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Abstract

We refer to the anchored vector bundles and Lie algebroids. The main purpose
of this paper is to establish several remarkable properties of linear connections
on Lie algebroids.
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1 Introduction

The Lie algebroids can be regarded as natural generalizations of Lie algebras and
tangent bundles to manifolds.

In the paper [2] (J.Cortés and E.Martinez, 2004, MR 2099990 (2005 h:93038)) is
introduced the notion of linear connection on a Lie algebroid.

The paper contains three sections. In the first section the category of anchored
vector bundles is constructed. The second section is dedicated to Lie algebroids and
its main properties. In the third section we investigate the linear connections on Lie
algebroids and some properties of its torsion and curvature are presented. Finally
we give some ways for construction of new linear connections starting from linear
connections given on Lie algebroids.

The study of linear connections on Lie algebroids is important in the geometrical
description of Lagrangian and Hamiltonian mechanical systems on Lie algebroids, see
for instance [2, 5, 9].

2 Anchored vector bundles

Definition 2.1. Let (E, p,M) be a vector bundle and (TM, πM ,M) the tangent
bundle to M. A morphism of vector bundles ρ : E → TM is called anchor of vector
bundle E, i.e. ρ is a differentiable map such that πM ◦ ρ = p. An anchored vector
bundle is a pair (E, ρ), where (E, p,M) is a vector bundle and ρ : E → TM is anchor.
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An anchored vector bundle (E, ρ) is said transitive, if its anchor ρ is a surjective
submersion.

If (E, ρ) is an anchored vector bundle over M , then the anchor ρ : E → TM is a
morphism of vector bundles. Then the map ρ defines a morphism of F(M)- modules
between the F(M)-modules Γ(E) and Γ(TM) of sections of E and TM respectively,
denoted with φ : Γ(E) → Γ(TM) given by s ∈ Γ(E) −→ ρ(s) ∈ Γ(TM), where
ρ(s)(x) = ρ(s(x)), (∀)x ∈ M . The morphism ρ is called induced morphism between
Γ(E) and Γ(TM) = X (M) by ρ. We will sometimes denote ρ : Γ(E) → X (M) also
with the symbol ρ.

Example 2.1. (i) Let V be a real vector space of finite dimension. Then V is an
anchored vector bundle over a manifold formed by one point. In this case, the anchor
is zero map.

(ii) Let TM be tangent bundle to manifold M . Then the pair (TM, idTM ) is an
anchored vector bundle with the identity map on TM as anchor.

Definition 2.2. Let (E, p,M) and (E
′
, p

′
,M) be two anchored vector bundles over

the same base M with the anchors ρ : E → TM and ρ
′
: E

′ → TM . A morphism of
anchored vector bundles over M or a M - morphism of anchored vector bundles be-
tween (E, ρ) and (E

′
, ρ

′
) is a morphism of vector bundles φ : (E, p,M) −→ (E

′
, p

′
,M)

such that ρ
′ ◦ φ = ρ

Proposition 2.1. If (Ei, pi,M) , i = 1, 2, 3 are anchored vector bundles over M with
anchors ρi : Ei → TM, i = 1, 2, 3, and φ : (E1, ρ1) → (E2, ρ2) and ψ : (E2, ρ2) →
(E3, ρ3) are M - morphisms of anchored vector bundles, then ψ ◦ φ : (E1, ρ1) →
(E3, ρ3) is a M - morphism of anchored vector bundles. 2

The anchored vector bundles over the same base M and M - morphisms of an-
chored vector bundles form a category, denoted withAVB (M), and called the category
of anchored vector bundles over M .

