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Abstract

This is a brief survey on the geometry of shape spaces. For three types of trans-
formations between images of the same scene, we regard the shape of a configu-
ration of landmarks, often extracted from a digital image, as a point on a shape
space. Thsese shape spaces are described as familiar symmetric spaces.
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1 Introduction

High level image analysis, an area of rapid growth of applied sciences, involves a blend
of techniques of geometry, statistics and computer science, each having its important
contribution to this field.
In this paper we introduce the reader to some of the basic concepts in shape analysis,
arising in the particular context of pattern recognition from digital images.
We will assume that the features have been already extracted, using a landmark
detection method, and at the end of the feature extraction algorithm, we analyze a
configuration of points in plane or in three dimensions.
Depending on the type of images considered (frontal view, perspective view, or range
image), we analyze the shape of the configuration extracted (direct similarity shape,
projective shape or 3D similarity shape). This shape is regarded as a point on a shape
space, and the first main objective of this paper is the description of the corresponding
shape spaces.
Averaging on shape spaces is useful is scene recognition [8], medical imaging [2] and
scene enhancement [13], a motivation of this study.

2 The planar direct similarity shape space

In this section we will follow the approach in [1]. A planar k-ad is an ordered set
(z1, z2, . . . , zk) of k points in R2 = C, at least two of which are distinct. We denote
by Ck,2 the set of planar k-ads. The direct similarity planar shape space, Σk

2 , is the
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shape space Σk
2 = ΣG(Ck,2), where G is the group of direct similarities of R2. A

planar k-ad (z1, z2, . . . , zk) has the same direct similarity shape with a planar k-ad
(ζ1, ζ2, . . . , ζk) ∈ Lk, centered at 0, where

Lk = {w = (w1, w2, . . . , wk) ∈ Ck |
∑k

j=1 wj = 0}.
We set ζj = zj −z, forallj = 1, . . . , k (translation). We may then assume that two

k-ads z = (z1, z2, . . . , zk) and z′ = (z′1, z
′
2, . . . , z

′
k) having the same direct similarity

shape, are both in Lk. Two k-ads z, z′ ∈ Lk have the same direct similarity shape, iff
for j = 1, . . . , k, z′j can be obtained from zj by a multiplication by a complex number of
modulus 1 (rotation) and then by a multiplication by a positive real number (scaling).
That is z, z′ ∈ L have the same direct similarity shape iff there is a w ∈ C\{0}, s.t.
z′ = wz. In the language of projective geometry, that is same as saying [z′1 : z′2 : . . . :

z′k] = [z1 : z2 : . . . : zk] in P (L), where L = {z ∈ Ck |
∑k

j=1 zj = 0}. Then we have
the following result

Theorem 2.1 The following equality holds:

Σk
2 = P (Lk), Lk = {(z1, z2, . . . , zk) ∈ Ck | z1 + z2 + . . .+ zk = 0}.

Advantages of the new description of Σk
2 . The above identification of Σk

2 with a
complex projective space differs from both [2] and [5]. Kendall pointed out in [5] that
there is no unique way to identify Σk

2 with CP k−2; he used a Helmert submatrix H
to remove location (see [3, p. 34]). The Helmert submatrix is only an artifact used to
drop one complex dimension, and to represent the shape space as CP k−2. The new
description is edge registration free, unlike the one in [2]. It is also useful, at the level
of shape spaces, in understanding the effect of adding a new point to a given k-ad.

3 The linear shape space and the affine shape space

In this section we will follow the approach in [6], [7]. A k-ad is an ordered set
(x1, x2, . . . , xk) of k points. We will consider the set Ck,m,0 of k-ads in general position
in Rm. The linear shape space, LΣk

m, is the shape space LΣk
m = ΣG(Ck,m,0), where

G = GL(m,R) is the general linear group of Rm. Therefore two k-ads (x1, x2, . . . , xk),
(x′

1, x
′
2, . . . , x

′
k) have the same linear shape if there is a matrix A ∈ GL(m,R) such

that (x′
1, x

′
2, . . . , x

′
k) = (Ax1, Ax2, . . . , Axk), which implies that x′ = Ax. If we regard

the configurations x = (x1, x2, . . . , xk), x
′ = (x′

1, x
′
2, . . . , x

′
k) as m× k matrices, it fol-

lows that x′T = xTA, that is to say the vector subspaces of Rk spanned respectively
by the columns of the matrices xT respectively x′T are the same, which leads to the
following result

Proposition 3.1 The linear shape space LΣk
m can be identified with the Grassman

manifold Gm(Rk) of m-dimensional vector subspaces of Rk.

The affine shape space, AΣk
m, is the shape space AΣk

m = ΣG(Ck,m,0), where
G = Aff(m,R) is the group of affine transformations of Rm.
Therefore two k-ads (x1, x2, . . . , xk), (x

′
1, x

′
2, . . . , x

′
k) have the same linear shape if

there is a matrix A ∈ GL(m,R) such that (x′
1, x

′
2, . . . , x

′
k) = (Ax1, Ax2, . . . , Axk),

which implies that x′ = Ax.
Let (y1, y2, . . . , yk), (y

′
1, y

′
2, . . . , y

′
k) be given by
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yj = xj − x, y′j = x′
j − x̄′,∀j = 1, . . . , k.

