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Abstract

In this overview report we generalize Erhard Heinz’ curvature estimate for min-
imal graphs in R3 to graphs in Rn of prescribed mean curvature. Secondly, we
analyse these problems in the frame of the outer differential geometry which
leads us to the notions of normal torsion and normal curvature for immersions
in R4.
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1. Immersions in Rn. Basic notations

On the closed unit disc B := {(u, v) ∈ R2 : u2+v2 ≤ 1} we consider two-dimensional
immersions

(1.1) X(u, v) =
(
x1(u, v), x2(u, v), . . . , xn(u, v)

)
, (u, v) ∈ B,

of class X ∈ C3(B,Rn), n ≥ 3.

Let u1 ≡ u and u2 ≡ v, and denote by Xui , Xt
ui the partial derivative of X and its

transpose w.r.t. ui. We define the coefficients of the first fundamental form of X as

(1.2) gij := Xui ·Xt
uj , i, j = 1, 2.

The surface area element W of an immersion fulfills

(1.3) W :=
√
g11g22 − g212 > 0 in B.

We preferably use conformal parameters (u, v) ∈ B with the properties

(1.4) |Xu|2 = W = |Xv|2 , Xu ·Xt
v = 0 in B.

With such an immersion we associate a regular frame

(1.5)
{
Xu, Xv, N1, . . . , Nn−2

}
which consists of the two tangential vectors Xu, Xv, and an orthonormal (ON) system
NΣ, Σ = 1, . . . , n− 2, in the normal space of X.
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2. Minimal surface graphs in R3

Theorem. (S. Bernstein, 1916; E.Heinz, 1952)

Let the minimal surface graph X(x, y) = (x, y, φ(x, y)), where φ ∈ C3(BR,R) on
BR := {(x, y) ∈ R2 : x2 + y2 ≤ R2} solves the non-parametric minimal surface
equation

(2.1) (1 + φ2
y)φxx − 2φxφyφxy + (1 + φ2

x)φyy = 0 in BR ,

be parametrized using conformal parameters (u, v) ∈ B as a vector mapping X =
X(u, v). Then there is a universal constant Θ ∈ [0,+∞) such that

(2.2) κ1(0, 0)
2 + κ2(0, 0)

2 ≤ Θ

R2

holds true for its principal curvatures κ1 and κ2 at the origin (0, 0) ∈ B.

Idea of the proof. The unit normal vector of the immersion is given by

(2.3) N(u, v) :=
Xu(u, v)×Xv(u, v)

|Xu(u, v)×Xv(u, v)|
.

Using conformal parameters (u, v) ∈ B, it holds the estimate

(2.4) κ1(0, 0)
2 + κ2(0, 0)

2 ≤ |∇N(0, 0)|2

W (0, 0)
.

From |△N | ≤ |∇N |2, where△ and∇mean the usual Laplacian and gradient, together
with a suitable modulus of continuity for N, one deduces an universal constant C1 ∈
(0,+∞) such that |∇N(0, 0)| ≤ C1. Secondly, △X = 0 implies the lower estimate

W (0, 0) ≥ C2R
2, C2 ∈ (0,+∞). Now set Θ :=

C2
1

C2
.

Remark. The proof is based on a detailed analysis of non-linear elliptic systems with
quadratic growth in the gradient

(2.5) |△X| ≤ a|∇X|2 in B, where a ∈ R+ .

(i) If a · sup |X| < 1, then there is a constant c1 = c1(a,M) such that

(2.6) |∇X(0, 0)| ≤ c1(a,M), M := sup |X(u, v)|.

(ii) For plane mappings z : B → R2, with z : ∂B → ∂B topologically and positively
oriented, z(0, 0) = (0, 0), Jz(w) > 0 in B for its Jacobian, and which satisfy
(2.5) with 0 < a < 1

2 , there is a constant c2 = c2(a) with

(2.7) |∇z(0, 0)| ≥ c2(a).

Analog estimates can be proved on small inner discs Bϱ(0, 0), ϱ ≤ ϱ0 < 1. We refer
to [4] and [6].

