
0(a+ 1)2
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N = Im

(
dλ

dτ

)
τ=τ0,λ=λ1

=
2ω0τ0[(ω

2
0 − b)(a+ b− 2ω2

0)
2 − 2a(a+ 1)ω2

0 ]

(a+ b− 2ω2
0)

2 + 4ω2
0(a+ 1)2

Because M is a positive number then τ0 is a Hopf bifurcation.
Remark 1. Characteristic equation (16) has one zero eigenvalue corresponding to

the eigenvector with the direction along the line of equilibria. Thus the equilibria on
this line will not be asymtotically stable. However, applying the results from [4] they
will be orbitally asymptotically stable if all the other roots of ∆1(λ, τ) have negative
real parts. Using Propositions 2 and 3 we obtain that if τ ∈ [0, τo) and m ∈ (0, p), the
point M1(m, 0, 0) is orbitally asymptotically stable.

The normal form for the system (11)

From (12) and (13) and by using the translation x1 = y1 + m, x2 = y2, x3 = y3

system (11) becomes:

ẏ(t) = A1y(t) +B1y(t− τ) + F (y(t), y(t− τ)) +G(y(t), y(t− τ)) (19)

where A1, B1 are the matrices given in (19), y(t) = (y1(t), y2(t), y3(t))T , y(t − τ) =
(y1(t− τ), y2(t− τ), y3(t− τ))T , F (y(t), y(t− τ)) = (F 1(y(t), y(t− τ)), F 2(y(t), y(t−
τ)), F 3(y(t), y(t− τ)), with

F 1(y(t), y(t− τ)) =
d23y

2(t)y3(t) + e23y
2(t− τ)y3(t) + f23y

2(t)y3(t− τ) + h23y
2(t− τ)y3(t− τ),

F 2(y(t), y(t− τ)) =
d13y

1(t)y3(t) + e13y
1(t− τ)y3(t) + f13y

1(t)y3(t− τ) + h13y
1(t− τ)y3(t− τ),

F 3(y(t), y(t− τ)) =
d13y

1(t)y2(t) + e12y
1(t− τ)y2(t) + f12y

1(t)y2(t− τ) + h12y
1(t− τ)y2(t− τ),

(20)
and

d23 = a2µ2α3 − a3µ3α2, e23 = a2µ2α3 − a3µ3β2,
f23 = a2µ2β3 − a3η3α2, h23 = a2η2β3 − a3η3β2,

d13 = a3µ3 − a1µ1α3, e13 = a3µ3 − a1µ1β3,
f13 = −a1µ1α3, h13 = −a1η1β3,

d12 = a1µ1α2 − a2µ2, e12 = a1µ1α2,
f12 = a1µ1β2 − a2η2, h12 = a1η1β2.

The function G(y(t), y(t− τ)) has as components polynomials of third degree in the
coordinates of y(t) and y(t− τ).

Let τ = τ0 + ε be with ε ≥ 0 sufficiently small and the center manifold in τ given
by:

y(θ) = zϕ(θ) + z̄ϕ(θ) +
1

2
w20(θ)z

2 + w11(θ)zz̄ +
1

2
w02(θ)z̄

2 + . . . (21)

where θ ∈ [−τ, 0], z ∈ C2, ϕ(θ) = ϕ(0)eλ1θ, and ϕ(0) is the eigenvector of the matrix
A1 + e−λ1τ0B1.

By direct computation it results ϕ(0) = (0, v2, 1)
T where
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v2 = −m(a1 − a3)e
−λ1τ0

β2a21m
2 + λ1

.

The eigenvector of ψ(0) of the adjunct matrix A1 + e−λ1τ0B1 is ψ(0) = (0, w2, w3),
where

w2 =
m(a1 − a2)e

−λ2τ0w3

β2a21m
2 + λ2

w3.

Using the following scalar product :

< ψ(s), ϕ(s) >= ψ(0)ϕ(0) +

0∫
−τo

ψ(s+ τ0)B1ϕ(s)ds

we can determinate w3 so that < ψ(s), ϕ(s) >=< ψ̄(s), ϕ̄(s) >= 1, < ψ(s), ϕ̄(s) >=<
ψ̄(s), ϕ(s) >= 0.

By direct computation it results:

w3=
1

η
, η=1− m2(a1 − a3)(a1 − a2)

β2
2a

4
1m

4 + ω2
0

(1 + β2a1m
2τ0 + λ2τ0 + τ0(β2a1m

2 + λ2)e
2λ1τ0).

