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Abstract

This paper investigates the way in which geometric dynamics on Riemannian
manifolds can be applied to fluid flow. The equations of motion from fluid me-
chanics (momentum equations), expressed on general curvilinear coordinates,
are compared with the equations of motion in a gyroscopic field of forces. At-
tempts are made to seek conditions under which both describe the same motion,
especially in the case when trajectories are not field lines. It is proved that all
pathlines and streamlines are geodesics in the least square sense and, in some
circumstances, other trajectories included in geometric dynamics have physical
support.
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1 Deterministic description of fluid flow

The basic mathematical point of view of any fluid flow is that it can be described by a
point transformation, namely, a family of C∞ transformations of coordinates indexed
after the time parameter t [1, Aris 1989]. Accepting the idea that we can point out
one individual particle of the flow at a certain moment of time, t = 0, we are able
to define its initial position as ξ

(
ξ1, ξ2, ξ3

)
. Later, at the moment t, we will find the

same particle at position

x = φ (ξ, t) .(1.1)

The initial coordinates
(
ξ1, ξ2, ξ3

)
of the particle will be referred as material coordi-

nates and, when convenient, the particle itself may be called particle ξ. Convected
coordinates or Lagrangian coordinates are also used to denote the particle. In the same
coordinate system, the spatial coordinates

(
x1, x2, x3

)
can be referred to as particle’s

position or place. In the case of a deterministic description of a continuous movement
of the particle, it is accepted that the function (1.1) is a bijective application (change
of coordinates). Physically this means that a continuous arc of particles does not
break up during the motion and that, for short time, particles in the neighborhood
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of a given particle continue to stay in this neighborhood during the motion. Inverting
the function (1.1) we obtain

ξ = φ−1 (x, t) .

The deterministic character of the motion can be associated to the single valuedness
property of the function ξ 7−→ x, which means that a particle cannot split up and
cannot occupy two places at the same time nor can two distinct particles occupy the
same place at same instant. Though practically we use derivatives of order one, two
and three, we accept the class C∞. Exceptions may be accepted on a finite number of
singular surfaces, lines or points. The necessary and sufficient mathematical condition
in order to locally invert the function (1.1) is that the Jacobian satisfies the condition

J =
Dx

Dξ
̸= 0.

The partial function t 7−→ φ (ξ, t) may be looked at as the parametric equation of
a curve (particle path or trajectory) in R3, having t as parameter. The curve goes
through point ξ at the initial moment t = 0. Any material property of the fluid
may be followed along particle’s path. For example: the density ρ = ρ (ξ, t) in the
neighborhood of a particle ( the density, as seen by an observer riding on the particle,
is a function of time), the position x = φ (ξ, t) etc. Generally, the material description
of any property can be represented by a function F (ξ, t). It can be changed into a
spatial description f (x, t) via the composition

F (ξ, t) = F
(
φ−1 (ξ, t) , t

)
= f (x, t) .(1.2)

The physical interpretation of relation (1.2) points out that the value of the property
at position x and time t is the value characteristic to the particle ξ that occupies the
position x at time t. The spatial description,

f (x, t) = f (φ (ξ, t) , t) = F (ξ, t) ,(1.3)

means that the value as seen by the particle at time t is the value at the position it
occupies at that time. Associated with these two descriptions there are two derivatives
with respect to time: partial derivative ∂

∂t =
(

∂
∂t

)
x=ct

and material derivative d
dt =(

∂
∂t

)
ξ=ct

. Thus, ∂f
∂t is the rate of change of property f (x, t) at a fixed point x, whereas

dF
dt is the rate of change of F (ξ, t) as observed when moving with the particle ξ (that
is at constant ξ). The latter is also known as convected derivative. Hence, the material
velocity of the particle along its path is given by

V (ξ, t) =

(
∂x

∂t

)
ξ=ct

=
dx

dt
=

∂φ

∂t

∣∣∣∣
ξ=ct

= φ̇ (ξ, t) = v (x, t) .(1.4)

Combining the previous relation with definition (1.3) allows us to establish a connec-
tion between the material derivative and the spatial derivative

dF

dt
(ξ, t) =

∂F

∂t
(ξ, t)

∣∣∣∣
ξ=ct

=
∂f

∂t
(x, t)

