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Abstract

We write the structure equations on the 2−jet (or 2−tangent) bundle of a differ-
entiable manifold endowed with an arbitrary nonlinear connection N and also an
arbitrary linear connection D, with the only restriction that D should preserve
the distributions generated by N.
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1 Introduction

Let N be a nonlinear connection on the total space T 2M of the 2− tangent bundle
(T 2M,π,M), (Def.1.1.). Then, there exists an unique decomposition of tangent space
of T 2M at the point u =

(
x, y(1), y(2)

)
∈ T 2M in the following direct sum of the linear

vector space:

TuT
2M = N0(u)⊕N1(u)⊕ V2(u), ∀u ∈ T 2M.

An N− linear connection DΓ (N) on T 2M is a linear connection on T 2M , which
preserves by parallelism the horizontal and vertical distributions N0, N1 and V2. It
has nine sets of coefficients. Consequently, we obtain for its torsion fourteen sets of
components and for its curvature eighteen sets of components.

Moreover, on T 2M there exists a natural 2−tangent structure J given by

J

(
∂

∂xa

)
=

∂

∂y(1)a
, J

(
∂

∂y(1)a

)
=

∂

∂y(2)a
, J

(
∂

∂y(2)a

)
= 0.

Hence, particularly, an N−linear connection on T 2M is called JN - linear connection
if if is absolutely parallel with respect to J : DXJ = 0,∀X ∈ χ

(
T 2M

)
.

A JDΓ (N)−linear connection has only three sets of coefficients, its torsion has
thirteen sets of components and its curvature has six sets of components. All these
correspond to Miron-Atanasiu’s theory on T 2M = Osc2M (2−osculator bundle) (see
the joint papers [8]− [14]).
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In this paper we get the structure equations of an N−linear connection on T 2M
(Theorem 10.1) generalizing the same problem solved for a JN− linear connection at
the First Conference of Balkan Society of Geometers, [1].

Of course, for the physical applications to electrodynamics, elasticity, quantum
field theories, etc., to work with an N−linear connection on T 2M is an advantage
and it is not difficult (see [2],[3],[5] and, more generally, [4],[6],[7]).

2 Tangent bundle of the second order
(
T 2M,π2,M

)
Let M be a real differentiable C∞−manifold of dimension n. A point of M will be
denoted by x and its local coordinate system by (U,φ) , φ (x) = (xa) . The indices
a, b, ... run over set {1, 2, ..., n} and the Einstein convention of summation will be
adopted all over this work.

Let J0,x (R,M) be the set of germs of mappings f : R →M with f (0) = x. We
say that f, g ∈ J0,x (R,M) are equivalent up to order 2 if there exists a chart (U,φ)
around x such that

(2.1) dβ0 (φ ◦ f) = dβ0 (φ ◦ g), (β = 1, 2),

where d denotes the Frechet differentiation. It can be seen if (2.1) holds for a chart
(U,φ), it holds for any other chart (V, ψ) around x.

We denote by j20,xf the equivalence class of f and set J2
0,x =

{
j20,xf, ∀f ∈ J0,x

(R,M)} . Then we put
T 2M = Ux∈MJ

2
0,x,

and define π2 : T 2M →M by π2
(
J2
0,x

)
= x.

Definition 1.1. The set (T 2M,π2,M) will be called the tangent bundle of order
two of the manifold M.

For a local chart (U,φ) in x ∈ M its lifted local chart in u ∈
(
π2

)−1
(x)

will be denoted by
(
(π2)

−1
(U) ,Φ

)
, with Φ (u) = (uα) , (uα) =

(
xa, y(1)a, y(2)a

)
⊂

R3n, (α = 0, 1, 2) . Thus a differentiable atlas AM of the differentiable structure of the
manifold M determines a differentiable atlas AT 2M on T 2M and therefore the triple(
T 2M,π2,M

)
, is a differentiable manifold.