Letting R → ∞ in (2.2) yields the

Corollary. A complete minimal graph of regularity class C3 is a plane.1

1In the proof we applied the Laplacian △ to N which assumes C3-regularity. In fact, C2 is
sufficient.
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3. Minimal surface graphs in Rn for n ≥ 3

We apply the above method to graphs in higher codimensional Euclidean spaces.

Theorem. Let the minimal graph

(3.1) X(x, y) = (x, y, φ1(x, y), . . . , φn−2(x, y)), φΣ ∈ C3(BR,R),

be parametrized in conformal parameters (u, v) ∈ B. Then there is a universal constant
Θ ∈ [0,+∞) such that for its Gaussian curvature KN along any unit normal section
N of the frame (1.5) it holds

(3.2) |KN (0, 0)| ≤ Θ

R4
∥X∥2C0(BR) , ∥X∥C0(BR) := sup

(x,y)∈BR

|X(x, y)|.

Idea of the proof. Using conformal parameters (u, v) ∈ B, we estimate

(3.3) |KN (0, 0)| ≤ |Xuu(0, 0)||Xvv(0, 0)|+ |Xuv(0, 0)|2

W (0, 0)2
.

Due to △X = 0 in B, potential theory ensures a third constant C3 ∈ (0,+∞) with
the property

(3.4) |Xuiuj (0, 0)| ≤ C3∥X∥C0(BR)

for i, j = 1, 2 (see e.g. [3], Theorem 4.6). As in the previous paragraph we deduce a

lower bound for W (0, 0). Now, set Θ :=
2C2

3

C2
2
.

Corollary. (Bernstein-Liouville theorem)

Assume that the minimal graph X(x, y) satisfies the growth condition

(3.5) ∥X∥C0(BR) ≤ ΩRε, ε ∈ (0, 2),

with a constant Ω ∈ (0,+∞). Then, if X is complete, it represents a plane.

Namely, note that with (3.5) it holds

(3.6) |KN (0, 0)| ≤ ΘΩ2

R4
R2ε −→ 0 for R → ∞

for all N, and the Corollary follows.

Remarks. 1. The Corollary is sharp in the following sense: (w,w2) for w ∈ C is
a non-plane minimal surface graph over C.

2. It generalizes the Liouville theorem in complex analysis because a holomorphic
function φ(z) generates a minimal graph (z, φ(z)) in R4.
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4. Surfaces of prescribed mean curvature in R4

Given a vector field H : R4 → R4, define the scalar H(X,Z) := H(X)·Zt for X ∈ R4,
Z ∈ S3 := {X ∈ R4 : |X|2 = 1}.

Definition. The immersion X : B → R4 is called a conformally parametrized surface
of prescribed mean curvature field H : R4 × S3 → R iff

(4.1)
△X = 2H(X,N1)WN1 + 2H(X,N2)WN2 ,

|Xu|2 = W = |Xv|2 , Xu ·Xt
v in B

for an arbitrary ON-normal section {N1, N2}.

Remarks. 1. Note that the mean curvature field depends naturally on the space
variable X and the attached direction Z. In this sense, the mean curvature field
is Finslerian.

2. If X together with an ON-normal section {N1, N2} solves (4.1), then

(4.2) |△X| ≤ 2h0|∇X|2 with h0 := sup
(X,Z)∈R4×S3

|H(X,Z)|.

Thus, the immersion satisfies the structur condition (2.5).

Instead of applying potential theory to immersions (4.1) directly (but see (4.7) below),
we refer to [1] for the following curvature estimate:

Theorem. Let X ∈ C2+α(B,R4) be a surface of prescribed mean curvature field
H = H(X,Z) such that

(A1) X is a positively oriented conformal reparametrization of a graph

(4.3) X(x, y) = (x, y, φ1(x, y), φ2(x, y))

over a bounded and simply connected domain Ω ⊂ R2;

(A2) there hold |H(X,Z)| ≤ h0 for all X ∈ R4, Z ∈ S3, and

(4.4) |H(X1, Z1)−H(X2, Z2)| ≤ h1|X1 −X2|α + h2|Z1 − Z2|

with real constants h0, h1, h2 ∈ [0,+∞);

(A3) X represents a geodesic disc of radius r > 0 such that

(4.5) Area[X] =
1

2

∫∫
B

|∇X|2 dudv ≤ d0r
2 with a constant d0 > 0

for the area A[X] of the geodesic disc, where d0 does not depend on r;

(A4) At every point w ∈ B, each normal vector of the immersion makes an angle of
at least ω > 0 with the x1-axis.