∣∣∣∣
ξ=ct

=
∂f

∂xi

(
∂xi

∂t

)
ξ=ct

+
∂f

∂t

∣∣∣∣
x=ct

(1.5)
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=
∂f

∂xi

dxi

dt
+

∂f

∂t

∣∣∣∣
x=ct

or
dF

dt
=

∂f

∂xi
φ̇i +

∂f

∂t
=

∂f

∂t
+ (φ̇ · ∇) f =

df

dt
.(1.6)

The spatial velocity field is defined by v (x, t) = V (ξ, t), where ξ and x are related by
the relation (1.1). The acceleration in the particle coordinate system is

A (ξ, t) =
dV

dt
=

dv

dt
=

∂v

∂xi
φ̇i +

∂v

∂t
=

∂v

∂t
+ (φ̇ · ∇) v.(1.7)

The relation (1.6) points out the connection between the Lagrangian description and
the Eulerian description of the flow. On the other hand, it can be used to write

dv

dt
=

∂v

∂t
+ (φ̇ · ∇) v,(1.8)

which, along the trajectory, becomes dv
dt = ∂v

∂t + (v · ∇) v since φ̇ (ξ, t) = v (x, t).

2 Arnold’s point of view regarding incompressible
fluids

Arnold [3, 1966], [2, 1969] showed that the Euler equations for an incompressible fluid
could be given a Lagrangian and Hamiltonian description similar to that of rigid-
body. For ideal fluids, the configuration space G (infinite dimensional) is the group
Diffvol (Ω) of volume preserving transformations of the fluid control volume (a region
in R2 or R3 or a Riemannian manifold in general, possible with boundary). Group
multiplication in G is the composition.

The reason we select G = Diffvol (Ω) as the configuration space is similar to
that for a rigid body; namely each element of G is a mapping of Ω to Ω that takes
a reference point ξ to a current point x = x (ξ) ∈ Ω; thus, knowing x tells us where
each particle of fluid goes and hence gives us the fluid configuration. We ask that x
be a diffeormorphism to exclude discontinuities, cavitation, and fluid interpenetra-
tion, and we ask that x be volume preserving to correspond to the assumption of
incompressibility.

A motion of a fluid is a family of time-dependent elements of G, which we write
as x = φ (ξ, t). The material velocity field is defined by (1.4). If we suppress t in (1.1)
and write φ̇ for V , we observe that

v = φ̇ ◦ φ−1, i.e., vt = Vt ◦ φ−1
t ,(2.1)

where φt (ξ) = φ (ξ, t).
We can regard (2.1) as a map from the space of (φ, φ̇) (material or Lagrangian

description) to the space of v ≡ (x, v) (spatial or Eulerian description). Like the rigid-
body, the material to spatial map (2.2) takes the canonical bracket to a Lie Poisson
bracket; one of our goals is to understand this reduction. Notice that if we replace φ
by φ ◦ η for a fixed (time-dependent) η ∈ Diffvol (Ω), then φ̇ ◦φ−1 is independent of
η; this reflects the right invariance of the Eulerian description (v is invariant under
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composition of φ by η on the right). This is also called the particle relabeling symmetry
of fluid dynamics). The spaces TG and T ∗G represent the Lagrangian (material)
description, and we pass to the Eulerian (spatial) description by right translations
and use the (+)Lie-Poisson bracket. One of the things we want to do later is to
better understand the reason for the switch between right and left in going from the
rigid-body to fluids.

Dynamics of a Fluid. The Euler equations for an ideal, incompressible, homoge-
neous fluid moving in the region Ω are

∂v

∂t
+ (v · ∇) v = −∇p

ρ
,(2.2)

with the constraint div v = 0 and the boundary condition that the velocity vector
field v is tangent to the boundary ∂Ω.

The pressure p is determined implicitly by the divergence-free (volume - preserv-
ing) constraint (see [7, Chorin and Marsden 2000 ] for basic information on the deriva-
tion of Euler’s equations). The associated Lie algebra g is the space of all solenoidal
(divergence-free) vector fields tangent to the boundary. This Lie algebra is endowed
with the negative Jacobi-Lie bracket of vector fields given by

[v, w]
i
L =

n∑
j=1

(
wj ∂v

i

∂xj
− vj

∂wi

∂xj

)
.