By (2.1), a transformation of local coordinates u = (uα) =
(
xa, y(1)a, y(2)a

)
→

ũ = (ũα) =
(
x̃a, ỹ(1)a, ỹ(2)a

)
, (α = 0, 1, 2) ,on the manifold T 2M is given by

x̃a = x̃a
(
x1, ..., xn

)
,det(

∂x̃a

∂xb
) ̸= 0,

ỹ(1)a =
∂x̃a

∂xb
y(1)b,

2ỹ(1)a =
∂ỹ(1)a

∂xb
y(1)b + 2

∂ỹ(1)a

∂y(1)b
y(2)b.

One can see that T 2M is of dimension 3n.
Moreover, if M is a paracompact manifold, then T 2M is paracompact, too.
The null section 0 : M → T 2M of the projection π2 is defined by 0 : (x) ∈ M →

(x, 0, 0) ∈ T 2M we denote by T̃ 2M = T 2M\ {0} .
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Let J be the natural 2−tangent structure on T 2M :

(2.2) J
(

∂

∂xa

)
=

∂

∂y(1)a
, J

(
∂

∂y(1)a

)
=

∂

∂y(2)a
, J

(
∂

∂y(2)a

)
= 0.

where
(

∂
∂xa |u, ∂

∂y(1)a |u, ∂
∂y(2)a |u

)
is the natural basis of the tangent space TT 2M at

the point u ∈ T 2M.
If N is a nonlinear connection on T 2M, then N0 = N,N1 = J (N0) are two

distributions geometrically defined on T 2M, everyone of local dimension n. Let us

consider the distribution V2 on T 2M locally generated by the vector fields
{

∂
∂y(2)a

}
.

Consequently, the tangent bundle to T 2M at a point u ∈ T 2M is given by a direct
sum of the vector space:

(2.3) TuT
2M = N0(u)⊕N1(u)⊕ V2(u), ∀u ∈ T 2M.

We consider {δa, δ1a, δ2a} an adapted basis to the decomposition (2.3) and its dual
basis denoted by

{
dxa, δy(1)a, δy(2)a

}
, where

(2.4)

δa =
δ

δxa
=

∂

∂xa
−N

1

b
a

∂

∂y(1)b
−N

2

b
a

∂

∂y(2)b
,

δ1a =
δ

δy(1)a
=

∂

∂y(1)b
−N

1

b
a

∂

∂y(1)b
,

δ2a =
∂

∂y(2)a
,

respectively

(2.5)
δy(1)a = dy(1)a +N

1

a
bdx

b,

δy(2)a = dy(2)a +N
1

a
bdy

(1)b+
(
N
2

a
b +N

1

a
cN
1

c
b

)
dxb.

Then, a vector field X ∈ χ
(
T 2M

)
is represented in the local adapted basis as

X = X(0)aδa +X(1)aδ1a +X(2)aδ2a,

with the three right terms, called d-vector fields, belonging to the distributions N0, N1

and V2, respectively.
A 1-form ω ∈ X ∗(T 2M) will be decomposed with three terms, called d-1-forms,

as

ω = ωa
(0)

dxa + ωa
(1)

δy(1)a + ωa
(2)

δy(2)a.

Similarly, a tensor field T ∈ T r
s (T

2M) can be split with respect to (2.3) into compo-
nents, which will be called d-tensor fields. Hence, the set{

1, δa, δ1a, ∂̇2a, dx
a, δy(1)a, δy(2)a

}
generates the algebra of the d-tensor fields over the ring of functions F(T 2M).
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By a direct calculus we obtain

Proposition 1.1. The Lie brackets of the vector fields of the adapted basis are
given by

(2.6)

[δb, δc] =
(0)

R
(00)

a
bcδa +

(1)

R
(00)

a
bcδ1a +

(2)

R
(00)

a
bc

·
∂2a,

[δb, δ1c] =
(0)

B
(10)

a
bcδa +

(1)

B
(10)

a
bcδ1a +

(2)

B
(10)

a
bc

·
∂2a,[

δb,
·
∂2c

]
=

(0)

B
(20)

a
bcδa +

(1)

B
(20)

a
bcδ1a +

(2)

B
(20)

a
bc

·
∂2a,

[δ1b, δ1c] =
(0)

