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Abstract
The electric capacity of a conductor in the 3-dimensional Euclidean space IR3

is defined as a ratio of a given positive charge on the conductor to the value of
potential on the surface. This definition of the capacity is independent of the
given charge. The capacity of a set as a mathematical notion was defined first
by N. Wiener (1924) and was developed by O. Forstman [8]], C. J. de La Vallee
Poussin, and several other French mathematicians in connection with potential
theory. This paper develops the theory of conformal invariants initiated in [6]
for Finsler manifolds. More precisely we prove: The capacity of a compact set
and the capacity of the condenser of two closed sets are conformally invariant.
By mean of the notion of capacity, we construct and study four conformal in-
variant functions ρM , νM , µM and λM which have similarities with the classical
invariants on Sn, R or Hn. Their properties and especially their continuity are
efficient tools for solving some problems of conformal geometry in the large.
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Introduction

The notion of conformal capacity was introduced by Loewner [13] and has been ex-
tensively developed for R (for instance [9], [10], [15], [18]). Particularly it was used by
G.D Mostow to prove his famous theorem on the rigidity of hyperbolic spaces [15].
J.Ferrand proved that, the capacity of compact sets in Riemannian manifolds is in-
variant under conformal mappings and then she used this notion to prove her famous
theorem in Riemannian conformal geometry [4]. Here, inspiring her method, we define
an equivalent notion of capacity in Finsler geometry and prove its invariance property
under conformal mappings.

1 Preliminaries

1.1 Finsler metric

Let M be a n-dimensional C∞ manifold. For a point x ∈ M , denoted by TxM the
tangent space of M at x. The tangent bundle of M is the union of tangent spaces.
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TM := ∪x∈MTxM.

We will denote the elements of TM by (x, y) where y ∈ TxM . Let TM0 = TM \ {0}.
The natural projection π : TM → M is given by π(x, y) := x. Throughout this paper,
we use Einstein summation convention for the expressions with indices.
A Finsler structure on a manifold M is a function F : TM0 → [0,∞) with the
following properties:
(i) F is C∞ on TM0.
(ii) F is positively 1-homogeneous on the fibers of tangent bundle TM :

∀λ > 0 F (x, λy) = λF (x, y).

(iii) The Hessian of F 2 with elements gij(x, y) :=
1
2 [F

2(x, y)]yiyj is positively defined
on TM0.

Then the pair (M,F ) is called a Finsler manifold. F is Riemannian if gij(x, y) are
independent of y ̸= 0.

1.2 Notations and definitions on conformal geometry
of Finsler manifolds

A diffeomorphism f : (M, g) → (N,h) between n-dimensional Finsler manifolds
(M, g) and (N,h) is called conformal if each (f∗)p for p ∈ M is angle-preserving,
and in this case two Finsler manifolds are called conformally equivalent or simply
conformal. If M = N thenf is called a conformal transformation or conformal au-
tomorphism. It can be easily checked that a diffeomorphism is conformal if and only
if 1, f∗h = e2σg for some function σ : M → R. The diffeomorphism f is called an
isometry if f∗h = g.
Now let’s consider two Finsler manifolds (M, g) and (M, g) with Finsler structures F
and F̄ and with line elements (x, y) and (x̄, ȳ) respectively. Throughout this paper we
shall always assume that coordinate systems on (M, g) and (M, g) have been chosen

so that xi = xi and yi = yi holds, unless a contrary assumption is explicitly made.
Using this assumption we can show them by (M, g) and (M, g) or simply by M and
M . Then this two manifolds are conformal if F (x, y) = eσF (x, y) or equivalently

g = e2σ(x) g .

Locally we have gij(x, y) = e2σ(x) gij(x, y), and gij(x, y) = e−2σ(x) gij(x, y).