The subscript L on the bracket refers to the fact that it is the left Lie algebra bracket
on g. The most common convention for the Jacobi-Lie bracket of vector fields, also
the one we adopt, has the opposite sign. Also we identify g and g∗ using the pairing

⟨v, w⟩ =
∫
Ω

v.w d3x.

Hamiltonian Structure. We introduce the (+)Lie-Poisson bracket, called the ideal
fluid bracket, on functions of velocity v by

{F,G} (v) =
∫
Ω

v.

[
δF

δv
,
δG

δv

]
L

d3x,

where δF
δv is defined by

lim
ε→0

1

ε
[F (v + εδv)− F (v)] =

∫
Ω

δv.
δF

δv
d3x.

With the energy function chosen to be the kinetic energy

H (v) =
1

2

∫
Ω

∥v∥2 d3x,

one can verify that the Euler equations (2.2) are equivalent to the Poisson bracket
equations

Ḟ = {F,H} ,
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for all functions F on g. To see this, it is convenient to use the orthogonal decom-
position w = Pw +∇p of a vector field w into a divergence-free part Pw in g and a
gradient. Then the Euler equations can be written

∂v

∂t
+ P (v.∇v) = 0.

One can express the Hamiltonian structure in terms of the velocity as a basic dynamic
variable and show that the preservation of coadjoint orbits amounts to Kelvin’s circu-
lation theorem. Marsden and Weinstein [13, 1983] show that the Hamiltonian struc-
ture in terms of Clebsch potentials fits naturally into this Lie-Poisson scheme, and
that Kirchhoff’s Hamiltonian description of point vortex dynamics, vortex filaments,
and vortex patches can be derived in a natural way from the Hamiltonian structure
described above.

Lagrangian Structure. The general framework of the Euler-Poincare and the Lie-
Poisson equations gives other insights as well. For example, this general theory shows
that the Euler equations are derivable from the ”variational principle”

δ

∫ b

a

∫
Ω

1

2
∥v∥2 d3x = 0,

which is to hold for all variations δv of the form δv = u̇ + [v, u]L (sometimes called
Lin constraints, [5]), where u is a vector field (representing the infinitesimal displace-
ment of the particle) vanishing at the temporal endpoints (this Lagrange-d’Alembert
principle is due to Newcomb.

There are important functional-analitic differences between working in material
representation (that is, on T ∗G) and in Eulerian representation (that is, on g∗) that
are important for proving existence and uniqueness theorems, theorems on the limit of
zero viscosity, and the convergence of numerical algorithms (see [9, Ebin and Marsden
1970], [6, Chorin, Hughes, Marsden, and McCracken 1978]). Finally, we note that for
two-dimensional flows, a collection of Casimir functions is given by

C (ω) =

∫
Ω

Φ (ω (x)) d2x,(2.3)

for Φ : R 7−→ R, any smooth function and ωk = ∇ × v, the vorticity. For three
dimensional flows the function (2.3) is no longer a Casimir function.

3 Pathlines and streamlines in fluid dynamics

Suppose X (x, t) is a given velocity field for a specific fluid flow in a domain Ω of R2

or R3. First we need to select the evolution parameter and to introduce the evolution
ODE. Second, we need the initial position of the particle, leading us to a Cauchy
problem. From the point of view of fluid mechanics, two situations are to consider
regarding kinematics of a material particle: pathline and streamline.

Pathlines are solutions of the Cauchy problems

dx

dt
= X (x (t) , t) , x (0) = x0
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and streamlines are solutions of different Cauchy problems

dx

ds
= X (x (s) , t) , x (0) = x0.(3.1)

In the second case, s is the parameter along the streamline, different from time param-
eter t which is held constant while the equations (3.1) are integrated. The parameter
t can produce bifurcation in the equilibrium set or Hopf bifurcation of the flow. When
the field X is autonomous, the pathlines coincide with streamlines.

