Structure equations of second order

Gheorghe Atanasiu

Abstract

We write the structure equations on the 2 -jet (or 2 -tangent) bundle of a differentiable manifold endowed with an arbitrary nonlinear connection N and also an arbitrary linear connection D, with the only restriction that D should preserve the distributions generated by N.

Mathematics Subject Classification: 53B05. 53B15, 53B40.
Key words: structure equations, jet bundle, nonlinear connection, linear connection.

1 Introduction

Let N be a nonlinear connection on the total space $T^{2} M$ of the $2-$ tangent bundle ($\left.T^{2} M, \pi, M\right),(D e f .1 .1$.$) . Then, there exists an unique decomposition of tangent space$ of $T^{2} M$ at the point $u=\left(x, y^{(1)}, y^{(2)}\right) \in T^{2} M$ in the following direct sum of the linear vector space:

$$
T_{u} T^{2} M=N_{0}(u) \oplus N_{1}(u) \oplus V_{2}(u), \quad \forall u \in T^{2} M .
$$

An \mathbf{N} - linear connection $D \Gamma(N)$ on $T^{2} M$ is a linear connection on $T^{2} M$, which preserves by parallelism the horizontal and vertical distributions N_{0}, N_{1} and V_{2}. It has nine sets of coefficients. Consequently, we obtain for its torsion fourteen sets of components and for its curvature eighteen sets of components.

Moreover, on $T^{2} M$ there exists a natural 2-tangent structure J given by

$$
J\left(\frac{\partial}{\partial x^{a}}\right)=\frac{\partial}{\partial y^{(1) a}}, \quad J\left(\frac{\partial}{\partial y^{(1) a}}\right)=\frac{\partial}{\partial y^{(2) a}}, \quad J\left(\frac{\partial}{\partial y^{(2) a}}\right)=0 .
$$

Hence, particularly, an N-linear connection on $T^{2} M$ is called $\mathbf{J N}$ - linear connection if if is absolutely parallel with respect to $J: D_{X} J=0, \forall X \in \chi\left(T^{2} M\right)$.

A $J D \Gamma(N)$-linear connection has only three sets of coefficients, its torsion has thirteen sets of components and its curvature has six sets of components. All these correspond to Miron-Atanasiu's theory on $T^{2} M=O s c^{2} M$ (2-osculator bundle) (see the joint papers [8] - [14]).

In this paper we get the structure equations of an N-linear connection on $T^{2} M$ (Theorem 10.1) generalizing the same problem solved for a $J N$ - linear connection at the First Conference of Balkan Society of Geometers, [1].

Of course, for the physical applications to electrodynamics, elasticity, quantum field theories, etc., to work with an N-linear connection on $T^{2} M$ is an advantage and it is not difficult (see [2], [3],[5] and, more generally, [4],[6],[7]).

2 Tangent bundle of the second order $\left(T^{2} M, \pi^{2}, M\right)$

Let M be a real differentiable C^{∞}-manifold of dimension n. A point of M will be denoted by x and its local coordinate system by $(U, \varphi), \varphi(x)=\left(x^{a}\right)$. The indices a, b, \ldots run over set $\{1,2, \ldots, n\}$ and the Einstein convention of summation will be adopted all over this work.

Let $J_{0, x}(\mathbb{R}, M)$ be the set of germs of mappings $f: \mathbb{R} \rightarrow M$ with $f(0)=x$. We say that $f, g \in J_{0, x}(\mathbb{R}, M)$ are equivalent up to order 2 if there exists a chart (U, φ) around x such that

$$
\begin{equation*}
d_{0}^{\beta}(\varphi \circ f)=d_{0}^{\beta}(\varphi \circ g),(\beta=1,2) \tag{2.1}
\end{equation*}
$$

where d denotes the Frechet differentiation. It can be seen if (2.1) holds for a chart (U, φ), it holds for any other chart (V, ψ) around x.

We denote by $j_{0, x}^{2} f$ the equivalence class of f and set $J_{0, x}^{2}=\left\{j_{0, x}^{2} f, \forall f \in J_{0, x}\right.$ $(\mathbb{R}, M)\}$. Then we put

$$
T^{2} M=U_{x \in M} J_{0, x}^{2}
$$

and define $\pi^{2}: T^{2} M \rightarrow M$ by $\pi^{2}\left(J_{0, x}^{2}\right)=x$.
Definition 1.1. The set $\left(T^{2} M, \pi^{2}, M\right)$ will be called the tangent bundle of order two of the manifold M.