1.3 Some vector spaces and their properties

1.3.1 Pull-back space π∗TM

Let π : TM −→ M be the natural projection from TM to M .
The pull-back tangent space π∗TM defined by

π∗TM := {(x, y, v)| y ∈ TxM0, v ∈ TxM}.
1This result is due to Knebelman [11]. In fact the sufficient condition implies that the function

σ(x, y) be independent of direction y, or equivalently ∂σ/∂yi = 0.
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The pull-back cotangent space π∗T ∗M defined by

π∗T ∗M := {π∗θ| θ ∈ T ∗M}.

Both π∗TM and π∗T ∗M are n-dimensional vector spaces over TM0.

1.3.2 Sphere bundle SM

Let us denote by SxM the set consisting of all rays [y] := {λy|λ > 0}, where y ∈ TxM0

. Let
SM =

⋃
x∈M

SxM.

SM has a natural (2n− 1) dimensional manifold structure, called Sphere bundle over
M . We denote the elements of SM by (x, [y]) where y ∈ TxM0 [2].

Lemma 1. [3] The Sphere bundle of a differentiable manifold is orientable.

1.3.3 Pull-back space p∗TM

Let p : SM −→ M denotes the natural projection from SM to M . The pull-back
tangent space p∗TM is defined by

p∗TM := {(x, [y], v)| y ∈ TxM0, v ∈ TxM}.

The pull-back cotangent space p∗T ∗M is defined by

p∗T ∗M := {p∗θ| θ ∈ T ∗M}.

Both p∗TM and p∗T ∗M are n-dimensional vector spaces over SM .
Let we define the function η as follows

η : TM0 −→ SM,

η(x, y) = (x, [y]).

We use the following lemma for replacing the C∞ functions on TM0 by those on SM .

Lemma 2. [16] Let f ∈ C∞(TM0). Then there exist a function g ∈ C∞(SM)
satisfying η∗g = f if and only if

f(x, y) = f(x, λy), y ∈ TxM0, λ > 0,

where η∗ is the pull-back of η.

Let f ∈ C∞(M), the vertical lift of f is denoted by fV ∈ C∞(TM0) and defined
by

fV : TM −→ IR

fV (x, y) := f ◦ π(x, y) = f(x).

fV is independent of y and from lemma 2 there is a function g on C∞(SM) related
to fV by means of η∗g = fV . We denote g in the sequel by fV for simplicity.
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1.4 Nonlinear connection

1.4.1 On the tangent bundle TM

Consider π∗ : TTM −→ TM and let we put kerπv
∗ = {z ∈ TTM |πv

∗(z) = 0}, ∀v ∈
TM, then the vertical vector bundle on M is defined by

V TM =
⋃

v∈TM

kerπv
∗ .

A non-linear connection or a horizontal distribution on TM is a complementary dis-
tribution HTM for V TM on TTM . The non-linear nomination arise from the fact
that HTM is spanned by the functions which are completely determined by the differ-
entiable non-linear functions. These functions are called coefficients of the non-linear
connection and will be noted in the sequel by N j

i . It is clear that HTM is a hori-
zontal vector bundle. By definition we have the decomposition TTM = V TM⊕HTM .

Using the induced coordinates (xi, yi) on TM , where xi and yi are called respec-
tively position and direction of a point on TM , we have the local field of frames
{ ∂
∂xi

, ∂
∂yi

} on TTM . Let {dxi, dyi} be the dual of { ∂
∂xi ,

∂
∂yi }. It is well known that

we can choose a local field of frames { δ
δxi ,

∂
∂yi

} adapted to the above decomposition

i.e. δ
δxi ∈ X (HTM) and ∂

∂yi
∈ X (V TM). They are sections of horizontal and vertical

sub-bundle on HTM and V TM , defined by δ
δxi = ∂

∂xi
−N j

i
∂

∂yj
, where N j

i (x, y) are

the coefficients of non linear connection. Clearly

N i
j = γi

jky
k − Ci

jkγ
k
rsy

rys,

where γi
jk := 1

2g
is(

∂gsj
∂xk − ∂gjk

∂xs + ∂gks

∂xj ) and Cijk = 1
2
∂gij
∂yk .