R
(11)

a
bcδa +

(1)

R
(11)

a
bcδ1a +

(2)

R
(11)

a
bc

·
∂2a,[

δ1b,
·
∂2c

]
=

(0)

B
(21)

a
bcδa +

(1)

B
(21)

a
bcδ1a +

(2)

B
(21)

a
bc

·
∂2a,

where

(0)

R
(00)

a
bc = 0,

(1)

R
(00)

a
bc = δ[cN

1

a
b],

(2)

R
(00)

a
bc = δ[cN

2

a
b] +N

1

a
f

(1)

R
(00)

f
bc,

(0)

B
(10)

a
bc = 0,

(1)

B
(10)

a
bc = δ1cN

1

a
b,

(2)

B
(10)

a
bc = δ1cN

2

a
b − δbN

1

a
c +N

1

a
f

(1)

B
(10)

f
bc,

(0)

B
(10)

a
bc = 0,

(1)

B
(20)

a
bc =

·
∂2cN

1

a
b,

(2)

B
(20)

a
bc =

·
∂2cN

2

a
b +N

1

a
f

(1)

B
(20)

f
bc,

(0)

R
(11)

a
bc = 0,

(1)

R
(11)

a
bc = 0,

(2)

R
(11)

a
bc = δ1[cN

a
b]

1

,

(0)

B
(21)

a
bc = 0,

(1)

B
(21)

a
bc = 0,

(2)

B
(21)

a
bc =

(1)

B
(20)

a
bc.

Also, we can establish (see [2, pg.19, Prop.7.2]):

Proposition 1.2. The exterior differentials of the 1-forms dxa, δy(1)a, δy(2)a,
which determine the adapted cobasis (2.5), are given by

d(dxa) = 0,

d(δy(1)a) =

{
1
2

(1)

R
(00)

a
bcdx

c +
(1)

B
(10)

a
bcδy

(1)c +
(1)

B
(20)

a
bcδy

(2)c

}
∧ dxb,

d(δy(2)a) =

{
1
2

(2)

R
(00)

a
bcdx

c +
(2)

B
(10)

a
bcδy

(1)c +
(2)

B
(20)

a
bcδy

(2)c

}
∧ dxb+

+

{
1
2

(2)

R
(11)

a
bcδy

(1)c +
(2)

B
(21)

a
bcδy

(2)c

}
∧ δy(1)b.

3 N-linear connections on the manifold T 2M

Definition 2.1. A linear connection D on T 2M is called an N -linear connection if it
preserves by parallelism the horizontal and vertical distributions N0, N1 and V2 on
T 2M.
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Let us notice that an N -linear connection, in the sense of the above definition, is
not necessarly compatible to the 2-tangent structure J, (2.2). An N -linear connection
which is also compatible to J is called, [3], a JN−linear connection.

An N -linear connection is locally given by its nine sets of coefficients

DΓ (N) =

(
L

(00)

a
bc, L

(10)

a
bc, L

(20)

a
bc, C

(01)

a
bc, C

(11)

a
bc, C

(21)

a
bc, C

(02)

a
bc, C

(12)

a
bc, C

(22)

a
bc

)
,

where 
Dδcδb = L

(00)

a
bcδa, Dδcδ1b = L

(10)

a
bc, Dδcδ2b = L

(20)

a
bcδ2b,

Dδ1cδb = C
(01)

a
bcδa, Dδ1cδ1b = C

(11)

a
bcδ1a, Dδ1cδ2b = C

(21)

a
bcδ2a,

Dδ2cδb = C
(02)

a
bcδa, Dδ2cδ1b = C

(12)

a
bcδ1a, Dδ2cδ2b = C

(22)

a
bcδ2a.

In the particular case when DΓ (N) is J−compatible, we have

(3.1)

L
(00)

a
bc = L

(10)

a
bc = L

(20)

a
bc = : La

bc,

C
(01)

a
bc = C

(11)

a
bc = C

(21)

a
bc = : C

(1)

a
bc,

C
(02)

a
bc = C

(12)

a
bc = C

(22)

a
bc = : C

(2)

a
bc.