66 Steffen Fröhlich

Then there is a constant Θ(h0r, h1r
1+α, h2r, d0, sinω, α) ∈ (0,+∞) such that

(4.6) κΣ,1(0, 0)
2 + κΣ,2(0, 0)

2 ≤ 1

r2

{
(h0r)

2 +Θ
}
.

Idea of the proof. One evaluates (3.3). The graph property together with (A3) and
(A4) ensure a variant of (2.7) which estimates W (0, 0) from below. Next, bounding
W from above gives the Poisson problems

(4.7) △xi = 2H1WN i
1 + 2H2WN i

2 =: f i , HΣ := H(X,NΣ), i = 1, . . . , 4,

with ∥f∥Cα(Bϱ) ≤ C5 with a suitable constant C5 ∈ (0,+∞), ϱ ∈ (0, 1). Potential
theory yields again upper bounds for |Xuiuj (0, 0)|.

Remarks. 1. Assumption (A4) is a special case of a so-called Osserman-condition
from [5]. The x1-axis is chosen arbitrarily.

2. For H ≡ 0, the constant Θ does not depend on r anymore. The limit r → ∞
then gives a Bernstein type theorem for minimal surface graphs.

5. Outer differential geometry in R4

5..1 The Ricci equations and the normal curvature

Let the immersion X ∈ C3(B,R4) be equipped with a regular moving frame
{Xu, Xv, N1, N2}, where {N1, N2} forms an ON-basis of the normal space.

Denote by

(5.1) LΣ,ij := Xuiuj ·N t
Σ , i, j = 1, 2, Σ = 1, 2,

the coefficients of the second fundamental form w.r.t. NΣ, and by

(5.2) σΩ
Σ,i := NΣ,ui ·N t

Ω , i = 1, 2, Σ,Ω = 1, 2,

the torsion coefficients of the ON-section {N1, N2} (or the coefficients of the normal
connection of X).

Proposition. (The Weingarten equations)

In B there hold (use the summation convention for j, k, and Ω)

(5.3) NΣ,ui = −LΣ,ijg
jkXuk + σΩ

Σ,iNΩ , i = 1, 2, Σ = 1, 2,

where the gij are defined via the Kronecker symbol δki as gijg
jk = δki .

The proof is essentially the same as for the Weingarten equations in R3.

Various integrability conditions are associated with (5.3). For example, if we evaluate
the normal components of NΣ,uv −NΣ,vu ≡ 0, we arrive at the

Proposition. (The Ricci equations)
In B there hold the integrability conditions

(5.4) σΩ
Σ,1,v − σΩ

Σ,2,u + σΘ
Σ,1σ

Ω
Θ,2 − σΘ

Σ,2σ
Ω
Θ,1 = (LΣ,1jLΩ,k2 − LΣ,2jLΩ,k1)g

jk

for Σ,Ω = 1, 2.
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Definition. (The curvature tensor of the normal bundle)

We define the curvature tensor of the normal bundle as

(5.5) SΩ
Σ,ij := σΩ

Σ,i,uj − σΩ
Σ,j,ui + σΘ

Σ,iσ
Ω
Θ,j − σΘ

Σ,jσ
Ω
Θ,i

for i, j = 1, 2 and Σ,Ω = 1, 2.

Remark. The Ricci equations (5.4) can be written in the form

(5.6) SΩ
Σ,12 = (LΣ,1jLΩ,k2 − LΣ,2jLΩ,k1)g

jk , Σ,Ω = 1, 2.

5..2 Torsion-free ON-normal sections

Let us construct a new ON-normal section {Ñ1, Ñ2} via

(5.7) Ñ1 = cosφN1 + sinφN2 , Ñ2 = sinφN1 − cosφN2

with a rotation angle φ. The associated new torsion coefficients σ̃Ω
Σ,i are

(5.8) σ̃2
1,1 = σ2

1,1 + φu , σ̃2
1,2 = σ2

1,2 + φv .