1.4.2 On the sphere bundle SM

Using the coefficients of non linear connection on TM one can define a non linear
connection on SM by using the objects which are invariant under positive re-scaling
y 7→ λy. Our preference for being on SM dictates us to work with

N i
j

F
:= γi

jkl
k − C i

jkγ
k
rsl

rls,

where li = yi

F .

We prefer also to work with the local field of frames { δ
δxi , F

∂
∂yj } and {dxi, δyj

F }
which are invariant under the positive re-scaling of y and can be used as a local field of
frame for tangent bundle p∗TM and cotangent bundle p∗T ∗M over SM respectively.

1.5 Riemannian metrics on SM

It turns out that the manifold TM0 has a natural Riemannian metric ( known in the
literature as Sasaki metric [2], [14])
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g̃ = gij(x, y)dx
i ⊗ dxj + gij(x, y)

δyi

F
⊗ δyj

F
,

where gij(x, y) are the Hessian of Finsler structure F 2. They are functions on TM0

and invariant under positive re-scaling of y, therefore they can be considered as func-
tions on SM . With respect to this metric, the horizontal subspace spanned by δ

δxj is

orthogonal to the vertical subspace spanned by F ∂
∂yi .

The metric g̃ is invariant under the positive re-scaling of y and can be considered as
a Riemannian metric on S(M).

1.6 The Hilbert form

Consider the pull-back vector bundle p∗TM over SM . The pull-back tangent bundle
p∗TM has a canonical section l defined by

l(x,[y]) = (x, [y],
y

F (x, y)
).

We use the local coordinate system (xi, yi) for SM , where yi being homogeneous
coordinates up to a positive factor. Let ∂i := (x, [y], ∂

∂xi ). {∂i} is a natural local field
of frames for p∗TM . The natural dual co-frame for p∗T ∗M is {dxi}. The Finsler
structure F (x, y) induces a canonical 1-form on SM defined by

ω := lidx
i,

where li = gij l
j .

ω is called Hilbert form of F . Using gij = FFyiyj +FyiFyj and δF
δxi = 0, with straight

forward calculation we get

(1.1) dω = −(gij − lilj)dx
i ∧ δyj

F
.

1.7 The gradient vector field

For a Riemannian manifold (S(M), g̃), the gradient vector field of a function f ∈
C∞(S(M)) is given by

g̃(∇f, X̃) = df(X̃), ∀ X̃ ∈ X (SM).

Using the local coordinate system (xi, [yi]) for SM , the vector field X̃ ∈ X (SM)

is given by X̃ = Xi(x, y) δ
δxi + Y i(x, y)F ∂

∂yj where Xi(x, y) and Y i(x, y) are C∞

functions on SM . Using straight forward calculation we get locally

∇f = gij
δf

δxi

δ

δxj
+ F 2gij

∂f

∂yi
∂

∂yj
.

The norm of ∇f with respect to the Riemannian metric g̃ is given by

(1.2) | ∇f | 2= g̃(∇f,∇f) = gij
δf

δxi

δf

δxj
+ F 2gij

∂f

∂yi
∂f

∂yj
.
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2 Conformal invariants

In what follows (M, g) denotes a connected Finsler manifold of class C1 and dimension
n ≥ 2. Let (S(M), g̃) be its Riemannian Sphere bundle, we set at first some definitions
and notations.
Let’s consider the Volume element η(g) on S(M) defined as follows [1]

η(g) :=
(−1)N

(n− 1)!
ω ∧ (dω)n−1,

where N = n(n−1)
2 and ω is a Hilbert form of F .

LetH(M) = C(M)∩W 1
n(M) be the linear space of continuous real valued functions

u on M admitting a generalized Ln-integrable differential, satisfying

I(u,M) =

∫
S(M)

| ∇uV |n η(g) < ∞,

where uV is the vertical lift of u.

If M is non-compact then H0(M) is the subspace of functions u ∈ H(M) such
that its vertical lift uV has a compact support in S(M).

Definition 1. A function u ∈ C(M) will be called monotone if for any relatively
compact domain D of M

sup
x∈∂D

u(x) = sup
x∈D

u(x), inf
x∈∂D

u(x) = inf
x∈D

u(x).