For a local chart (U, φ) in $x \in M$ its lifted local chart in $u \in\left(\pi^{2}\right)^{-1}(x)$ will be denoted by $\left(\left(\pi_{2}\right)^{-1}(U), \Phi\right)$, with $\Phi(u)=\left(u^{\alpha}\right),\left(u^{\alpha}\right)=\left(x^{a}, y^{(1) a}, y^{(2) a}\right) \subset$ $\mathbb{R}^{3 n},(\alpha=0,1,2)$. Thus a differentiable atlas \mathcal{A}_{M} of the differentiable structure of the manifold M determines a differentiable atlas $\mathcal{A}_{T^{2} M}$ on $T^{2} M$ and therefore the triple $\left(T^{2} M, \pi^{2}, M\right)$, is a differentiable manifold.

By (2.1), a transformation of local coordinates $u=\left(u^{\alpha}\right)=\left(x^{a}, y^{(1) a}, y^{(2) a}\right) \rightarrow$ $\widetilde{u}=\left(\widetilde{u}^{\alpha}\right)=\left(\widetilde{x}^{a}, \widetilde{y}^{(1) a}, \widetilde{y}^{(2) a}\right),(\alpha=0,1,2)$,on the manifold $T^{2} M$ is given by

$$
\left\{\begin{aligned}
\widetilde{x}^{a} & =\widetilde{x}^{a}\left(x^{1}, \ldots, x^{n}\right), \operatorname{det}\left(\frac{\partial \widetilde{x}^{a}}{\partial x^{b}}\right) \neq 0 \\
\widetilde{y}^{(1) a} & =\frac{\partial \widetilde{x}^{a}}{\partial x^{b}} y^{(1) b} \\
2 \widetilde{y}^{(1) a} & =\frac{\partial \widetilde{y}^{(1) a}}{\partial x^{b}} y^{(1) b}+2 \frac{\partial \widetilde{y}^{(1) a}}{\partial y^{(1) b}} y^{(2) b}
\end{aligned}\right.
$$

One can see that $T^{2} M$ is of dimension $3 n$.
Moreover, if M is a paracompact manifold, then $T^{2} M$ is paracompact, too.
The null section $0: M \rightarrow T^{2} M$ of the projection π^{2} is defined by $0:(x) \in M \rightarrow$ $(x, 0,0) \in T^{2} M$ we denote by $\widetilde{T^{2} M}=T^{2} M \backslash\{0\}$.

Let \mathbb{J} be the natural 2 -tangent structure on $T^{2} M$:

$$
\begin{equation*}
\mathbb{J}\left(\frac{\partial}{\partial x^{a}}\right)=\frac{\partial}{\partial y^{(1) a}}, \quad \mathbb{J}\left(\frac{\partial}{\partial y^{(1) a}}\right)=\frac{\partial}{\partial y^{(2) a}}, \quad \mathbb{J}\left(\frac{\partial}{\partial y^{(2) a}}\right)=0 . \tag{2.2}
\end{equation*}
$$

where $\left(\left.\frac{\partial}{\partial x^{a}}\right|_{u},\left.\frac{\partial}{\partial y^{(1) a}}\right|_{u},\left.\frac{\partial}{\partial y^{(2) a}}\right|_{u}\right)$ is the natural basis of the tangent space $T T^{2} M$ at the point $u \in T^{2} M$.

If N is a nonlinear connection on $T^{2} M$, then $N_{0}=N, N_{1}=\mathbb{J}\left(N_{0}\right)$ are two distributions geometrically defined on $T^{2} M$, everyone of local dimension n. Let us consider the distribution V_{2} on $T^{2} M$ locally generated by the vector fields $\left\{\frac{\partial}{\partial y^{(2) a}}\right\}$. Consequently, the tangent bundle to $T^{2} M$ at a point $u \in T^{2} M$ is given by a direct sum of the vector space:

$$
\begin{equation*}
T_{u} T^{2} M=N_{0}(u) \oplus N_{1}(u) \oplus V_{2}(u), \quad \forall u \in T^{2} M \tag{2.3}
\end{equation*}
$$