Direct product of two anchored vector bundles over the same base.
Let (Ei, pi,M), i = 1, 2 be two anchored vector bundles over M , with anchors ρi :
Ei → TM . Consider the direct product (E1 × E2, p1 × p2,M ×M) of vector bundles
(E1, p1,M) and (E2, p2,M). We construct the map ρ1 × ρ2 : E1 × E2 −→ T (M ×
M) ≃ TM × TM given by (ρ1 × ρ2) (z1, z2) = (ρ1 (z1) , ρ2 (z2)) for all z1 ∈ E1,
z2 ∈ E2. It is easy to prove that ρ1 × ρ2 : E1 × E2 −→ TM × TM is a morphism
of vector bundles. Using the relations πM ◦ ρ1 = p1 and πM ◦ ρ2 = p2 we have
(πM × πM ) ◦ (ρ1 × ρ2) = (p1 × p2). Hence (E1 × E2, ρ1 × ρ2) is an anchored vector
bundle with ρ1 × ρ2 : E1 × E2 −→ T (M ×M) ≃ TM × TM as anchor. 2

Direct sum of two anchored vector bundles with same base over the
tangent bundle. Let (E1, p1,M) and (E2, p2,M) be two anchored vector bundles
over M with the anchors ρ1 : E1 → TM and ρ2 : E2 → TM such that (E2, ρ2)
is transitive. Consider the Whitney sum (E1 ⊕ E2, p1 ⊕ p2,M) of vector bundles E1

and E2 over M . We have E1 ⊕ E2 = {(z1, z2) ∈ E1 × E2 | p1 (z1) = p2 (z2)} and
(p1 ⊕ p2) (z1, z2) = p1 (z1) , (∀) (z1, z2) ∈ E1 ⊕E2. Also ρ1 : E1 → TM and ρ2 : E2 →
TM are M - morphisms of vector bundles with property that :

Im ρ1,x + Im ρ2,x = TxM, (∀)x ∈M,

since ρ2,x : E2,x → TxM is surjective.
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Let E1⊕TME2 = {(z1, z2) ∈ E1 ⊕ E2 | ρ1 (z1) = ρ2 (z2)}. It is known (see, Macken-
zie, 1987,[6]) that (E1 ⊕TM E2, p1 ⊕ p2,M) is a un vector bundle overM , called direct
sum of vector bundles E1 and E2 over the tangent bundle TM .

Consider the map ρ⊕TM
: E1 ⊕TM E2 −→ TM given by ρ⊕TM

(z1, z2) = ρ1 (z1) ,
(∀) (z1, z2) ∈ E1 ⊕TM E2. We have that (E1 ⊕TM E2, p1 ⊕ p2,M) is an anchored
vector bundle with anchor ρ⊕TM

: E1 ⊕TM E2 −→ TM . 2

The prolongation of an anchored vector bundle over a surjective sub-
mersion. Let π : P →M be a surjective submersion. It follows that π is a fibration,
that is P is a fibred manifold over M . Let (E, pE ,M) an anchored vector bundle with
anchor ρ : E → TM . Consider the subset

PπE = {(z, v) ∈ E × TP | ρ (z) = Tπ (v)}

where Tπ : TP → TM is the tangent map to π : P →M .
Denote by τπ : PπE → P the canonical projection, i.e. τπ (z, v) = τP (v),

(∀) (z, v) ∈ PπE, where τP : TP → P . It is easy to prove that (PπE, τπ, P ) is a
vector bundle over P with projection τπ. For every point p ∈ P with property that
π(p) = x, the local fibre (PπE)p of bundle (PπE, τπ, P ) is

(PπE)p = {(z, v) ∈ Ex × TpP | ρ (z) = Tpπ (v)} .

We will use sometimes the notation (p, z, v) for (z, v). Thus the map τπ : PπE → P
is given by τπ (p, z, v) = p, (∀) (p, z, v) ∈ (PπE)p, i.e. τ

π is the projection on first
factor.

Define the map ρπ : PπE → TP, ρπ (p, z, v) = v, (∀) (p, z, v) ∈ (PπE)p, i.e. ρ
π is

the projection pe on third factor. We have that ρπ is a morphism of vector bundles
between (PπE, τπ, P ) and (TP, τP , P ).