Replacing y with y(0) and ỹ with y(t− τ) given by (21) in (20) we have:

F 1(y, ỹ) =
1

2
F 1
20z

2 + F 1
11zz̄ +

1

2
F 1
02z̄

2 +
1

2
F 1
21z

2z̄ + . . .

F 2(y, ỹ) =
1

2
F 2
21z

2z̄ + . . .

F 3(y, ỹ) =
1

2
F 3
21z

2z̄ + . . .

where

F 1
21 = 2(d23 + (e23 + f23)e

−λ1τ0 + h23e
−2λ1τ0)v2

F 2
21 = d13(w

1
20(0) + 2w1

11(0)) + e13(w
1
20(−τ0) + 2w1

11(−τ0))+
+ f13(w

1
20(0)e

λ1τ0 + 2w1
11(0)e

−λ1τ0)+
+ h13(w

1
20(−τ0)eλ1τ0 + 2w1

11(−τ0)e−λ1τ0)
F 3
21 = d12(w

1
20(0)v̄2 + 2w1

11(0)v2) + e12(w
1
20(−τ0)v̄2 + w1

11(−τ0)v2)+
+ f12(w

1
20(0)e

λ1τ0 v̄2 + 2w1
11(0)e

−λ1τ0v2)+
+ h12(w

1
20(−τ0)eλ1τ0 v̄2 + 2w1

11(−τ0)e−λ1τ0v2).

The invariance property of central manifold [4] leads to:

w1
20(θ) =

1

2λ2
F 1
20e

2λ2θ, w1
11(θ) = 0, θ ∈ [−τ0, 0].

Proposition 4. (i). The normal form of the system (19) on the central manifold
is:

ż(t) = λ1z(t) +
1

2
g21z(t)

2z̄(t) (22)

where
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g21 = w2F
2
21 + w3F

3
21

F 2
21 =

1

2λ2
F 1
20(d13 + e13e

−2λ2τ0 + f13e
λ1τ0 + h13e

(λ1−2λ2)τ0)

F 3
21 =

1

2λ2
F 1
20v̄2(d12 + e12e

−2λ2τ0 + f12e
λ1τ0 + h12e

(λ1−2λ2)τ0).

(ii) The solution of differential system with time delay (11) in the neighborhood of
M1(m, 0, 0) is:

x1(t) = m+Re(w1
20(0)z

2(t))
x2(t) = 2Re(z(t)v2)
x3(t) = 2Re(z(t)),

where z(t) is a solution of equation (22).

(iii) The Lyapunov coefficient is C1 =
g21
2

. The elements which characterize the

limit cycle are:

µ̃2=−
Re(C1)

Re

(
dλ

dτ

)
τ=τ0,λ=λ1

, β2=2Re(C1)

T2=−
Im(C1) + µ̃2Im

(
dλ

dτ

)
τ=τ0,λ=λ1

ω0
.

(iv) If µ̃2 > 0(< 0) then the Hopf bifurcation is supercritical (subcritical) and the
bifurcating periodic solutions exist for τ > τ0(< τ0); the solutions are orbitally stable
(unstable) if β2 < 0(> 0); the period increases (decreases) if T2 > 0(< 0).

For ε0 = 0.2, ε1 = 0, ε2 = 0.2, ε3 = 0.3, ε4 = 0, ε5 = 0, ε6 = 0.3, ε7 = 0,

a1 = 0.6, a2 = 0.4, a0 = 0.2, δ0 =
a2
a1

(ε0 + ε3), δ1 =
a2
a3

(ε0 + ε1) −
a2
a1

(ε0 + ε3),

δ2 = δ3 = δ4 = δ6 = δ7 = 0, δ5 = 1−δ0−δ1 it results: p = 0.860662958 and m = 0.66,
ω0 = 0.16557, τ0 = 2.9090, β2 = 1.145, µ2 = −4.524, T2 = −10.046. There is a
subcritical bifurcation, orbitally unstable solution with decrease period.

The phase plot (x1(t), x2(t), x3(t)) is given in fig 1:
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Fig1. Phase plot (x(t)^1,x(t)^2,x(t)^3) 

The analysis of the system (11) in the neighborhood of the equilibrium points
M2(0,m, 0) and M3(0, 0,m) will be given in the next papers.
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