We consider $\left\{\delta_{a}, \delta_{1 a}, \delta_{2 a}\right\}$ an adapted basis to the decomposition (2.3) and its dual basis denoted by $\left\{d x^{a}, \delta y^{(1) a}, \delta y^{(2) a}\right\}$, where

$$
\begin{align*}
& \delta_{a}=\frac{\delta}{\delta x^{a}}=\frac{\partial}{\partial x^{a}}-\underset{1}{N^{b}}{ }_{a} \frac{\partial}{\partial y^{(1) b}}-\underset{2}{N_{2}^{b}}{ }_{a} \frac{\partial}{\partial y^{(2) b}} \\
& \delta_{1 a}=\frac{\delta}{\delta y^{(1) a}}=\frac{\partial}{\partial y^{(1) b}}-{\underset{1}{N}}^{N_{a}} \frac{\partial}{\partial y^{(1) b}} \tag{2.4}\\
& \delta_{2 a}=\frac{\partial}{\partial y^{(2) a}}
\end{align*}
$$

respectively

$$
\begin{align*}
\delta y^{(1) a} & =d y^{(1) a}+N_{1}{ }^{a} d x^{b}, \\
\delta y^{(2) a} & =d y^{(2) a}+N_{1}^{N}{ }_{b}^{a} d y^{(1) b}+\left(N_{2}^{a}{ }^{(2}+N_{1}{ }_{c}{ }_{1} N_{1}^{c}{ }^{b}\right) d x^{b} . \tag{2.5}
\end{align*}
$$

Then, a vector field $X \in \chi\left(T^{2} M\right)$ is represented in the local adapted basis as

$$
X=X^{(0) a} \delta_{a}+X^{(1) a} \delta_{1 a}+X^{(2) a} \delta_{2 a}
$$

with the three right terms, called d-vector fields, belonging to the distributions N_{0}, N_{1} and V_{2}, respectively.

A 1-form $\omega \in \mathcal{X}^{*}\left(T^{2} M\right)$ will be decomposed with three terms, called d-1-forms, as

$$
\omega=\underset{(0)}{\omega_{a}} d x^{a}+\underset{(1)}{\omega_{a}} \delta y^{(1) a}+\underset{(2)}{\omega_{a}} \delta y^{(2) a}
$$

Similarly, a tensor field $T \in \mathcal{T}_{s}^{r}\left(T^{2} M\right)$ can be split with respect to (2.3) into components, which will be called d-tensor fields. Hence, the set

$$
\left\{1, \delta_{a}, \delta_{1 a}, \dot{\partial}_{2 a}, d x^{a}, \delta y^{(1) a}, \delta y^{(2) a}\right\}
$$

generates the algebra of the d-tensor fields over the ring of functions $\mathcal{F}\left(T^{2} M\right)$.

By a direct calculus we obtain
Proposition 1.1. The Lie brackets of the vector fields of the adapted basis are given by

$$
\begin{align*}
& {\left[\delta_{b}, \delta_{c}\right]=\underset{(00)}{\stackrel{(0)}{R}}{ }^{a}{ }_{c} \delta_{a}+\underset{(00)}{\stackrel{(1)}{R}}{ }_{b}{ }_{b c} \delta_{1 a}+\underset{(00)}{\stackrel{(2)}{R}}{ }^{a} b c \dot{\partial}_{2 a},} \\
& {\left[\delta_{b}, \delta_{1 c}\right]=\stackrel{(0)}{\underset{(10)}{B}}{ }^{a} b c \delta_{a}+\stackrel{(1)}{\underset{(10)}{B}}{ }^{a} b c \delta_{1 a}+\underset{(10)}{\stackrel{(2)}{B}}{ }^{a}{ }_{b c} \dot{\partial}_{2 a},} \\
& {\left[\delta_{b}, \dot{\partial}_{2 c}\right]=\stackrel{(0)}{\underset{(20)}{B}{ }^{a} b c} \delta_{a}+\underset{(20)}{\stackrel{(1)}{B}}{ }^{a}{ }_{b c} \delta_{1 a}+\underset{(20)}{\stackrel{(2)}{B}{ }_{b}{ }_{b c} \dot{\partial}_{2 a},}} \tag{2.6}
\end{align*}
$$

where

Also, we can establish (see [2, pg.19, Prop.7.2]):
Proposition 1.2. The exterior differentials of the 1 -forms $d x^{a}, \delta y^{(1) a}, \delta y^{(2) a}$, which determine the adapted cobasis (2.5), are given by

$$
\begin{aligned}
& d\left(d x^{a}\right)=0,
\end{aligned}
$$

$$
\begin{aligned}
& +\left\{\frac{1}{2} \underset{{ }_{(11)}^{R}}{\stackrel{(2)}{R} b c} \delta y^{(1) c}+\underset{(21)}{\stackrel{(2)}{B}}{ }^{a} \delta c y^{(2) c}\right\} \wedge \delta y^{(1) b} .
\end{aligned}
$$

3 N -linear connections on the manifold $T^{2} M$

Definition 2.1. A linear connection D on $T^{2} M$ is called an N-linear connection if it preserves by parallelism the horizontal and vertical distributions N_{0}, N_{1} and V_{2} on $T^{2} M$.