We verify that (PπE, ρπ) is an anchored vector bundle with the anchor ρπ.
Let the map T π : PπE → E given by T π (p, z, v) = z, (∀) (p, z, v) ∈ (PπE)p, i.e.

T π is the projection on second factor.
Then (T π, π) : (PπE, τπ, P ) → (E, pE ,M) is a morphism of anchored vector bundles.
2

3 Lie algebroids

We start this section with the concept of Lie algebroid.

Definition 3.1. ([6])Let (E, p,M) be an anchored vector bundle with the anchor
ρ : E → TM . The anchored vector bundle (E, ρ) endowed with a Lie bracket [·, ·]E
on the space Γ(E) of sections of E such that the following conditions are verified:

(1) Γ(E) has Lie algebra structure to respect the bracket [·, ·]E ;
(2) the morphism ρ : Γ(E) → Γ(TM) = X (M) induced from anchor ρ, is a

homomorphism of Lie algebras, that is

(3.1) ρ([σ, η]E) = [ρ(σ), ρ(η)], (∀)σ, η ∈ Γ(E),

(3) the anchor ρ verify the Leibnitz identity:

(3.2) [σ, fη]E = f [σ, η]E + ρ(σ)(f)η, (∀) f ∈ F(M), σ, η ∈ Γ(E)

is called a Lie algebroid over M . 2
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A Lie algebroid (E, p,M) over M with the anchor ρ and the bracket [·, ·]E will be
denoted with (E, [·, ·]E , ρ).

A Lie algebroid Lie (E, [·, ·]E , ρ) is said to be transitive, if ρ is surjective.

Definition 3.2. Let (E, [·, ·]E , ρ) and (E
′
, [·, ·]E′ , ρ

′
) be two Lie algebroids overM . A

morphism of Lie algebroids over M , is a morphism φ : (E, ρ) → (E
′
, ρ

′
) of anchored

vector bundles with property that:

(3.3) φ ([σ, η]E) = [φ(σ), φ(η)]E′ , (∀)σ, η ∈ Γ(E).

φ it also called a M - morphism of Lie algebroids .

Using Proposition 2.1, it is easy to prove the following proposition.

Proposition 3.1. If (Ei, [·, ·]Ei , ρi) , i = 1, 2, 3 are Lie algebroids over M and φ :
(E1, ρ1) → (E2, ρ2) and ψ : (E2, ρ2) → (E3, ρ3) are M - morphisms of Lie algebroids,
then ψ ◦ φ : (E1, ρ1) → (E3, ρ3) is a M - morphism of Lie algebroids . 2

The Lie algebroids over the same manifold M and all M - morphisms of Lie
algebroids form a category, denoted by LAoid(M), and called the category of Lie
algebroids over M . Since every Lie algebroid over M is an anchored vector bundle
over M , follows that LAoid(M) is a subcategory of the category AVB(M).

Example 3.1. (i) Every real Lie algebra of finite dimension (A, [·, ·]A) over a manifold
M formed from one point is a Lie algebroid (A, [·, ·]A, ρ) with ρ = 0.

(ii) The anchored vector bundle (TM, idTM ) (see, Example 2.1(ii)) with usually
Lie bracket [·, ·] is a Lie algebroid (TM, [·, ·], idTM ) over M .

(iii) Let M be a manifold and A a Lie algebra of finite dimension. The trivial
fibration of Lie algebras (E =M ×A, pr1,M) has a Lie algebroid structure over M
having zero map as anchor ρ. If φ : A → A′

is a morphism of Lie algebras, then
idM × φ : M × A → M × A′

is a morphism of Lie algebroids over M between

(E =M ×A, pr1,M) and
(
E

′
=M ×A′

, pr1,M
)
.