Problem. Can we arrange {Ñ1, Ñ2} such that (σ̃2
1,1, σ̃

2
1,2) ≡ (0, 0)?

Due to (5.8) we have to solve the linear system

(5.9) φu = −σ2
1,1 , φv = −σ2

1,2 .

At least locally, necessary and sufficient for the solvability of (5.9) are the integrability
conditions

(5.10) 0 = φuv − φvu = −σ2
1,1,v + σ2

1,2,u .

Theorem. (Flat normal bundles and torsion-free ON-normal sections)

The vanishing of the curvature tensor (5.6) is equivalent to the integrability conditions
(5.10).

Idea of the proof. Using σΣ
Σ,i ≡ 0 and σΩ

Σ,i = −σΣ
Ω,i we calculate

• S1
1,ij = σ1

1,i,uj − σ1
1,j,ui + σΘ

1,iσ
1
Θ,j − σΘ

1,jσ
1
Θ,i = σ2

1,iσ
1
2,j − σ2

1,jσ
1
2,i = 0,

• S2
1,ij = σ2

1,i,uj − σ2
1,j,ui + σΘ

1,iσ
2
Θ,j − σΘ

1,jσ
2
Θ,i = σ2

1,i,uj − σ2
1,j,ui ,

• S1
2,ij = σ1

2,i,uj − σ1
2,j,ui + σΘ

2,iσ
1
Θ,j − σΘ

2,jσ
1
Θ,i = σ1

2,i,uj − σ1
2,j,ui ,

• S2
2,ij = σ2

2,i,uj − σ2
2,j,ui + σΘ

2,iσ
2
Θ,j − σΘ

2,jσ
2
Θ,i = σ1

2,iσ
2
1,j − σ1

2,jσ
2
1,i = 0.

For the non-vanishing components of S2
1,ij and S1

2,ij we calculate

(5.11)

S2
1,11 = 0, S2

1,22 = 0, S2
1,12 = −S2

1,21 =
∂

∂v
σ2
1,1 −

∂

∂u
σ2
1,2 ,

S1
2,11 = 0, S1

2,22 = 0, S1
2,12 = −S1

2,21 =
∂

∂v
σ1
2,1 −

∂

∂u
σ1
2,2 .

These are exactly the conditions (5.10).



68 Steffen Fröhlich

Remark. The non-vanishing components of SΩ
Σ,ij can be interpreted as a “normal

curvature” of the immersion (see f.e. [2] for the terminology). The mean curvature
field, the Gaussian curvature, and this normal curvature play an important role in the
differential geometry of surfaces in Euclidean space.

6. Minimal surface graphs in R4

The equivalence stated in the last theorem justifies the hope that curvature estimates
and related Bernstein theorems for minimal graphs with a torsion-free ON-normal
section {N1, N2} are possible in the context of the theory of Erhard Heinz.

We refer the reader to [10] for results within the frame of mean curvature flow which
combines curvature estimates and Bernstein type theorems for higher codimensional
minimal graphs and certain stability criteria for the second variation of the area
functional.

Theorem. (Mu-Tao Wang, 2004)

Let the complete minimal surface graph Σ ⊂ R4 be given with the properties:

(P1) Area (Σ ∩KR) ≤ d0R
2 with some constant d0 > 0, and KR is the ball of radius

R in R4 centered at the origin;

(P2) its normal bundle is flat, that is SΩ
Σ,ij ≡ 0.

Then Σ is a plane.

Because in our context up to now a detailed proof of this result fails we conclude our
small note with the following remarks:

Remarks. 1. For example, the minimal graph (w,w2) does not possess a torsion-
free ON-normal section, that is its normal bundle is not flat.

2. Immersions X : B → S3 have a flat normal bundle. But note that R4-minimal
surfaces are not in S3.

3. Due to [10], Theorem 1.1, a minimal surface graph in R4 with flat normal bundle
is stable.

4. For stable immersions we can prove an estimate of the form (4.5) for inner
geodesic balls which could replace assumption (P1) eventually.

5. We would like to draw your attention to [8], [9], where the authors study sub-
manifolds with arbitrary codimension and prove Bernstein type theorems for
minimal submanifolds with flat normal bundle.
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