4 Geometric dynamics derived from a velocity field
in Riemannian space

SupposeX (x, t) is a given contravariant vector field on a Riemannian manifold (M, g),
depending on the time parameter t, and

dx

dt
= X (x (t) , t)(4.1)

is the associated first order nonautonomous differential system (pathlines). In order
to obtain the prolongation by derivation of the system (4.1), we only have to take
the temporal derivative (along a solution) of both members. The derivative of the
left-hand side yields the contravariant components of the acceleration of the system

Ai =
dẋi

dt
+ Γi

jkẋ
kẋj ,(4.2)

where Γi
jk are the second order Christoffel symbols produced by the Riemannian

metric g. The covariant differentiation of the right-hand side of 4.1 reads

δXi

δt
=

∂Xi

∂t
+Xi

,j

dxj

dt
=

∂Xi

∂t
+

(
∂Xi

∂xj
+ Γi

jkX
k

)
dxj

dt

If we add and substract the Riemannian adjoint tensor gihgkjX
k
,h ofXi

,j in the previous
relations, we obtain

δXi

δt
=

∂Xi

∂t
+
(
Xi

,j − gihgkjX
k
,h

) dxj

dt
+ gihgkjX

k
,h

dxj

dt
.(4.3)

The skew-symmetric (with respect to the Riemannian metric) coefficient

F i
j = Xi

,j − gihgkjX
k
,h

is an external tensor that characterizes the helicity of the vector field X. If we replace
in the last term of (4.3), the derivative of the position vector by the corresponding
velocity field component and the left-hand side with the acceleration given by (4.2),
we obtain the prolongation specific to geometric dynamics formalism ([16, Udriste
2000a]- [24, waf2005])

ẍi + Γi
jkẋ

kẋj =
∂Xi

∂t
+ F i

j ẋ
j + gihgkjX

k
,hX

j .(4.4)
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The second order ODE (4.4) represents an Euler-Lagrange prolongation of first order
ODE (4.1), containing three force fields: one gyroscopic field of forces, represented by
F i
j ẋ

j , one conservative field of forces

gih
∂f

∂xh
= gihgkjX

k
,hX

j ,(4.5)

and finally, the field of temporal variation ∂Xi

∂t . The function f = 1
2g (X,X) is the

potential energy density associated with X and with Riemannian structure g. The
Lagrangian L producing (4.4) as Euler-Lagrange equations, i.e.,

∂L

∂x
− d

dt

∂L

∂ẋ
= 0,

is given by

L =
1

2
g (ẋ−X, ẋ−X) ,

i.e., it is a least squares Lagrangian. The equations (4.4) show that the field lines (4.1)
are geodesics in a suitable structure, and that the set of all such geodesics is larger
than the set of pathlines.

The Cauchy problem in the case of geometric dynamics equations, brings out two
situations. One case is illustrated by conditions of type

x (0) = x0,
dx

dt

∣∣∣∣
t=0

= X (x (0) , 0) ,

that will describe nothing else but a pathline. The second, is a totally different situ-
ation,

x (0) = x0,
dx

dt

∣∣∣∣
t=0

= Y (x (0) , 0) ,(4.6)

where Y represents some arbitrary initial conditions different from the values of the
velocity field X, at first instant. We call this situation an injection with respect to
the flow generated by X.

Now, let us change the previous point of view starting with the system which
describes the streamlines,

dx

ds
= X (x (s) , t) .

In this sense the evolution parameter s is different from the time parameter t. We can
repeat the previous ideas to produce a geometric dynamics with evolution parameter
s, but with forces depending on the time-parameter t.

5 Dynamics derived from a force field in Rieman-
nian space

The purpose of dynamics is to assess the motion of a system under the influence of
forces acting on it. Ingredients:



Fluid flow versus Geometric Dynamics 77

x = position, t = time, v = velocity, a = acceleration,
m = mass, F = force field, α = vector field parameter

The trajectories of the system are generated by solving the second order differential
system of equations,

a =
F

m
= X,

once the force field F (x, t) or F (x, v, t) or F (x, v, α, t) is known. In the general case
we have F (x (t) , v (x, t) , α (x, t) , t).

Following this idea, we can imagine that the force field comes from a generalized
potential U = U (x (t) , ẋ (t) , t). In this case, the Lagrangian has the following general
form

L (t, x (t) , ẋ (t)) =
1

2
m ∥ẋ (t)∥2 − U (x (t) , ẋ (t) , t) .