Let us we construct some new Lie algebroids starting from given Lie algebroids.
The direct sum of two Lie algebroids with same base over tangent bundle.
Let (E1, [·, ·]E1

, ρ1) and (E2, [·, ·]E2
, ρ2) be two Lie algebroids over M with property

that (E2, [·, ·]E2 , ρ2) is transitive. Consider (E1 ⊕TM E2, p1 ⊕ p2,M) the direct sum of

anchored vector bundles (E1, ρ1) and (E2, ρ2) over tangent bundle TM
πM−→ M with

anchor ρ⊕TM
: E1 ⊕TM E2 −→ TM (see, Section 2). Hence (E1 ⊕TM E2, ρ⊕TM

) is an
anchored vector bundle.

A section of vector bundle E1⊕TM E2 will denoted by X1⊕X2, where X1 ∈ Γ(E1)
and X2 ∈ Γ(E2). Hence X1⊕X2 ∈ Γ(E1⊕TM E2). On the space Γ(E1⊕TM E2) define
the Lie bracket [·, ·]⊕TM

by

(3.4) [X1 ⊕X2, Y1 ⊕ Y2]⊕TM
= [X1, Y1]E1

⊕ [X2, Y2]E2
.

We prove that (E1 ⊕TM E2, [·, ·]⊕TM
, ρ⊕TM

) is a Lie algebroid over M , called the
direct sum of Lie algebroids (E1, [·, ·]E1

, ρ1) and (E2, [·, ·]E2
, ρ2). 2

The prolongation of a Lie algebroid over a surjective submersion. Let
π : P → M be a surjective submersion and (E, [·, ·]E , ρ) a Lie algebroid over M
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with anchor ρ : E → TM . Consider (PπE, ρπ) the anchored vector bundle with
anchor ρπ (see, Section 2). Let Γ (PπE) the space of sections of bundle PπE. An
element Z ∈ Γ (PπE) can be written in the form Z(p) = (p, σ(π(p)), X(p)) where
σ ∈ Γ(E), X ∈ X (E), (∀) p ∈ P .

On the space Γ (PπE) we define the bracket [·, ·]π by

(3.5) [Z1, Z2]
π(p) = (p, [σ1, σ2]E(π(p)), [X1, X2](p)), (∀) p ∈ P.

We have that [Z1, Z2]
π(p) ∈ Γ (PπE) for (∀) p ∈ P . It is easy to prove that

(PπE, [·, ·]π, ρπ) is a Lie algebroid over M , called the prolongation of Lie algebroid
(E, [·, ·]E , ρ) over π : P →M . 2

Let (E, [·, ·]E , ρ) be a Lie algebroid over M . If (xi), i = 1,m is a local coordinates
system on M and {ea|a = 1, n} is a local basis of sections on the bundle E (dim M =
m, dim E = n), then (xi, za), i = 1,m, a = 1,m are local coordinates on E. For an
element z ∈ E such that x = p(z) ∈ U ⊂M , we have z = zaea(p(z)).

In the chosen local coordinates system, the anchor ρ and the Lie bracket [·, ·]E are
determined by the differentiable functions ρia and Cc

ab ∈ F(M) given by:

(3.6) ρ(ea) = ρia
∂

∂xi and [ea, eb]E = Cc
abec, i = 1,m, a, b, c = 1, n

The functions ρia and Cc
ab ∈ F(M) given by the relations (3.6) are called structure

functions of Lie algebroid (E, [·, ·]E , ρ) in the chosen local coordinates system.

Proposition 3.2. Let (E, [·, ·]E , ρ) be a Lie algebroid over M , (xi), i = 1,m a local
coordinates system on M and {ea|a = 1, n} a local basis of sections on E.

The structure functions ρia, C
c
ab ∈ F(M) of the Lie algebroid E verify the following

relations:

(3.7) ρja
∂ρib
∂xj

− ρjb
∂ρia
∂xj

= ρicC
c
ab

(3.8) Cc
ab = −Cc

ba and
∑

ciclic(a,b,c)

(
ρia

∂Cd
bc

∂xi + Ce
abC

d
ce

)
= 0 .