It follows that if (x1, x2, . . . , xk), (x
′
1, x

′
2, . . . , x

′
k) have the same affine shape, then the

k-ads (y1, y2, . . . , yk), (y
′
1, y

′
2, . . . , y

′
k), centered at 0, have the same linear shape, that

is (y1, y2, . . . , yk), (y
′
1, y

′
2, . . . , y

′
k) ∈ Lm,k, where

Lm,k = {w = (w1, w2, . . . , wk) ∈ (Rm)k |
m∑
j=1

wj = 0}.

Since yk = −(y1 + y2 + . . .+ yk−1), we obtain the following

Proposition 3.2 The affine shape space LΣk
m can be identified with the Grassman

manifold Gm(Rk−1) of m-dimensional vector subspaces of Rk−1.

4 The projective shape space

For our introductory approach to projective shape, including notations, definitions
and results given without proof, we send the reader to [8] and [12]. The coordinates of
interest in projective shape analysis, are projective coordinates. These are invariant
with respect to the group of projective (general linear) transformations PGL(m).
A projective transformation α of RPm is defined in terms of a (m + 1) × (m + 1)
nonsingular matrix A ∈ GL(m+ 1,R) by

α([X1 : . . . : Xm+1]) = [A(X1, . . . , Xm+1)T ].

Note that k points in RPm with k ≥ m + 2 are in general position if any subset of
m+ 1 of these points is not included in a linear variety of dimension m− 1.

Definition 4.1 A projective frame in RPm is an ordered system of m+ 2 points in
general position.

Example 2.1. Let (e1, . . . , em+1) be the standard basis of Rm+1. The standard projec-
tive frame is ([e1], . . . , [em+1], [e1+ . . .+em+1]). The last point of the frame is referred
to as the unit point.

Proposition 4.1 PGL(m) acts simply transitively on the set of projective frames in
RPm.

Definition 4.2 The projective coordinate(s) of a point p ∈ RPm w.r.t. a projective
frame π = (p1, . . . , pm+2) is (are) defined as

pπ = α−1(p),

where α ∈ PGL(m) is given above (see [8]).

Assume x1, . . . , xm+2 are points in general position and x = (x1, . . . , xm) is an arbi-
trary point in Rm. Note that in our notation, the superscripts are reserved for the
components of a point whereas the subscripts are for the labels of points. In order to
determine the projective coordinates of [x : 1] w.r.t. the projective frame associated



Geometry of shape spaces 31

with (x1, . . . , xm+2) we set x̃ = (x1, . . . , xm, 1)T and consider the (m+1)×(m+1) ma-
trix Um = [x̃1, . . . , x̃m+1], the j-th column of which is x̃j = (xj , 1)

T , j = 1, . . . ,m+1.
We define an intermediate system of homogeneous coordinates

v(x) = U−1
m x̃(4.1)

and write v(x) = (v1(x), . . . , vm+1(x))T .

Next we set

zj(x) =
vj(x)

vj(xm+2)
/

∣∣∣∣∣∣∣∣ vj(x)

vj(xm+2)

∣∣∣∣∣∣∣∣ , j = 1, . . . ,m+ 1,(4.2)

so that the last point xm+2 is now used.
The projective coordinate(s) of x are given by the point [z1(x) : . . . . : zm+1(x)],
where (z1(x))2 + . . . + (zm+1(x))2 = 1. In this way, we identify the position of a
point p with respect to π with an unoriented direction (axis). Let G(k,m) denote
the set of all ordered systems of k points (p1, . . . , pk) for which (p1, . . . , pm+2) is
a projective frame, k > m + 2. PGL(m) acts simply transitively on G(k,m) by
α(p1, . . . , pk) = (αp1, . . . , αpk).

Definition 4.3 The projective shape space PΣk
m, or space of projective k-ads in RPm

is the quotient G(k,m)/PGL(m).

Proposition 4.2 PΣk
m is a manifold diffeomorphic with (RPm)q where q = k−m−2.

Proof. We define F : PΣk
m → (RPm)q by F ((p1, . . . , pk)mod α) = (pπm+3, . . . , p

π
k ),

where π = (p1, . . . , pm+2) and

pπi = [z1(xi) : . . . : z
m+1(xi)](4.3)

and where

z(xi) = (z1(xi), . . . , z
m+1(xi))

T , ||z(xi)|| = 1, i = m+ 3, . . . , k,

with zj( · ) given at (4.3). The mapping F is a well defined diffeomorphism between
the two homogeneous spaces.

This representation of projective shape given in [8] is an alternative to the in-
variant representation used in [4], [9], [11], [10] and the connection between the two
representations is described in [8].
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