Let us notice that an N-linear connection, in the sense of the above definition, is not necessarly compatible to the 2-tangent structure \mathbb{J}, (2.2). An N-linear connection which is also compatible to \mathbb{J} is called, [3], a $\mathbb{J} N$-linear connection.

An N-linear connection is locally given by its nine sets of coefficients
where

In the particular case when $D \Gamma(N)$ is \mathbb{J}-compatible, we have

$$
\begin{align*}
& \underset{(01)}{C^{a}{ }_{b c}}=\underset{(11)}{C}{ }^{a}{ }_{b c}=\underset{(21)}{C}{ }_{b c}^{a}=: \underset{(1)}{C}{ }^{a}{ }_{b c} \text {, } \tag{3.1}
\end{align*}
$$

Let h, v_{1}, v_{2}, be the projectors defined by the distributions N_{0}, N_{1}, V_{2}. If $X \in \chi\left(T^{2} M\right)$ we denote $X^{H}=h X, X^{V_{1}}=v_{1} X, X^{V_{2}}=v_{2} X$ and

$$
\left\{\begin{array}{r}
D_{0}^{H} Y=D_{X^{H}} Y^{H}, D_{0}^{V_{1}} Y=D_{X^{V_{1}}} Y^{H}, D_{0}^{V_{2}} Y=D_{X^{V_{2}}} Y^{H} \\
D_{\beta}^{H} Y=D_{X^{H}} Y^{V_{\beta}}, D_{\beta}^{V_{1}} Y=D_{X^{V_{1}}}^{V_{1}} Y^{V_{\beta}}, D_{\beta}^{V_{2}} Y=D_{X^{V_{2}}}^{V_{\beta}}, \\
(\beta=1,2) .
\end{array}\right.
$$

${ }_{\alpha}^{D^{H}},{\underset{\alpha}{D}}_{V_{1}}^{V_{\alpha}}{\underset{\alpha}{V_{2}}}^{\text {are called, respectively, }} \mathbf{h}_{\alpha}-, \mathbf{v}_{1 \alpha}-$ and $\mathbf{v}_{2 \alpha}$-covariant derivatives, ($\alpha=0,1,2$) .

In local coordinates, for a d-tensor field

$$
T=T_{b_{1} \ldots b_{s}}^{a_{1} \ldots a_{r}}\left(x, y^{(1)}, y^{(2)}\right) \delta_{a_{1}} \otimes \ldots \otimes \dot{\partial}_{2 a_{r}} \otimes d x^{b_{1}} \otimes \ldots \otimes \delta y^{(2) b_{s}},
$$

we have

$$
{ }_{\alpha}^{D_{X}^{H}} T=X^{(0) d} T_{\left.b_{1} \ldots b_{s}\right|_{a d}}^{a_{1} \ldots a_{r}} \delta_{a_{1}} \otimes \ldots \otimes \delta_{2 a_{r}} \otimes d x^{b_{1}} \otimes \ldots \otimes \delta y^{(2) b_{s}}
$$

where

$$
\begin{aligned}
& T_{b_{1} \ldots b_{s} \mid \alpha d}^{a_{1} \ldots a_{r}}=\delta_{d} T_{b_{1} \ldots b_{s}}^{a_{1} \ldots a_{r}}+\underset{(\alpha 0)}{L^{a_{1}}{ }^{a_{1}} T_{b_{1} \ldots b_{s}}^{c a_{2} \ldots a_{r}}+\ldots++\underset{(\alpha 0)}{L^{a_{r}}{ }_{c d} T_{b_{1} \ldots b_{s}}^{a_{1} \ldots a_{r-1} c}-}} \begin{array}{l}
-{ }_{(\alpha 0)}{ }^{c} b_{1} d T_{c b_{2} \ldots b_{s}}^{a_{1} \ldots a_{r}}-\ldots-\underset{\left(\alpha 0{ }^{c} b_{s} d\right.}{ } T_{b_{1} \ldots b_{s-1} c}^{a_{1} \ldots a_{r}},
\end{array} .
\end{aligned}
$$

and

$$
{\underset{\alpha}{D}}_{D_{X}^{V_{\beta}}}^{V^{(\beta) d}} T_{b_{1} \ldots b_{s}}^{a_{1} \ldots a_{r}} \stackrel{(\beta)}{\mid}{ }_{\alpha d} \delta_{a_{1}} \otimes \ldots \otimes \dot{\partial}_{2 a_{r}} \otimes d x^{b_{1}} \otimes \ldots \otimes \delta y^{(2) b_{s}}
$$