Proof. By condition (3.1) from Definition 3.1, taking σ = ea and η = eb we have
ρ([ea, eb]E) = [ρ(ea), ρ(eb)]. Taking account into the relations (3.6) and the fact that
ρ is a morphism of F(M)- modules, we obtain ρ([ea, eb]) = ρ(Cc

abec) = Cc
abρ(ec) =

Cc
abρ

i
cei.

On the other hand, applying the properties of the usual Lie bracket in the Lie

algebra X (M), we have [ρ(ea), ρ(eb)] = [ρjaej , ρ
k
b ek] = (ρja

∂ρk
b

∂xj − ρjb
∂ρk

a

∂xj )ek.
Equaling the local expressions of two sides, we obtain the relation (3.7).
Using the fact that the bracket [·, ·]E is antisymmetric, that is [ea, eb]E =

−[eb, ea]E , and applying the second relation from (3.6) it follows immediately the
first equality from (3.8).

Using the Jacobi identity for the bracket [·, ·]E and the antisymmetry property of
structure functions Cc

ab, we can obtain by direct calculation the second equality from
(3.8). 2

The equations (3.7) and (3.8) are called the structure equations of Lie algebroid
(E, [·, ·]E , ρ).

For more information about vector bundles and Lie algebroids, see [3],[7],[8].
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4 Linear connections on Lie algebroids

Definition 4.1. ([2]) Let (E, [·, ·]E , ρ) be a Lie algebroid over M with the anchor
ρ : E → TM and the projection p : E →M . A linear connection on the Lie algebroid
E, is a map ∇ : Γ(E) × Γ(E) −→ Γ(E), (σ, η) 7−→ ∇(σ, η) = ∇ση ∈ Γ(E) such that
the following conditions hold :

(1) ∇ is R-bilinear;
(2) ∇fση = f∇ση, for all f ∈ F(M) and σ, η ∈ Γ(E),

i.e. ∇ is F(M)-homogenous to respect the first argument;
(3) ∇σ(fη) = (ρ(σ)f)η + f∇ση, for all f ∈ F(M) and σ, η ∈ Γ(E),

i.e. ∇ satisfy a rule of Leibniz type with respect to the external operation which define
the structure of F(M) - module on Γ(E).

For σ, η ∈ Γ(E), the section ∇ση ∈ Γ(E) is called the covariant derivative of the
section η with respect to section σ.

Proposition 4.1. Let ∇ be a linear connection on the Lie algebroid (E, [·, ·]E , ρ).
Then for all a, b ∈ R and σ, η, ω ∈ Γ(E) we have:

(4.1)
∇aσ+bηω = a∇σω + b∇ηω and

∇σ(aη + bω) = a∇ση + b∇σω.

Proof. Taking account into ∇ is a map R -linear to respect the first argument, can
write ∇aσ+bηω = ∇σ(aσ + bη, ω) = a∇(σ, ω) + b∇(η, ω) = a∇σω + b∇ηω. Similarly
can prove the second relation. 2

Proposition 4.2. Let (E, [·, ·]E , ρ) be a Lie algebroid over M with the structure
functions ρia and Cc

ab ∈ F(M) in a local coordinates system (xi), i = 1,m on M and
a local basis of sections {ea|a = 1, n} on E. Let σ, η ∈ Γ(E) such that σ = σaea, η =
ηbeb.

(i) The Lie bracket of sections σ and η is expressed locally in the following
manner:

(4.2) [σ, η]E =
(
σbρib

∂ηa

∂xi − ηcρic
∂σa

∂xi + Ca
bcσ

bηc
)
ea .