We denote by H∗(M) the set of monotone functions u ∈ H(M).

Definition 2. The capacity of a compact subset C of a non-compact Finslerian man-
ifold M is defined by

Cap
M
(C) := inf

u
I(u,M),

where the infimum is taken over the functions u ∈ H0(M) with u = 1 on C and
0 ≤ u(x) ≤ 1 for all x, these functions being said to be admissible for C.

Definition 3. Let (C0, C1) be a pair of closed sets in Finslerian manifold M . The
capacity of the condenser Γ(C0, C1,M) is defined by

Cap
M
(C0, C1) = inf

u∈A(C0, C1)
I(u,M),

where the infimum is taken over the set A(C0, C1) of all functions u ∈ H(M) satisfying
u = 0 on C0 and u = 1 on C1 and 0 ≤ u(x) ≤ 1 for all x, these functions are
called admissible for condenser Γ(C0, C1,M). If A(C0, C1) = ∅ and particulary if
C0

⋂
C1 ̸= ∅, we set Cap

M
(C0, C1) = +∞.
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Definition 4. A relative continuum is a closed subset C of M such that C ∪ {∞} is
connected in Alexandrov’s compactification M = M ∪ {∞}. For avoiding ambiguities
the connected closed sets of M which are not reduced to one point will be called con-
tinua.

In what follows we want to associate the conformal invariant functions determined
entirely by conformal structure of manifold M , at every double, triple and quaternary
points of M .

Definition 5. For all (x1, x2) in M2 we set

µ
M
(x1, x2) = inf

C∈α(x1,x2)
Cap

M
(C),

where α(x1, x2) is the set of all compact continua subsets of M , containing x1 and
x2. And we set

λ
M
(x1, x2) = inf

C0,C1

Cap
M
(C0, C1),

where C0 and C1 are relative continua resp. containing x1 and x2.

Definition 6. Let △ = {(x, x, x)| x ∈ M} be the diagonal of M3. For any
(x1, x2, x3) ∈ M3\△ we set

ν
M
(x1, x2, x3) = inf

C0,C1

Cap
M
(C0, C1),

where C0 is a relative continuum containing x3 and C1 a compact continuum contain-
ing x1 and x2.

Definition 7. Let △ be the set of all points (x1, x2, x3, x4) of M4 such that at least
three coordinates of which are equal , and IR+ = IR+ ∪ {+∞}. We define a function
ρ

M
: M4\△ −→ IR+ by setting ρ

M
(x1, x2, x3, x4) = +∞ if {x1, x2} ∩ {x3, x4} ̸= ∅

and in all other cases

ρ
M
(x1, x2, x3, x4) = inf

C0, C1

Cap
M
(C0, C1),

where C0 is a compact continuum containing x1, x2 and C1 a compact continuum
containing x3, x4.

Definition 8. For any subset S of M and any u ∈ C(M), we denote by ω(u, S) the
oscillation of u on S.

.

3 Conformal properties of capacity

Let f : M −→ M ′ be a diffeomorphism between two manifolds and h the mapping

h : S(M) −→ S(M ′),

h(x, [y]) = (f(x), [f∗(y)]),
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where f∗ is the differential of f (the tangent map, [16]). Since f∗ is linear, h is well
defined.

Let f be a conformal map between Finsler manifolds (M, g) and (M ′, g′), with
the Finsler structures F and F ′ respectively. With respect to the function λ on M
and ω′ be a Hilbert form related to the Finsler structure F ′. In other word ω′ =
g′ij

y′j√
g′
mny

′my′n dx
′i, we have

h∗ω′ =
√
λω.

from (1.1) we get

h∗dω′ =
√
λdω.

So if η(g) and η(g′) denotes the volume elements of S(M) and S(M ′) respectively,
then we find that

(3.1) h∗(η(g′)) = (
√
λ)nη(g).

Therefore the mapping h is orientation preserving diffeomorphism from S(M) to
S(M ′). With above notions we have the following lemma.