where

$$
\begin{gathered}
T_{b_{1} \ldots b_{s}}^{a_{1} \ldots a_{r}}{ }^{(\beta)}{ }_{\alpha d}=\delta_{\beta d} T_{b_{1} \ldots b_{s}}^{a_{1} \ldots a_{r}}+\underset{(\alpha \beta)}{C}{ }^{a_{1}}{ }_{c d} T_{b_{1} \ldots b_{s}}^{c a_{2} \ldots a_{r}}+\ldots+ \\
+\underset{(\alpha \beta)}{C^{a_{r}}{ }^{c} T^{a_{1} \ldots b_{s}} T_{b_{1} \ldots a_{r-1} c}^{a_{1}}-\underset{(\alpha \beta)}{C{ }^{c}{ }^{b_{1} d} T_{c b_{2} \ldots b_{s}}^{a_{1}}-\ldots-\underset{(\alpha \beta)}{C}{ }^{c} b_{s} d} T_{b_{1} \ldots b_{s-1} c}^{a_{1} \ldots a_{r}},} \\
(\alpha=0,1,2 ; \beta=1,2) .
\end{gathered}
$$

4 The d-tensors of torsion and curvature

In order to determine the local expressions of d-tensors of torsion and curvature of an N-linear connection $D \Gamma(N)$, we use the covariant derivatives in the adapted basis.

The torsion \mathbb{T} of an N-linear connection D is expressed, as usually, by

$$
\mathbb{T}(X, Y)=D_{X} Y-D_{Y} X-[X, Y], \forall X, Y \in \mathcal{X}\left(T^{2} M\right)
$$

It can be evaluated for the pairs of d-vector field $\delta_{a}, \delta_{1 a}, \delta_{2 a}$. We obtain:
Theorem 3.1. The d-tensors of torsion of an N-linear connection D with coefficients $D \Gamma(N)=\left(\underset{(\alpha 0)}{L^{b}{ }^{a}, ~} \underset{(\alpha 1)}{C}{ }^{a}{ }^{b c},{ }_{(\alpha 2)}^{C}{ }^{a}\right),(\alpha=0,1,2)$, in the adapted basis (2.4), have the following expression:

$$
\begin{aligned}
h \mathbb{T}\left(\delta_{c}, \delta_{b}\right)=\underset{(00)}{T}{ }^{a}{ }_{b c} \delta_{a}, & v_{\gamma} \mathbb{T}\left(\delta_{c}, \delta_{b}\right)=\underset{(0 \gamma)}{T}{ }^{a}{ }_{b c} \delta_{\gamma a}, \\
h \mathbb{T}\left(\delta_{\beta c}, \delta_{b}\right)=\underset{(\beta 0)}{P}{ }^{a}{ }^{b} \delta_{a}, & v_{\gamma} \mathbb{T}\left(\delta_{\beta c}, \delta_{b}\right)=\underset{(\beta \gamma)}{P}{ }^{a}{ }^{b} \delta_{\gamma a}, \\
& v_{\gamma} \mathbb{T}\left(\dot{\partial}_{2 c}, \delta_{1 b}\right)=\underset{(2 \gamma)}{Q}{ }^{a}{ }_{b c} \delta_{\gamma a}, \\
& v_{\gamma} \mathbb{T}\left(\delta_{\beta c}, \delta_{\gamma b}\right)=\underset{(\beta \gamma)}{S^{a}}{ }_{b c} \delta_{\gamma a}, \\
& \left(\beta, \gamma=1,2, \delta_{2 a}=\dot{\partial}_{2 a}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
& \underset{(21)}{S}{ }^{a}{ }_{b c}=0 \quad, \underset{(22)}{S}{ }^{a}{ }_{b c}=\underset{(22)}{C}{ }^{a}{ }_{b c}-\underset{(22)}{C}{ }^{a}{ }^{c} .
\end{aligned}
$$

Analogously, the curvature \mathbb{R} of D is given by

$$
\mathbb{R}(X, Y) Z=\left(D_{X} D_{Y}-D_{Y} D_{X}\right) Z-D_{[X, Y]} Z, \forall X, Y, Z \in \mathcal{X}\left(T^{2} M\right)
$$