(ii) If ∇ is a linear connection on E, then the local expression of the covariant
derivative ∇ση of the section η with respect to section σ is given by:

(4.3) ∇ση = (σaρia
∂ηc

∂xi
+ Γc

abσ
aηb)ec, where Γc

ab ∈ F(M).

Proof. (i) Using the fact that ρ is a morphism of F(M)- modules and applying
the relations (3.2), (3.6), (3.8) we have successively :

[σ, η]E = [σ, ηcec]E = ηc[σ, ec]E + ρ(σ)(ηc)ec =

= −ηc[ec, σ]E + ρ(σ)(ηc)ec = −ηc[ec, σbeb]E + ρ(σbeb)(η
c)ec =

= −ηc(σb[ec, eb]E + ρ(ec)(σ
b)eb) + σbρ(eb)(η

c)ec =

= σbηc[eb, ec]E − ηcρ(ec)(σ
b)eb + σbρ(eb)(η

c)ec =
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= σbηcCa
bcea − ηcρic

∂σb

∂xi eb + σbρib
∂ηc

∂xi ec =

= Ca
bcσ

bηcea − ηcρic
∂σa

∂xi ea + σbρib
∂ηa

∂xi ea = (σbρib
∂ηa

∂xi − ηcρic
∂σa

∂xi + Ca
bcσ

bηc)ea.

(ii) Because ea, eb ∈ Γ(E) and ∇(ea, eb) ∈ Γ(E) follows that
∇eaeb = ∇(ea, eb) = Γc

abec with Γc
ab ∈ F(M).

Applying (3.2) and (3.3) from Definition 4.1 and the first relation from (3.6) we
have:

∇ση = ∇σaeaη = σa∇ea(η
beb) = σa(ρ(ea)(η

b)eb + ηb∇eaeb) =

= σa(ρia
∂ηb

∂xi eb + ηbΓc
abec) = σaρia

∂ηb

∂xi eb + σaηbΓc
abec = (σaρia

∂ηc

∂xi + Γc
abη

b)ec. 2

The functions Γc
ab ∈ F(M) from the relations (4.3) are called coefficients of con-

nection of the linear connection ∇ in the chosen local coordinates system.
If ∇ is a linear connection on the Lie algebroid E, define the map

T : Γ(E)× Γ(E) → Γ(E) by:

(4.4) T (σ, η) = ∇ση −∇ησ − [σ, η]E , (∀)σ, η ∈ Γ(E).

Proposition 4.3. Let (E, [·, ·]E , ρ) be a Lie algebroid with the structure functions
Cc

ab ∈ F(M). If ∇ is a linear connection on (E, [·, ·]E , ρ), then :
(i) the map T given by (4.4) is R -bilinear and antisymmetric ;
(ii) For all σ, η ∈ Γ(E) such that σ = σaea and η = ηbeb the following relations

hold :

(4.5) T (σ, η) = (Γc
ab − Γc

ba − Cc
ab)σ

aηbec;

(4.6) T c
ab = Γc

ab − Γc
ba − Cc

ab and T c
ab = −T c

ba

Proof. (i) For all a, b ∈ R, σ, η, ω ∈ Γ(E) we have T (aσ + bη, ω) = aT (σ, ω) +
bT (η, ω), that is T is linear with respect to the first argument. Indeed, applying the
properties of Lie bracket [·, ·]E and the relations (4.1) we have successively:

T (aσ + bη, ω) = ∇aσ+bηω −∇ω(aσ + bη)− [aσ + bη, ω]E =

= a∇σω + b∇ηω − (a∇ωσ + b∇ωη)− (a[σ, ω]E + b[η, ω]E) =

= a(∇σω −∇ωσ − [σ, ω]E) + b(∇ηω −∇ωη − [η, ω]E) = aT (σ, ω) + bT (η, σ).

