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Abstract

We find a class of connections on a strict complex almost contact manifold,
which we call adapted connections, and, by using them, we prove some results
about the normality of such a manifold.
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1 Introduction

Concerning the complex contact manifold we shall recall some notions as they are
presented in [1].

A complex contact manifold is a complex manifold of odd complex dimension
2n+1 together with an open covering {Oα} by coordinate neighborhoods such that:

1. On each {Oα} there is a holomorphic 1-form θα such that

θα ∧ (dθα)
n ̸= 0;

2. On Oα ∩ Oβ ̸= ∅ there is a non-vanishing holomorphic function fαβ such that
θα = fαβθβ .

A complex contact manifold with a global complex form is called strict complex
contact manifold.

On the other hand if M is a complex manifold with almost complex structure J ,
Hermitian metric g and open covering {Oα} by coordinate neighborhoods, M is called
a complex almost contact metric manifold if it satisfies the following two conditions:

1. On each {Oα} there exist 1-forms uα and vα = uα ◦ J with orthogonal dual
vector fields Uα and Vα = −JUα and (1,1) tensor fields Gα and Hα = GαJ such that

G2
α = H2

α = −I + uα ⊗ Uα + vα ⊗ Vα,

GαJ = −JGα, GαUα = 0, g(X,GαY ) = −g(GαX,Y ),
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2. On Oα ∩ Oβ ̸= ∅,

uβ = auα − bvα, vβ = buα + avα,

Gβ = aGα − bHα, vβ = bGα + aHα,

where a and b are functions with a2 + b2 = 1. We call a complex almost contact
manifold with global structure tensors a strict complex almost contact manifold.

It is proved that a complex contact manifold admits a complex almost contact
metric structure for which the local contact form θ is of the form u− iv and the local
tensor fields G and H are related to du and dv by

du(X,Y ) = g(X,GY ) + (σ ∧ v)(X,Y ),

dv(X,Y ) = g(X,HY )− (σ ∧ u)(X,Y ),

where σ(X) = g(∇XU, V ). We call a complex contact manifold with a complex al-
most contact metric structure satisfying these conditions, a complex contact metric
manifold. Note that if the complex contact structure is strict then σ = 0.

Let S1 and S2 be two tensor fields defined by

S1(X,Y ) = NG(X,Y ) + 2g(X,GY )U − 2g(X,HY )V + 2(v(Y )HX − v(X)HY )

+σ(GY )HX − σ(GX)HY + σ(X)GHY − σ(Y )GHX,

S2(X,Y ) = NH(X,Y )− 2g(X,GY )U + 2g(X,HY )V + 2(u(Y )GX − u(X)GY )

+σ(HX)GY − σ(HY )GX + σ(X)GHY − σ(Y )GHX,

where NG and NH are the Nijenhuis tensor fields of G and H, respectively.
A complex contact metric structure is normal if

S1(X,Y ) = S2(X,Y ) = 0, X, Y ∈ H,

S1(U,X) = S2(V,X) = 0, X ∈ χ(M),

where H is the subbundle named the horizontal subbundle and defined by the sub-
spaces {X ∈ TPOα, P ∈ M ; θα(X) = 0}.

A normal complex contact metric manifold whose complex contact structure is
given by a global complex contact form is called a complex Sasakian manifold.

For a complex Sasakian manifold we have the following formulas, (see [3]),

(1.1) g((∇XG)Y,Z) = −2v(X)g(HGY,Z)− u(Y )g(X,Z)−

−v(Y )g(JX,Z) + u(Z)g(X,Y ) + v(Z)g(JX, Y ),

(1.2) g((∇XH)Y,Z) = −2u(X)g(HGY,Z) + u(Y )g(JX,Z)−

−v(Y )g(X,Z) + u(Z)g(X,JY ) + v(Z)g(X,Y ),

and

(1.3) g((∇XJ)Y,Z) = −2u(X)g(HY,Z) + 2v(X)g(GY,Z)
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2 Adapted connections on a strict complex almost
contact manifold

In [4], [6] and [5] the authors introduced a class of adapted connections on an al-
most contact manifold. In this paper we define, in a similar way, a class of adapted
connections on a strict complex almost contact manifold.

Let (M,J,G,H,U, V, u, v) be a strict complex almost contact manifold and let us
denote by p = I − u ⊗ U − v ⊗ V and q = u ⊗ U + v ⊗ V the projectors on the
distributions H and V = span{U, V }, respectively. It is easy to see that

(2.1)


p2 = p, q2 = q, pq = qp = 0,
G2 = H2 = −p, pG = Gp = G, pH = Hp = H,
qG = Gq = 0, qH = Hq = 0,
GH = −HG = −pJ

.