If $X, Y \in\left\{\delta_{a}, \delta_{1 a}, \delta_{2 a}\right\}$ we denote $\mathbb{R}(X, Y)$ by

$$
\begin{array}{ll}
\mathbb{R}\left(\delta_{b}, \delta_{c}\right)=\underset{(0)}{\mathbb{R}} b c, & \mathbb{R}\left(\delta_{\beta b}, \delta_{c}\right)=\underset{(\beta)}{\mathbb{P}} b c \\
\mathbb{R}\left(\dot{\partial}_{2 b}, \delta_{1 c}\right) \underset{(2)}{\underset{\mathbb{Q}}{b c}}, & \mathbb{R}\left(\delta_{\beta b}, \delta_{\beta c}\right)=\underset{(\beta)}{\mathbb{S}} b c, \quad\left(\beta=1,2, \delta_{2 a}=\dot{\partial}_{2 a}\right),
\end{array}
$$

and the action of $\mathbb{R}(X, Y)$ on $Z \in\left\{\delta_{a}, \delta_{1 a}, \delta_{2 a}\right\}$ we denote by

By direct computation, taking into account the Lie brackets (2.6), we get
Theorem 3.2. An N-linear connection D with the coefficients

$$
D \Gamma(N)=\left(\underset{(\alpha 0)}{L}{ }^{a}{ }^{b}, \underset{(\alpha 1)}{C}{ }^{a}{ }^{a}, \underset{(\alpha 2)}{C}{ }^{a}{ }^{b}\right),(\alpha=0,1,2),
$$

has the d-tensors of curvature (4.1) expressed by the following formulae:

$$
\begin{aligned}
& +\underset{(\alpha 2)}{C}{ }^{a} \underset{(00)}{(2)} \underset{(0)}{R},
\end{aligned}
$$

$$
\begin{aligned}
& \left.y^{(0)}=x, \delta_{2 a}=\dot{\partial}_{2 a}\right) .
\end{aligned}
$$

5 Structure equations of an N-linear connection on $T^{2} M$

For an N-linear connection D, with the coefficients $D \Gamma(N)=\left(\underset{(\alpha 0)}{L}{ }^{a} b_{c}, \underset{(\alpha 1)}{C b}{ }^{a}, \underset{(\alpha 2)}{C b}{ }^{a}\right)$, $(\alpha=0,1,2)$, in the adapted basis $\left(\delta_{a}, \delta_{1 a}, \dot{\partial}_{2 a}\right)$ we can prove:

Lemma 10.1.
1°. Each of following geometrical object fields

$$
d\left(d x^{a}\right)-d x^{b} \wedge \underset{(\alpha)}{\omega^{a}}, d\left(\delta y^{(\beta) a}\right)-\delta y^{(\beta) b} \wedge \underset{(\alpha)}{\omega^{a}}{ }^{a}, \quad(\alpha=0,1,2, \beta=1,2)
$$

are d-vector fields.
$\mathfrak{2}^{\circ}$. The geometrical object fields

$$
d \underset{(\alpha)}{d \omega^{a}}{ }^{a}-\underset{(\alpha)}{\omega^{c}}{ }^{c} \wedge \underset{(\alpha)}{\omega_{(}}{ }^{a}, \quad(\alpha=0,1,2),
$$

are d-tensor fields, with respect to indices a and b.
Using the previous Lemma we can prove, by a straightforward calculus, a fundamental result in the geometry of $T^{2} M$.

Theorem 10.1. For any N-linear connection D, with the coefficients $D \Gamma(N)=$ $\left(\begin{array}{c}L^{a}{ }^{a}, \\ (\alpha 0)^{b c} \\ C_{(\alpha 1)}{ }^{a} b c \\ \left.\underset{(\alpha 2)}{C}{ }^{a}{ }^{a}\right)\end{array}\right),(\alpha=0,1,2)$, the following structure equations hold good:

$$
\begin{array}{ll}
d\left(d x^{a}\right)-d x^{b} \wedge \underset{(\alpha)}{\omega}{ }^{a} & =-\stackrel{(0)}{\Omega^{a}}, \\
d\left(\delta y^{(1) a}\right)-\delta y^{(1) b} \wedge \underset{(\alpha)}{\omega^{a}}{ }^{a} & =-\stackrel{(1)}{\Omega^{a}}, \\
d(\delta) \\
d\left(2 y^{(2) a}\right)-\delta y^{(2) b} \wedge \underset{(\alpha)}{\omega^{a}} & =-\underset{(\alpha)}{\Omega^{a}},
\end{array}
$$