Let h, v1, v2,be the projectors defined by the distributions N0, N1, V2. If X ∈ χ
(
T 2M

)
we denote XH = hX, XV1 = v1X, X

V2 = v2X and
D
0

H
XY = DXHY H , D

0

V1
XY = DXV1Y

H , D
0

V2
XY = DXV2Y

H ,

D
β

H
XY = DXHY Vβ , D

β

V1
XY = DXV1Y

Vβ , D
β

V2
XY = DXV2Y

Vβ ,

(β = 1, 2) .

D
α

H , D
α

V1 , D
α

V2 are called, respectively, hα−,v1α− and v2α−covariant derivatives,

(α = 0, 1, 2) .
In local coordinates, for a d-tensor field

T = T a1...ar

b1...bs
(x, y(1), y(2))δa1

⊗ ...⊗ ∂̇2ar
⊗ dxb1 ⊗ ...⊗ δy(2)bs ,

we have
D
α

H
XT = X(0)dT a1..ar

b1...bs|ad
δa1

⊗ ...⊗ δ2ar
⊗ dxb1 ⊗ ...⊗ δy(2)bs ,

where

T a1...ar

b1...bs |αd = δdT
a1...ar

b1...bs
+ L

(α0)

a1

cdT
ca2...ar

b1...bs
+ ...++ L

(α0)

ar

cdT
a1...ar−1c
b1...bs

−

− L
(α0)

c
b1d
T a1...ar

cb2...bs
− ...− L

(α0)

c
bsd
T a1...ar

b1...bs−1c
,

and

D
α

Vβ

X T = X(β)dT a1...ar

b1...bs

(β)

| αdδa1 ⊗ ...⊗ ∂̇2ar ⊗ dxb1 ⊗ ...⊗ δy(2)bs ,

where
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T a1...ar

b1...bs

(β)

| αd = δβdT
a1...ar

b1...bs
+ C

(αβ)

a1

cdT
ca2...ar

b1...bs
+ ...+

+ C
(αβ)

ar

cdT
a1...ar−1c
b1...bs

− C
(αβ)

c
b1d
T a1...ar

cb2...bs
− ...− C

(αβ)

c
bsd
T a1...ar

b1...bs−1c
,

(α = 0, 1, 2;β = 1, 2) .

4 The d-tensors of torsion and curvature

In order to determine the local expressions of d-tensors of torsion and curvature of an
N−linear connection DΓ(N), we use the covariant derivatives in the adapted basis.

The torsion T of an N−linear connection D is expressed, as usually, by

T(X,Y ) = DXY −DYX − [X,Y ],∀X,Y ∈ X (T 2M).

It can be evaluated for the pairs of d-vector field δa, δ1a, δ2a. We obtain:

Theorem 3.1. The d-tensors of torsion of an N -linear connection D with coeffi-
cients DΓ (N) = ( L

(α0)

a
bc, C

(α1)

a
bc, C

(α2)

a
bc), (α = 0, 1, 2) , in the adapted basis (2.4), have

the following expression:

hT (δc, δb) = T
(00)

a
bcδa, vγT (δc, δb) = T

(0γ)

a
bcδγa,

hT (δβc, δb) = P
(β0)

a
bcδa, vγT (δβc, δb) = P

(βγ)

a
bcδγa,

vγT
(
∂̇2c, δ1b

)
= Q

(2γ)

a
bcδγa,

vγT (δβc, δγb) = S
(βγ)

a
bcδγa,

(β, γ = 1, 2, δ2a = ∂̇2a),

where

T
(00)

a
bc = L

(00)

a
bc − L

(00)

a
cb, T

(01)

a
bc =

(1)

R
(00)

a
bc, T

(02)

a
bc =

(2)

R
(00)

a
bc,

P
(10)

a
bc = C

(01)

a
bc, P

(11)

a
bc =

(1)

B
(10)

a
bc − L

(10)

a
cb, P

(12)

a
bc =

(2)

B
(10)

a
bc,

P
(20)

a
bc = C

(02)

a
bc, P

(21)

a
bc =

(1)

B
(20)

a
bc, P

(22)

a
bc =

(2)

B
(20)

a
bc − L

(20)

a
cb,

S
(11)

a
bc = C

(11)

a
bc − C

(11)

a
cb, S

(12)

a
bc =

(2)

R
(11)

a
bc,

Q
(21)

a
bc = C

(12)

a
bc, Q

(22)

a
bc =

(1)

B
(20)

a
bc − C

(21)

a
cb,

S
(21)

a
bc = 0 , S

(22)

a
bc = C

(22)

a
bc − C

(22)

a
cb.