Similarly prove that T is linear with respect to the second and the third argument.
Applying (4.4) follows immediately that T (σ, η) = −T (η, σ), i.e. T is antisymmet-

ric.
(ii) Using (4.4) and (4.3) we have suasively:

T (σ, η) = ∇ση −∇ησ − [σ, η]E = (σaρia
∂ηc

∂xi + Γc
abσ

aηb)ec − (ηaρia
∂σc

∂xi + Γc
abη

aσb)ec −
(σaρia

∂ηc

∂xi − ηaρia
∂σc

∂xi + Cc
abσ

aηb)ec = (Γc
ab − Γc

ba − Cc
ab)σ

aηbec.
Therefore, the relation (4.5) holds.
From the fact that T (ea, eb) ∈ Γ(E) follows that (∃) T c

ab ∈ F(M) such that T (ea, eb) =
T c
abec.
On the other hand, in the relation (4.5) replace σ = ea = δuaeu, η = eb = δvb ev and

we obtain T (ea, eb) = δuaδ
v
b (Γ

c
uv − Γc

vu − Cc
uv)ec = (Γc

ab − Γc
ba − Cc

ab)ec.
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Therefore T c
ab = Γc

ab − Γc
ba − Cc

ab. Hence the first relation from (4.6) holds.
From Cc

ab = −Cc
ba and the first equality of (4.6) follows

T c
ab = Γc

ab − Γc
ba − Cc

ab = Γc
ab − Γc

ba + Cc
ba = −T c

ba. 2

From Proposition 4.3 implies that T is a tensor of type (2, 1). The tensor T is called
the torsion of the linear connection ∇. The differentiable functions T c

ab ∈ F(M) are
called coefficients of torsion of the linear connection ∇.

Proposition 4.4. Let ∇ be a linear o connection on a Lie algebroid Lie (E, [·, ·]E , ρ).
Then for every σ ∈ Γ(E) such that σ = σaea the following relations hold:

(4.7) Cc
abσ

aσb = 0 and (Γc
ab − Γc

ba − Cc
ab)σ

aσb = 0, for all a, b, c = 1, n.

Proof. Applying the relations (4.2) and taking account into [σ, σ]E = 0, we obtain
the first equality from (4.7).

For σ = σaea, apply (4.5) and obtain T (σ, σ) = (Γc
ab − Γc

ba + Cc
ba)σ

aσbec. Since
T (σ, σ) = 0, follows immediately the second equality from (4.7). 2

If ∇ is a linear connection on Lie algebroid E, define the map

R : Γ(E)× Γ(E)× Γ(E) → Γ(E), (σ, η, ω) 7−→ R(σ, η, ω) = R(σ, η)ω,

where the section R(σ, η)ω is given by:

(4.8) R(σ, η)ω = ∇σ∇ηω −∇η∇σω −∇[σ,η]Eω, for all σ, η, ω ∈ Γ(E).

Proposition 4.5. If ∇ is a linear connection on the Lie algebroid (E, [·, ·]E , ρ), then
the following assertions hold :

(i) the map R is R -linear in every argument ;
(ii) the map R is antisymmetric with respect to the first two arguments, that is :

(4.9) R(σ, η, ω) = −R(η, σ, ω), for all σ, η, ω ∈ Γ(E);

(iii) R has the property :

(4.10) R(σ, σ, ω) = 0, for all σ, ω ∈ Γ(E).

Proof. (i) The equality R(aσ1 + bσ2, η, ω) = aR(σ1, η, ω) + bR(σ2, η, ω) for all
a, b ∈ R and σ1, σ2, η, ω ∈ Γ(E) can verified by direct calculation, using the properties
of covariant derivative and the properties of the Lie bracket. Hence, R is linear with
respect to the first argument. Similarly can prove that R is linear with respect to the
other arguments.

(ii) Because ∇[σ,η]E = −∇[η,σ]E we have R(σ, η, ω) = R(σ, η)ω =

= ∇σ∇ηω −∇η∇σω −∇[σ,η]Eω = ∇σ∇ηω −∇η∇σω +∇[η,σ]Eω =

= −(∇σ∇ηω −∇σ∇ηω −∇[η,σ]Eω) = −R(η, σ)ω = −R(η, σ, ω).
Hence (4.9) holds.