Apart from Euler-Lagrange equations, the Hamilton principle regarding the station-
arity of the action functional, yields the definition of the functional derivative δf of
any scalar field Λ ([11, Gottlieb et. al. 1997])

δfΛ

δfxi
=

∂Λ

∂xi
− d

dt

(
∂Λ

∂ẋi

)
.

Consequently, the Euler-Lagrange equations can be written
δfL
δfxi = 0 and the force

field is defined by δfU/δfx = −F . This definition produces the covariant components

Fi (t, x (t) , ẋ (t)) = − ∂U

∂xi
+

d

dt

(
∂U

∂ẋi

)
.

Thus, the covariant components of the force field are

Fi (t, x (t) , ẋ (t)) = − ∂U

∂xi
+

∂2U

∂t∂ẋi
+ ẋk ∂2U

∂xk∂ẋi
+ ẍk ∂2U

∂ẋk∂ẋi
.

The natural hypothesis that F does not depend on the acceleration ẍ (t) is equivalent

to ∂2U
∂ẋk∂ẋi = 0, i.e., U (t, x (t) , ẋ (t)) = W (t, x (t)) + ẋiAi (t, x (t)) and hence

Fi = −∂W

∂xi
+

∂Ai

∂t
+ ẋk

(
∂Ai

∂xk
− ∂Ak

∂xi

)
.

Here W is the so called simple potential and A is the potential vector associated
with W . The components of the force field generated by the generalized potential U
contains a conservative part, a temporal variation of the potential vector field and a
gyroscopic force field, similar to force field generated by the velocity field (4.4)-(4.5).

The previous explanations shows that the Euler-Lagrange equations

δfL

δfxi
= 0

differ from those in geometric dynamics generated by the vector field (flow) A only
by gradient terms.
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6 Leap from fluid flow to geometric dynamics

Let us consider an alternative to (1.8), the so called Helmholtz representation of fluid
flow ([10, Florea and Panaitescu 1979])

∂v

∂t
+∇

(v · v
2

)
+ (∇× v)× v = f − ∇p

ρ
,(6.1)

where v (x, t) is the velocity field, p is the pressure field, f an external force field and
ρ is the constant field of density. Usually, equation (6.1) represents the main tool in
finding the velocity field in a given domain Ω in R2 or R3. The left hand side of it
comprises the acceleration field composed by a local field ∂v/∂t and the transport or
convective field, the remaining two terms. Simple vector algebra shows that (v · ∇) v
from (1.8) transforms accordingly in the convective part of the acceleration field, such
that

dv

dt
=

∂v

∂t
+ (v · ∇) v =

∂v

∂t
+∇

(v · v
2

)
+ (∇× v)× v,(6.2)

represents nothing but a series of identities. We would like to transform the identity
(6.2) in a differential equation expressing a dynamic. Taking into account the way
vector operators gradient and curl act, the only possibility resides in replacing the
material property velocity, in Lagrange representation, v = ẋ, as follows

dẋ

dt
=

∂v

∂t
+∇

(v · v
2

)
+ (∇× v)× ẋ.(6.3)

Relation (6.3) is the equivalent of geometric dynamics (4.4) if we identify the con-
travariant components of the acceleration on a Riemannian manifold, dẋ/dt, with the
left hand side of (4.4),

dẋi

dt
= ẍi + Γi

jkẋ
kẋj .

The contravariant components of the gradient are

∇
(v · v

2

)
:
1

2
gij

(
glmvlvm

)
,j
= gijglmvl,jv

m

similar to the last term of (4.4). The outer product of the curl of the velocity field
and ẋ can be written in tensorial notation as

(∇× v)× ẋ : εijk
(
εjlmglpv

p
,m

)
ẋk =

(
δlkδ

m
i − δliδ

m
k

)
glpv

p
,mẋk,

or more

(∇× v)× ẋ :
(
δlkδ

m
i − δliδ

m
k

)
glpv

p
,mẋk =

(
gkpv

p
,i − gipv

p
,k

)
ẋk.

Its contravariant components are expressed as

(∇× v)× ẋ : gjk
(
gkpv

p
,i − gipv

p
,k

)
ẋk =

(
vj,i − gjkgipv

p
,k

)
ẋk.