Analogously, the curvature R of D is given by

R(X,Y )Z = (DXDY −DYDX)Z −D[X,Y ]Z,∀X,Y, Z ∈ X (T 2M).

If X,Y ∈ {δa, δ1a, δ2a} we denote R(X,Y ) by
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R (δb, δc) = R
(0)

bc, R (δβb, δc) = P
(β)

bc,

R
(
∂̇2b, δ1c

)
= Q

(2)
bc, R (δβb, δβc) = S

(β)
bc,

(
β = 1, 2, δ2a = ∂̇2a

)
,

and the action of R (X,Y ) on Z ∈ {δa, δ1a, δ2a} we denote by

(4.1)

R
(0)

dcδαb = R
(0α)

a
b cdδαa, P

(β)
dcδαb = P

(βα)

a
b cdδαa,

Q
(2)

dcδαb = Q
(2α)

a
b cdδαa, S

(β)
dcδαb = S

(βα)

a
b cdδαa.

By direct computation, taking into account the Lie brackets (2.6), we get

Theorem 3.2. An N -linear connection D with the coefficients

DΓ (N) = ( L
(α0)

a
bc, C

(α1)

a
bc, C

(α2)

a
bc), (α = 0, 1, 2) ,

has the d-tensors of curvature (4.1) expressed by the following formulae:

R
(0α)

a
b cd = δd L

(α0)

a
bc − δc L

(α0)

a
bd + L

(α0)

f
bc L

(α0)

a
fd − L

(α0)

f
bd L

(α0)

a
fc + C

(α1)

a
bf

(1)

R
(00)

f
cd+

+ C
(α2)

a
bf

(2)

R
(00)

f
cd,

P
(βα)

a
b cd = δβd L

(α0)

a
bc − C

(αβ)

a
bd|αc

+ C
(α1)

a
bf

α
P

(β1)

f
cd + C

(α2)

a
bf

α
P

(β2)

f
cd,

Q
(2α)

a
b cd = ∂̇2d C

(α1)

a
bc − δ1c C

(α2)

a
bd + C

(α1)

f
bc C

(α2)

a
fd − C

(α2)

f
bd C

(α1)

a
fc + C

(α2)

a
bf P

(21)

f
cd,

S
(βα)

a
b cd = δβd C

(αβ)

a
bc − δβc C

(αβ)

a
bd + C

(αβ)

f
bc C

(αβ)

a
fd − C

(αβ)

f
bd C

(αβ)

a
fc + C

(α2)

a
bf

(2)

R
(β1)

f
cd,(

α = 0, 1, 2;β = 1, 2,
α
P

(12)

a
bc = P

(12)

a
bc,

α
P

(21)

a
bc = P

(21)

a
bc,

(2)

R
(20)

a
bc = 0,

y(0) = x, δ2a = ∂̇2a
)
.

5 Structure equations of an N-linear connection on
T 2M

For an N−linear connection D, with the coefficients DΓ (N) = ( L
(α0)

a
bc, C

(α1)

a
bc, C

(α2)

a
bc),

(α = 0, 1, 2), in the adapted basis
(
δa, δ1a, ∂̇2a

)
we can prove:

Lemma 10.1.
1◦. Each of following geometrical object fields

d (dxa)− dxb ∧ ω
(α)

a
b, d

(
δy(β)a

)
− δy(β)b ∧ ω

(α)

a
b, (α = 0, 1, 2, β = 1, 2) ,

are d-vector fields.
2◦. The geometrical object fields

d ω
(α)

a
b − ω

(α)

c
b ∧ ω

(α)

a
c, (α = 0, 1, 2) ,
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are d-tensor fields, with respect to indices a and b.