Definition 2.1. We call an affine connection on the strict complex manifold M an
adapted connection if

(2.2)



(∇XG)Y = −2v(X)pJY − u(Y )pX − v(Y )pJX+

+ 1
2 [du(GX, pY )− du(X,GY )]U−

− 1
2 [dv(GX, pY ) + dv(X,GY )]V,

(∇XH)Y = 2u(X)pJY + u(Y )pJX − v(Y )pX−

− 1
2 [du(HX, pY )− du(X,HY )]U+

+ 1
2 [dv(HX, pY )− dv(X,HY )]V,

(∇Xu)Y = 1
2 [du(X,Y ) + du(GX,GY )],

(∇Xv)Y = 1
2 [dv(X,Y ) + dv(HX,HY )],

∇XU = −GX − 1
2du(X,U)U − 1

2dv(X,U)V,

∇XV = −HX − 1
2du(X,V )U − 1

2dv(X,V )V,

for any X,Y ∈ χ(M).

Note that on a complex Sasakian manifold the Levi-Civita connection is an
adapted connection.

Remark 2.1. If ∇ is an adapted connection on M we have

(∇XJ)Y = 2v(X)GY − 2u(X)HY+

+
1

2
[dv(X,Y ) + dv(HX,HY )− du(GX,HY )− du(X, JY )]U−
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−1

2
[du(X,Y ) + du(GX,GY )− dv(GX,HY ) + dv(X, JX)]V,

for any X,Y ∈ χ(M).

In order to prove the existence of the adapted connections on a strict complex
almost contact manifold (M,J,G,H,U, V, u, v) let us define first the following tensor
fields of type (2, 2) on M

(2.3)


ϕG = 1

2 (I ⊗ I −G⊗G), ΨG = 1
2 (I ⊗ I +G⊗G),

ϕH = 1
2 (I ⊗ I −H ⊗H), ΨH = 1

2 (I ⊗ I +H ⊗H),

Θ = 1
2 (I ⊗ I − p⊗ p).

Just like in the real case (see [6]), it is easy to prove that

(2.4)



ϕG +ΨG = I ⊗ I, (ϕG)2 = ϕG − 1
2Θ, (ΨG)2 = ΨG − 1

2Θ,

ϕGΨG = ΨGϕG = ϕGΘ = ΘϕG = ΨGΘ = ΘΨG = Θ2 = 1
2Θ,

(ΨG +Θ) + (ϕG −Θ) = I ⊗ I,

(ΨG +Θ)(ϕG −Θ) = (ϕG −Θ)(ΨG +Θ) = 0,

(ΨG +Θ)(ΨG +Θ) = ΨG +Θ, (ϕG −Θ)(ϕG −Θ) = ϕG −Θ,

and that the similar equations holds for ϕH and ΨH . Note that the previous results
are obtained by using the expressions of the tensor fields in local coordinates. For
example [(ϕG)2]klhj = (ϕG)krij (ϕ

G)ilhr, where (ϕG)krij = 1
2 (δ

k
i δ

r
j −Gk

iG
r
j).

Theorem 2.2. If ∇̇ is a connection on the strict complex almost contact manifold
M then the family of the adapted connections on M is given by

(2.5) ∇ = ∇̇+ P,

where P is a tensor field of type (1, 2) on M , given by P (X,Y ) = PX(Y ), where PX

is a tensor field of type (1, 1) defined as follows

PX = BG
X +BH

X − (ΨH +Θ)BG
X + (ϕH −Θ)RX ,

with R an arbitrary tensor field of type (1, 2), and

BG
X =

1

2
(∇̇XG)G− v(X)H − 1

2
[iGXdu ◦G+ iXdu− u ◦ (∇̇XG2)]⊗ U+

+
1

2
[iGXdv ◦G− iXdv + v ◦ (∇̇XG2)]⊗ V−

−(GX + ∇̇XU)⊗ u− (HX + ∇̇XV )⊗ v,

BH
X =

1

2
(∇̇XH)H − u(X)G+

1

2
[iHXdu ◦H − iXdu+ u ◦ (∇̇XH2)]⊗ U+

−1

2
[iHXdv ◦H + iXdv − v ◦ (∇̇XH2)]⊗ V−

−(GX + ∇̇XU)⊗ u− (HX + ∇̇XV )⊗ v.
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Proof. From ∇X = ∇̇X +PX and since ∇ is an adapted connection it follows that

(2.6) PX(U) = −GX − 1

2
iXdu(U)U − 1

2
dv(U)V − ∇̇XU

and

(2.7) PX(V ) = −HX − 1

2
iXdu(V )U − 1

2
iXdv(V )V − ∇̇XV.