One can easily identify the last expression with the gyroscopic force F i
j ẋ

j , with F i
j

given by (4.5) and Xj = vj . If we reassamble equation (6.2) by contravariant compo-
nents we get the equations of geometric dynamics
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ẍi + Γi
jkẋ

kẋj =
∂vi

∂t
+ F i

j ẋ
j + gihgkjv

k
,hv

j .

We conclude that solutions of (6.3) are geodesics in the least-square sense as described
in §3.

7 Comparison between discrete-phase model and
geometric dynamics

The solution of (4.4) with initial conditions (4.6) is a trajectory that is not a pathline.
We wonder if this situation may have any physical support. One possible answer lies in
analyzing a discrete-phase flow, meaning the injection of a different material particle
at some fixed point in the basic flow-field. The physics of discrete-phase flow represents
one of the most challenging issues for scientists. The deterministic approach of this
type of flows takes into account the interaction between the basic fluid flow and the
discrete-phase through several forces like drag, virtual mass, Bassett or external forces
([12, Kuan 1986]). In this case, the particle follows deterministic trajectory found via
the velocity vp of the particle along its path which is a solution of the Lagrangian
equations of motion

dvp
dt

= CD
ρ

ρp
|v − vp| (v − vp) +

1

2

ρ

ρp

d (v − vp)

dt
− ∇p

ρp
+ fB + fc,(7.1)

where v is the velocity of basic flow, CD is the drag coefficient, ρ the density of the
fluid, ρp the density of the particle injected, p pressure, fB is the volumic Bassett
force accounting for the deviation of the flow from the steady flow pattern around
a sphere. Its particular expression may be found in [12, Kuan 1986] and fc other
volumic external forces e.g., gravity. In the case of a perfect fluid and for negligible
diameter of the particle, the drag coefficient vanishes, likewise Bassett force and other
external forces, such that (7.1) becomes

dvp
dt

=
1

2

ρ

ρp

d (v − vp)

dt
− ∇p

ρp
.(7.2)

Assuming the knowledge of basic flow and that its pattern in the neighborhood of the
discrete-phase injected is not affected by this injection, it is much simpler to solve
the motion of the injected particle following the geometric dynamics equations rather
than (7.2).

8 Application of Udriste dynamics to the potential
flow around a circle

In this case the Cartesian components of the velocity field are

dx

dt
= u = −U∞

[
1− a2

x2 − y2

(x2 + y2)
2

]
,
dy

dt
= v = 2U∞a2

xy

(x2 + y2)
2 ,
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where a is the circle radius. The equations of Udriste geometric dynamics ([15], [16])
are

d2x

dt2
= −U2

∞a2
x
(
−x2 + a2 + 3y2

)
(x2 + y2)

4 ,
d2y

dt2
= −U2

∞a2
y
(
−3x2 + a2 + y2

)
(x2 + y2)

4 .(8.1)

Considering a = 0.2m and U∞ = 1m/s let us approximate the trajectories for the
following initial conditions:

a) x0 = 0.5m, y0 = 0.1m, u0 = −0.858m/s, v0 = 0.0591m/s, streamline

b) x0 = 0.5m, y0 = 0.1m, u0 = −0.858m/s, v0 = 0.0m/s, injection

c) x0 = 0.5m, y0 = 0.1m, u0 = −0.858m/s, v0 = −0.0591m/s, injection

d) x0 = 0.5m, y0 = 0.1m, u0 = −0.5m/s, v0 = 0.0591m/s, injection

e) x0 = 0.5m, y0 = 0.1m, u0 = −0.1m/s, v0 = 0.0591m/s, injection

f) x0 = 0.5m, y0 = 0.1m, u0 = 0.0m/s, v0 = 0.0m/s, injection

g) x0 = 0.5m, y0 = 0.1m, u0 = −0.84m/s, v0 = 0.0m/s, streamline at stagnation
point

h) x0 = 0.193m, y0 = 0.051m, u0 = −0.134m/s, v0 = 0.5m/s, streamline on the
circle

The results of the numerical integration of (8.1) are given in figures 1, 2 and 3.

Fig. 1. Fig. 2. Fig. 3.

9 Conclusions

We have investigated the basic equations of fluid flow and proved that streamlines
and, in some cases, pathlines are the solutions of the equations of geometric dynamics.
Work has further to be done when considering the interaction between the basic flow
field and particle’s own flow pattern.
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