Lemma 3. If u ∈ H0(M
′) then we have

I) | ∇uV |n= (g′ij δuV

δx′i
δuV

δx′j )
n
2 ,

II) (uof)V = uV oh,

III) h∗ δuV

δx′i = δ(u◦f)V
δxi .

Proof. The first assertion follows from (1.2), II) and III) can be easily verified by
direct calculations.

From the above lemma we have

(3.2) h∗ | ∇uV |n= (
√
λ)−n | ∇(u ◦ f)V |n .

Now we can prove the following theorem. It shows that, the capacity of a compact
set and the capacity of the condenser of two closed sets are conformally invariant, i.e.
they only depend on the conformal structure.

Theorem 1. Let f be a conformal map between two Finsler manifolds (M, g) and
(M ′, g′). Then we have

Cap
M
(C) = Cap

M′ (f(C)), Cap
M
(C0, C1) = Cap

M′ (f(C0), f(C1)),

for every compact subset C and closed subsets C0 and C1 of M .

Proof. Let f : (M, g) −→ (M ′, g′) be a conformal map. First we prove

(3.3) I(u,M ′) = I(u ◦ f,M),

for every u ∈ H0(M
′). By definition
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I(u,M ′) =

∫
S(M ′)

| ∇uV |n η(g′),

Since S(M) and S(M ′) are two orientable n-dimensional smooth manifolds with
boundary and h is a smooth and orientation preserving diffeomorphism between them,
we have (see for example p. 245, [12])∫

S(M ′)

| ∇uV |n η(g′) =

∫
S(M)

h∗(| ∇uV |n η(g′)).

Using equation (3.1) and (3.2) gives∫
S(M)

h∗(| ∇uV |n η(g′)) =

∫
S(M)

| ∇(u ◦ f)V |n η(g) = I(u ◦ f,M).

Let C be a compact set in M by definition

Cap
M
(C) = inf

v∈H0M, v|
C
=1

I(v,M), Cap
M′ (f(C)) = inf

u∈H0M ′, u|
f(C)

=1
I(u,M ′).

Putting
A = {I(v,M)|v ∈ H0M,v|

C
= 1},

B = {I(u,M ′)|u ∈ H0M
′, u|

f(C)
= 1},

since f−1( support u) = support (u◦f) for all I(u,M ′) ∈ B, we have (u◦f) ∈ H0(M).
On the other hand (u◦f)|

C
= 1 and from relation (3.3), I(u,M ′) = I(u◦f,M). Hence

B ⊆ A.
By the same argument we can prove A ⊆ B. Therefore Cap

M
(C) = Cap

M′ (f(C)).
Let C0 and C1 be closed subsets of M . By putting

A = {I(v,M)|v ∈ H0M, v|
C0

= 0, v|
C1

= 1},

B = {I(u,M ′)|u ∈ H0M
′, u|

f(C0)
= 0, u|

f(C1)
= 1},

with the same argument we can prove Cap
M
(C0, C1) = Cap

M′ (f(C0), f(C1)).

By mean of the notion of capacity, we can study the properties of four conformal
invariant functions ρ

M
, ν

M
, µ

M
and λ

M
which have similarities with the classical

invariants on Sn, R or Hn [4], [15]. Their properties and especially their continuity
are efficient tools for solving some problems of conformal geometry.
In the following theorem we prove that the functions ρ

M
, ν

M
, µ

M
and λ

M
depend

only on the conformal structure of M and therefore invariant under any conformal
mapping.

Theorem 2. Let f be a conformal mapping from the Finsler manifold M to the
Finsler manifold M ′ , we have for all x1, x2, x3, x4 in M
ρ

M
(x1, x2, x3, x4) = ρ

M′ (f(x1), f(x2), f(x3), f(x4)),
ν
M
(x1, x2, x3) = ν

M′ (f(x1), f(x2), f(x3)),
µ

M
(x1, x2) = µ

M′ (f(x1), f(x2)),
λ

M
(x1, x2) = λ

M′ (f(x1), f(x2)).

Proof. The proof is a straight forward conclusion of theorem 1 and definitions 5, 6
and 7.
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