and

$$
d \underset{(\alpha)}{\omega}{ }^{a}{ }_{b}-\underset{(\alpha)}{\omega}{ }^{f}{ }^{f} \wedge \underset{(\alpha)}{\omega}{ }^{a}{ }_{f}=-\underset{(\alpha)}{\Omega}{ }^{a}, \quad(\alpha=0,1,2)
$$

where $\stackrel{(0)}{\Omega}_{(\alpha)}^{a} \stackrel{1}{\Omega}_{\Omega_{(\alpha)}}^{a}, \stackrel{(2)}{\Omega}_{\Omega_{(\alpha)}^{a}}^{{ }^{a}},(\alpha=0,1,2)$ are the 2-forms of torsion

$$
\begin{aligned}
& \stackrel{(0)}{\Omega}_{(\alpha)}^{a}=\frac{1}{2} \stackrel{\alpha}{(0)}_{\underset{T}{a}}{ }^{a}{ }_{b c} d x^{b} \wedge d x^{c}+ \\
& +\underset{(\alpha 1)}{C}{ }^{a}{ }^{b} d x^{b} \wedge \delta y^{(1) c}+\underset{(\alpha 2)}{C}{ }^{a} b c d x^{b} \wedge \delta y^{(2) c}, \\
& {\underset{(\alpha)}{(1)}{ }^{a}}^{(\alpha)} \underset{(01)}{\frac{1}{2}} \underset{(0)}{R}{ }^{a} d x^{b} \wedge d x^{c}+ \\
& +\underset{(11)}{\stackrel{\alpha}{P} a c} d x^{b} \wedge \delta y^{(1) c}+\underset{(21)}{P}{ }^{a} b c d x^{b} \wedge \delta y^{(2) c}+ \\
& +\frac{1}{2} \underset{(1)}{\alpha}{ }_{(1)}^{a} \delta c^{(1) b} \wedge \delta y^{(1) c}+\underset{(\alpha 2)}{C}{ }^{a} b c y^{(1) b} \wedge \delta y^{(2) c}, \\
& \stackrel{(2)}{\Omega_{(\alpha)}^{a}}=\underset{{ }^{a}}{\frac{1}{2}} \underset{(02)}{R}{ }^{a}{ }^{a} d x^{b} \wedge d x^{c}+ \\
& +\underset{(12)}{P^{a} b c} d x^{b} \wedge \delta y^{(1) c}+\underset{(22)}{\stackrel{\alpha}{P}}{ }^{a} b c x^{b} \wedge \delta y^{(2) c}+ \\
& +\frac{1}{2} \underset{(12)}{R}{ }^{a} b c \delta y^{(1) b} \wedge \delta y^{(1) c}+\underset{(22)}{Q_{(2)}^{a}}{ }_{b c} \delta y^{(1) b} \wedge \delta y^{(2) c}+\frac{1}{2} \underset{(2)}{\alpha}{ }^{a}{ }_{b c} \delta y^{(2) b} \wedge \delta y^{(2) c},
\end{aligned}
$$

and where $\underset{(\alpha)}{\Omega}{ }^{a},(\alpha=0,1,2)$, are the 2-forms of curvature

$$
\begin{aligned}
& \underset{(\alpha)}{\Omega^{a}}{ }^{b}=\frac{1}{2} \underset{(0 \alpha)}{R}{ }^{b}{ }^{a}{ }_{c d} d x^{c} \wedge d x^{d}+ \\
& +\underset{(1 \alpha){ }^{P}{ }^{b}{ }^{a} d}{ } d x^{c} \wedge \delta y^{(1) d}+\underset{(2 \alpha)^{b}}{P}{ }^{a}{ }^{a} d x^{c} \wedge \delta y^{(2) d}+ \\
& +\frac{1}{2} \underset{(1 \alpha)}{S}{ }^{a}{ }^{a}{ }_{c d} \delta y^{(1) c} \wedge \delta y^{(1) d}+\underset{(2 \alpha)}{Q}{ }^{a}{ }^{a}{ }_{c d} \delta y^{(1) c} \wedge \delta y^{(2) d}+\frac{1}{2} \underset{(2 \alpha)}{S}{ }^{b}{ }^{a} c d b y^{(2) c} \wedge \delta y^{(2) d} .
\end{aligned}
$$