Using the previous Lemma we can prove, by a straightforward calculus, a funda-
mental result in the geometry of T 2M.

Theorem 10.1. For any N-linear connection D, with the coefficients DΓ (N) =(
L

(α0)

a
bc, C

(α1)

a
bc, C

(α2)

a
bc

)
, (α = 0, 1, 2) , the following structure equations hold good:

d (dxa)− dxb ∧ ω
(α)

a
b = −

(0)

Ω
(α)

a,

d
(
δy(1)a

)
− δy(1)b ∧ ω

(α)

a
b = −

(1)

Ω
(α)

a,

d
(
δy(2)a

)
− δy(2)b ∧ ω

(α)

a
b = −

(2)

Ω
(α)

a, (α = 0, 1, 2) ,

and

d ω
(α)

a
b − ω

(α)

f
b ∧ ω

(α)

a
f = −Ω

(α)

a
b, (α = 0, 1, 2) ,

where
(0)

Ω
(α)

a,
(1)

Ω
(α)

a,
(2)

Ω
(α)

a, (α = 0, 1, 2) are the 2-forms of torsion

(0)

Ω
(α)

a = 1
2

α

T
(0)

a
bcdx

b ∧ dxc+

+ C
(α1)

a
bcdx

b ∧ δy(1)c + C
(α2)

a
bcdx

b ∧ δy(2)c,

(1)

Ω
(α)

a = 1
2 R(01)

a
bcdx

b ∧ dxc+

+
α

P
(11)

a
bcdx

b ∧ δy(1)c + P
(21)

a
bcdx

b ∧ δy(2)c+

+ 1
2

α

S
(1)

a
bcδy

(1)b ∧ δy(1)c + C
(α2)

a
bcδy

(1)b ∧ δy(2)c,

(2)

Ω
(α)

a = 1
2 R(02)

a
bcdx

b ∧ dxc+

+ P
(12)

a
bcdx

b ∧ δy(1)c +
α

P
(22)

a
bcdx

b ∧ δy(2)c+

+ 1
2 R(12)

a
bcδy

(1)b ∧ δy(1)c +
α

Q
(22)

a
bcδy

(1)b ∧ δy(2)c + 1
2

α

S
(2)

a
bcδy

(2)b ∧ δy(2)c,

and where Ω
(α)

a
b, (α = 0, 1, 2),are the 2-forms of curvature

Ω
(α)

a
b = 1

2 R
(0α)

a
b cddx

c ∧ dxd+

+ P
(1α)

a
b cddx

c ∧ δy(1)d + P
(2α)

a
b cddx

c ∧ δy(2)d+

+ 1
2 S
(1α)

a
b cdδy

(1)c ∧ δy(1)d + Q
(2α)

a
b cdδy

(1)c ∧ δy(2)d + 1
2 S
(2α)

a
b cdδy

(2)c ∧ δy(2)d.



26 Gheorghe Atanasiu

Remarks 1◦. The theorem 10.1 is extremly important in a theory of submanifolds
embedded in the total space T 2M of the bundle

(
T 2M,π2,M

)
.

2◦. For any JN−linear connection JD with coefficients JDΓ (N) = (La
bc, C

(1)

a
bc,

C
(2)

a
bc) we have

(0)

Ω
(0)

a =
(0)

Ω
(1)

a =
(0)

Ω
(2)

a =
(0)

Ω a,
(1)

Ω
(0)

a =
(1)

Ω
(1)

a =
(1)

Ω
(2)

a =
(1)

Ω a,

(2)

Ω
(0)

a =
(2)

Ω
(1)

a =
(2)

Ω
(2)

a =
(2)

Ω a, Ω
(0)

a
b = Ω

(1)

a
b = Ω

(2)

a
b = Ωa

b.

Then, by the relations (3.1) the structure equations for the JN−linear connection are
easy to write, [1].
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