We also obtain that

(2.8) PX ◦G−G ◦ PX = −∇̇XG− 2v(X)pJ − pX ⊗ u− pJX ⊗ v+

+
1

2
[iGXdu− (iGXdu(U))u− (iGXdu(V ))v − iXdu ◦G]⊗ U−

−1

2
[iGXdv − (iGXdv(U))u− (iGXdv(V ))v + iXdv ◦G]⊗ V

and

(2.9) PX ◦H −H ◦ PX = −∇̇XH + 2u(X)pJ + pJX ⊗ u− pX ⊗ v−

−1

2
[iHXdu− (iHXdu(U))u− (iHXdu(V ))v + iXdu ◦H]⊗ U+

+
1

2
[iHXdv − (iHXdv(U))u− (iHXdv(V ))v − iXdv ◦H]⊗ V.

The equations 2.6 and 2.8 are equivalent with

(2.10) PX +G ◦ PX ◦G = (∇̇XG)G− 2v(X)pH−

−1

2
[iGXdu ◦G− iXdu ◦G2 + iXdu(U)u+ iXdu(V )v]⊗ U+

+
1

2
[iGXdv ◦G+ iXdv ◦G2 − iXdv(U)u− iXdv(V )v]⊗ V−

−(GX + ∇̇XU)⊗ u− (HX + ∇̇XV )⊗ v,

which can be written

ΨGPX =
1

2
AX ,

where we have denoted with AX the right side of equation 2.10. It follows from 2.4,
that 2ΘΨGPX = ΘPX = ΘAX and then (ΨG +Θ)PX = 1

2AX +ΘAX = BG
X . Hence

PX = BG
X + (ϕG −Θ)QX , where QX is a tensor field of type (1, 1). Replacing PX in

the equation for H which is an analogous of 2.10 and trough a similar computation
one obtains that

(ϕG −Θ)QX = BH
X − (ΨH +Θ)BG

X + (ϕH −Θ)RX ,

where R is an arbitrary tensor field of type (1, 2). Thus one obtains the desired result.

Remark 2.3. If in the proof of the previous theorem we use first the equation for H
one obtains for PX the following formula, which is equivalent with that in the theorem

PX = BH
X +BG

X − (ΨG +Θ)BH
X + (ϕG −Θ)MX .

Remark 2.4. If ∇̇ is an adapted connection on M then the family of all adapted
connections on M is given by ∇ = ∇̇+ (ϕH −Θ)RX or ∇ = ∇̇+ (ϕG −Θ)MX .
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3 The torsion of an adapted connection

Let (M,J,G,H,U, V, u, v) be a strict complex almost contact manifold and let ∇ be
an adapted connection on M . Let T be the torsion of ∇, given by

T (X,Y ) = ∇XY −∇Y X − [X,Y ], X, Y ∈ χ(M).

After a straightforward computation one obtains

(3.1) T (X,Y ) +GT (X,GY ) +GT (GX,Y )− T (GX,GY ) = NG(X,Y )+

+2du(X,Y )U − 2dv(HX,HY )V

and

(3.2) T (X,Y ) +HT (X,HY ) +HT (HX,Y )− T (HX,HY ) = NH(X,Y )−

−2du(GX,GY )U + 2dv(X,Y )V,

for any X,Y ∈ H. Similarly we have

(3.3) T (X,U) +GT (GX,U) = NG(X,U) + 2du(X,U)U,

(3.4) T (X,V ) +HT (HX,V ) = NH(X,V ) + 2dv(X,V )V,

for any X ∈ χ(M).
Using this formulas and the fact that the Levi-Civita connection on a complex

Sasakian manifold is adapted we can state the following

Theorem 3.1. A strict complex contact manifold M is a complex Sasakian manifold
if and only if there exist a torsion free adapted connection on M .

In order to improve this result let us define for the strict complex almost contact
manifold (M,J,G,H,U, V, u, v) the tensor fields

S1(X,Y ) = NG(X,Y ) + 2du(X,Y )U − 2dv(HX,HY )V,

S2(X,Y ) = NH(X,Y )− 2du(GX,GY )U + 2dv(X,Y )V,

for any X,Y ∈ χ(M).
From 3.1, 3.2, 3.3 and 3.4 one obtains

Proposition 3.2. If on a strict complex almost contact manifold there exist a torsion
free adapted connection then

S1(X,Y ) = S2(X,Y ), X, Y ∈ H

and
S1(U,X) = S2(V,X) = 0, X ∈ χ(M).