Remarks 1°. The theorem 10.1 is extremly important in a theory of submanifolds embedded in the total space $T^{2} M$ of the bundle $\left(T^{2} M, \pi^{2}, M\right)$.
2°. For any $J N$-linear connection $J D$ with coefficients $J D \Gamma(N)=\left(L_{b c}^{a}, \underset{(1)}{C_{b c}^{a}}\right.$, $\underset{(2)}{C^{a}}{ }_{b c}$) we have

$$
\begin{aligned}
& \underset{(0)}{\Omega_{0}^{a}}=\stackrel{(0)}{\Omega_{(1)}^{a}}=\stackrel{(0)}{\Omega_{(2)}^{a}}=\stackrel{(0)}{\Omega^{a}}, \stackrel{(1)}{\Omega_{(0)}^{a}}=\stackrel{(1)}{\Omega_{(1)}^{a}}=\stackrel{(1)}{\Omega_{(2)}^{a}}=\stackrel{(1)}{\Omega^{a}},
\end{aligned}
$$

Then, by the relations (3.1) the structure equations for the $J N$-linear connection are easy to write, [1].

Acknowledgement It is a pleasure for us to tank Prof.Dr.I.Čomić, Prof.Dr. C. Udrişte and Prof.Dr. V. Balan for many helpful discussions on this research.

References

[1] Gh. Atanasiu, The equations of structure of an N-linear connection in the bundle of accelerations, Balkan J. Geom. and Its Appl. 1, 1 (1996), 11-19.
[2] Gh. Atanasiu, New aspects in the Differential Geometry of the second order, Sem. de Mecanica, Univ. de Vest din Timisoara, Nr. 82, 2001, 1-81.
[3] Gh. Atanasiu, Linear connections in the Differential Geometry of order two, in vol. Lagrange and Hamilton Geometries and Their Applications (R.Miron-Ed.) Handbooks. Treatises. Monographs. Fair Partners Publ., Bucureşti, 49, 2004, 11-30.
[4] Gh. Atanasiu, Linear connections in the Higher-Order Differential Geometry, Proc. of Int. Meeting Physical Interpr. of Relativity Theory, 4.07-7.07.2005, Bauman Moscow State Tech. Univ. (to appear).
[5] I. Čomić, The curvature theory of generalized connection in $O s c^{2} M$, Balkan J. Geom. and Its Appl. 1, 1 (1996), 21-29.
[6] I. Čomić, Gh. Atanasiu and E. Stoica, The generalized connection in $O s c^{3} M$, Annales Univ. Sci. Budapest, 41 (1998), 39-54.
[7] I. Čomić, H. Kawaguchi, Different structures in the geometries of $O s c^{3} M$ introduced by R. Miron and Gh. Atanasiu, The 37-th Symposium on Finsler Geometry at Tsukuba; The 6-th Int. Conf. of Tensor Society on Diff. Geom \& its Appl., 5-9 Aug., 2002, 73-81.
[8] R. Miron and Gh. Atanasiu, Compendium on the Higher-Order Lagrange Spaces: The Geometry of k-osculator bundles. Prolongation of the Riemannian, Finslerian and Lagrangian structures. Lagrange spaces, Tensor N.S. 53 (1993), 39-57.
[9] R. Miron and Gh. Atanasiu, Compendium sur les espaces Lagrange d'ordre supérieur: La géométrie du fibré k-osculateur; Le prolongement des structures Riemanniennes, Finsleriennes et Lagrangiennes; Les espaces Lagrange $L^{(k) n}$, Univ. Timisoara, Seminarul de Mecanica, no. 40, 1994.
[10] R. Miron and Gh. Atanasiu, Lagrange Geometry of second order, Math. Comput. Modelling 20, 4 (1994), 41-56.
[11] R. Miron and Gh. Atanasiu, Differential Geometry of the k-osculator bundle, Rev. Roumaine Math. Pures et Appl., 41, 3-4 (1996), 205-236.
[12] R. Miron and Gh. Atanasiu, Prolongation of the Riemannian, Finslerian and Lagrangian structures, Rev. Roumaine Math. Pures et Appl., 41, 3-4 (1996), 237-249.
[13] R. Miron and Gh. Atanasiu, Higher-order Lagrange Spaces, Rev. Roumaine Math. Pures et Appl., 41, 3-4 (1996), 251-263.
[14] R. Miron and Gh. Atanasiu, Geometrical Theory of Gravitational and Electromagnetic Fields in the Higher-order Lagrange spaces, Tsukuba J. Math., 20, 1 (1996), 137-149.

Author's address:
Gheorghe Atanasiu
Department of Algebra and Geometry, Transilvania University, 500091, Brasov, Romania
email: gh_atanasiu@yahoo.com, gh.atanasiu@info.unitbv.ro
Private address: Dr.Gh. Baiulescu nr.11, 500107, Braşov, Romania