(iii) Equality (4.10) follows immediately from (4.9). 2

The map R defined by (4.8) is called curvature of the linear connection ∇.
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Proposition 4.6. Let (Ei, [·, ·]Ei
, ρi), i = 1, 2, be two Lie algebroids over M with

property that (E2, [·, ·]E2 , ρ2) is transitive.
If ∇i : Γ(Ei) × Γ(Ei) → Γ(Ei), i = 1, 2 is a linear connection on E1 resp. E2,

then the map ∇⊕ : Γ(E1 ⊕TM E2)× Γ(E1 ⊕TM E2) → Γ(E1 ⊕TM E2) given by:

(4.11) ∇⊕(X1 ⊕X2, Y1 ⊕ Y2) = ∇⊕
X1⊕X2

(Y1 ⊕ Y2) = ∇1
X1
Y1 ⊕∇2

X2
Y2

for all X1 ⊕ X2, Y1 ⊕ Y2 ∈ Γ(E1 ⊕TM E2) is a linear connection on the direct sum
E1 ⊕TM E2 of Lie algebroids E1 and E2 over TM .

Proof. It is not hard to verify the conditions from definition of a linear connection.
For instance, verify the condition (2) of Definition 4.1.

Denoting E = E1⊕TME2, for f ∈ F(M), X = X1⊕X2 ∈ Γ(E) and Y = Y1⊕Y2 ∈
Γ(E) we have:

∇⊕
fXY = ∇⊕(fX, Y ) = ∇⊕(fX1 ⊕ fX2, Y1 ⊕ Y2) =

= ∇1
fX1

Y1 ⊕∇2
fX2

Y2 = (f∇1
X1
Y1)⊕ (f∇2

X2
Y2) =

= f(∇1
X1
Y1 ⊕∇2

X2
Y2) = f∇⊕

X1⊕X2
(Y1 ⊕ Y2) = f∇XY . 2

Proposition 4.7. Let (E, [·, ·]E , ρ) be a Lie algebroid overM, π : P →M a surjective
submersion and (PπE, [·, ·]π, ρπ) the prolongation of E by π.

If ∇ : Γ(E)× Γ(E) → Γ(E) is a linear connection on E, then the map
∇π : Γ(PπE)× Γ(PπE) → Γ(PπE), (Z,W ) 7−→ ∇π(Z,W ) = ∇π

ZW defined by :

(4.12) ∇π(Z,W )(p) = (p,∇ση(π(p)), [X,Y ](p)), (∀) p ∈ P

where Z(p) = (p, σ(σ(p)), X(p)), W (p) = (p, η(π(p)), Y (p)) with σ, η ∈ Γ(E) and
X,Y ∈ X (E).

Proof. It is easy to verify the conditions from the definition of a linear connection
for ∇π, taking account of the properties of the linear connection ∇ and the properties
of the Lie brackets [·, ·]E on E and [·, ·] on X (E). For example, we verify the condition
(2) of Definition 4.1. For f ∈ F(M), (Z,W ) ∈ F × F , where F = Γ(PπE) we have:

∇π
fZW (p) = (p,∇fση(π(p)), [X,Y ](p)) = (p, f(π(p))∇ση(π(p)), [X,Y ](p)) and

f∇π
Zw(p) = f(π(p))(p,∇ση(π(p)), [X,Y ](p)) = (p, f(π(p))∇ση(π(p), [X,Y ](p)).
Then ∇π

fZW (p) = f∇π
ZW (p) for all p ∈ P . Hence ∇π

fZW = f∇π
ZW . 2

For more details concerning the applications of Lie algebroids in differential ge-
ometry and quantum mechanics, the reader can consult the papers [1],[2],[5],[9].
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