Proposition 3.3. On a strict complex almost contact manifold we have

u(S1(X,Y )) = 2u(T (X,Y )), v(S2(X,Y )) = 2v(T (X,Y )), X, Y ∈ χ(M),

q(S1(U,X)) = q(T (U,X)), q(S2(V,X)) = q(T (V,X)), X ∈ χ(M).
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Proof. From the definition of the torsion T one obtains u(T (X,Y )) = (2du(X,Y )+
(∇Xu)Y − (∇Y u)X) = du(X,Y )− du(GX,GY ), since the connection is adapted. On
the other hand we have u(S1(X,Y )) = u([GX,GY ]) + 2du(X,Y ) = 2du(X,Y ) −
2du(GX,GY ). The last two statements follows directly from 3.3 and 3.4.

In the following let us consider X,Y ∈ H and S1X(Y ) = S1(X,Y ), TX(Y ) =
T (X,Y ). From 3.1 one obtains that

(3.5) p(S1X) = pTX +GTX ◦G+GTGX − pTGX ◦G

Since G⊗G = p⊗ p− 2(ϕG −Θ) we have

(3.6) GTGX(GY ) = pTX(Y )− 2(ϕG −Θ)Y TX ,

where (ϕG−Θ)Y (X) = (ϕG−Θ)(Y,X). After a straightforward computation it follows
pTGXGY = −pTXY + 2(ϕG −Θ)Y GTGX − 2(ϕG −Θ)XTY and since 2pTGX(GY ) =
pTGX(GY )− pTGY (GX) we have

(3.7) (pTGX ◦G)Y = −pTX(Y )− (ϕG −Θ)X(TY +GTGY )+

+(ϕG −Θ)Y (TX +GTGX).

Thus, using 3.5, 3.6 and 3.7,

(3.8) pS1X(Y ) = 4pTX(Y )− (ϕG −Θ)Y (3TX +GTGX)+

+(ϕG −Θ)X(3TY +GTGY ).

In the same way

(3.9) pS2X(Y ) = 4pTX(Y )− (ϕH −Θ)Y (3TX +HTHX)+

+(ϕH −Θ)X(3TY +HTHY ),

for any X,Y ∈ H.
By a similar computation one obtains

(3.10) pS1X(U) = pTX(U) + pTpX(U) + 2(ϕG −Θ)XTU ,

(3.11) pS2X(V ) = pTX(V ) + pTpX(V ) + 2(ϕH −Θ)XTV .

Assume that S1X(Y ) = S2X(Y ) = 0, X,Y ∈ H, and S1U (X) = S2V (X) = 0,
X ∈ χ(M). From the second assumption it follows, by using Proposition 3.3 that
qT (X,Y ) = 0, X,Y ∈ χ(M). Using the previous results, the fact that 2TX(Y ) =
TX(Y )− TY (X) and the first assumption we have

pTX(Y )− 1

2
[(ϕG −Θ)Y (

3

4
TpX +

1

4
GTGX + 2u(X)TU )+

+(ϕH −Θ)Y (
3

4
TpX +

1

4
HTHX + 2v(X)TV )]+

+
1

2
[(ϕG −Θ)X(

3

4
TpY +

1

4
GTGY + 2u(Y )TU )+
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+(ϕH −Θ)X(
3

4
TpY +

1

4
HTHY + 2v(Y )TV )] =

= pTX(Y )− 1

2
C(Y,X) +

1

2
C(X,Y ) = 0,

where

C(Y,X) = (ϕG −Θ)Y (
3

4
TpX +

1

4
GTGX + 2u(X)TU )+

+(ϕH −Θ)Y (
3

4
TpX +

1

4
HTHX + 2v(X)TV )

Let us consider the affine connection ∇̃ onM defined by ∇̃XY = ∇XY − 1
2C(Y,X).

It is easy to see that ∇̃ is torsion free and, from Theorem 2.2, ∇̃ is an adapted
connection. We just have obtained

Theorem 3.4. On a strict complex almost contact manifold M there exist a torsion
free adapted connection if and only if

S1(X,Y ) = S2(X,Y ) = 0, X, Y ∈ H

and
S1(U,X) = S2(V,X) = 0, X ∈ χ(M).
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