Geometry of Lagrangians and semisprays on Lie algebroids

Mihai Anastasiei

Abstract

One considers a regular Lagrangian L on the total space of a Lie algebroid and one associates to it a semispray suggested by the form of the Euler -Lagrange equations established by A. Weinstein, [5]. Some properties of this semispray are pointed out.

Mathematics Subject Classification: 53C60, 53C07.
Key words: regular Lagrangian, Euler-Lagrange equations, semisprays, Lie algebroids.

1 Introduction

In a paper appeared in 1996,[5], Alan Weinstein proposed a Lagrangian formalism for Lie algebroids. This is general enough to include several Lagrangian formalisms as those on tangent bundles, on tangent subbundles and on Lie algebras. He obtains the Euler - Lagrange equations using the Poisson structure on the dual of the given Lie algebroid and the Legendre transformation defined by a regular Lagrangian on it. He also defines a notion of semispray. Later on, E. Martinez,[3], develops a Lagrangian formalism for Lie algebroids that is similar to Klein's formalism, [2]. He mainly uses a vector bundle which replaces the double tangent bundle from the usual case. A notion of semispray appears in this setting,too.

In this paper we are mainly dealing with the notion of semipray in A. Weinstein' sense. In Section 2 we recall necessary facts from the theory of vector bundles and establish the notations following the monograph [4].

Section 3 is devoted to semisprays on Lie algebroids. We give a definition that is a direct generalization of the one used in tangent bundle case and we prove that this is equivalent with the definition given by A. Weinstein,[5]. A local characterization is also provided. Three invariants are associated to any semispray.

In Section 4 we show that any regular Lagrangian on a Lie algebroid induces a semispray. This is done on a direct way: the Euler - Lagrange equations obtained by A. Weinstein suggest the form of the local coefficients of a semispray and by a

[^0]direct calculation we checked that those coefficients are the appropriate ones. Some examples are pointed out.

2 Vector bundles

Let $\xi=(E, \pi, M)$ be a vector bundle of rank m. Here E and M are smooth i.e. C^{∞} manifolds with $\operatorname{dim} M=n$, $\operatorname{dim} E=n+m$, and $\pi: E \rightarrow M$ is a smooth submersion. The fibres $E_{x}=\pi^{-1}(x), x \in M$ are linear spaces of dimension m which are isomorphic with the type fibre \mathbb{R}^{m}.

Let $\left\{\left(U_{\alpha}, \psi_{\alpha}\right)\right\}_{\alpha \in A}$ be an atlas on M. A vector bundle atlas is $\left\{\left(U_{\alpha}, \varphi_{\alpha}, \mathbb{R}^{m}\right)\right\}_{\alpha \in A}$ with the bijections $\varphi_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times \mathbb{R}^{m}$ in the form $\varphi_{\alpha}(u)=\left(\pi(u), \varphi_{\alpha, \pi(u)}\right)$, where $\varphi_{\alpha, \pi(u)}: E_{\pi(u)} \rightarrow \mathbb{R}^{m}$ is a bijection. The given atlas on M and a vector bundle atlas provide an atlas $\left\{\left(\pi^{-1}\left(U_{\alpha}\right), \Phi_{\alpha}\right)\right\}_{\alpha \in A}$ on E.
Here $\Phi_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) \rightarrow \phi_{\alpha}\left(U_{\alpha}\right) \times \mathbb{R}^{m}$ is the bijection given by $\phi_{\alpha}(u)=\left(\psi_{\alpha}(\pi(u)), \varphi_{\alpha, \pi(u)}(u)\right)$. For $x \in M$, we put $\psi_{\alpha}(x)=\left(x^{i}\right) \in \mathbb{R}^{n}$ and if $\left(U_{\beta}, \psi_{\beta}\right)$ is another local chart such that $x \in U_{\alpha} \cap U_{\beta} \neq \phi$, we set $\psi_{\beta}(x)=\widetilde{x}^{i}$ and then $\psi_{\beta} \circ \psi_{\alpha}^{-1}$ has the form

$$
\begin{equation*}
\widetilde{x}^{i}=\widetilde{x}^{i}\left(x^{1}, \cdots, x^{n}\right), \operatorname{rank}\left(\frac{\partial \widetilde{x}^{i}}{\partial x^{j}}\right)=n \tag{1.1}
\end{equation*}
$$

Let $\left(e_{a}\right)$ be the canonical basis of \mathbb{R}^{m}. Then $\varphi_{\alpha, x}^{-1}\left(e_{a}\right):=\varepsilon_{a}(x)$ is a basis of E_{x} and $u \in E_{x}$ has the form $u=y^{a} \varepsilon_{a}(x)$.

We take $\left(x^{i}, y^{a}\right)$ as coordinates on E. For the bundle chart $\left(U_{\beta}, \varphi_{\beta}, \mathbb{R}^{m}\right)$ we put $\varphi_{\beta, x}^{-1}\left(e_{a}\right)=\widetilde{\varepsilon}_{a}(x)$ and then $u=\widetilde{y}^{a} \widetilde{\varepsilon}_{a}(x)$. If we set $\varepsilon_{a}(x)=M_{a}^{b}(x) \widetilde{\varepsilon}_{b}$ with $\operatorname{rank}\left(M_{a}^{b}(x)\right)=m$ it follows that $\widetilde{y}^{a}=M_{b}^{a}(x) y^{b}$. Thus the mapping $\Phi_{\beta} \circ \Phi_{\alpha}^{-1}$ has the form

$$
\begin{align*}
& \widetilde{x}^{i}=\widetilde{x}^{i}\left(x^{1}, \cdots, x^{n}\right), \operatorname{rank}\left(\frac{\partial \widetilde{x}^{i}}{\partial x^{j}}\right)=n \tag{1.2}\\
& \widetilde{y}^{a}=M_{b}^{a}(x) y^{b}, \operatorname{rank}\left(M_{b}^{a}(x)\right)=m
\end{align*}
$$

The indices i, j, k, \ldots and $a, b, c \ldots$ will take the values $1,2, \ldots n$ and $1,2, \ldots m$, respectively. The Einstein convention on summation will be used.

We denote by $\mathcal{F}(M), \mathcal{F}(E)$ the ring of real functions on M and E respectively, and by $\chi(M)$, respectively $\Gamma(E), \chi(E)$ the module of sections of the tangent bundle of M, respectively of the bundle ξ and of the tangent bundle of E. On U_{α}, the vector fields $\left(\partial_{k}:=\frac{\partial}{\partial x^{k}}\right)$ provide a local basis for $\chi\left(U_{\alpha}\right)$. The sections $\varepsilon_{a}: U_{a} \rightarrow \pi^{-1}\left(U_{\alpha}\right)$, $\varepsilon_{a}(x)=\varphi_{\alpha, x}^{-1}\left(e_{a}\right)$ provide a basis for $\Gamma\left(\pi^{-1}\left(U_{\alpha}\right)\right)$ and a section $A: U_{\alpha} \rightarrow \pi^{-1}\left(U_{\alpha}\right)$ will take the form $A(x)=A^{a}(x) \varepsilon_{a}(x), x \in U_{\alpha}$.

Let $\xi^{*}=\left(E^{*}, p^{*}, M\right)$ be the dual of the vector bundle ξ. We may also consider the tensor bundle $T_{s}^{r}(E)$ over E. The set of sections $\Gamma\left(T_{s}^{r}(E)\right)$ are $\mathcal{F}(M)$-modules for any natural numbers r, s. On the sum $\oplus_{r, s} \Gamma\left(T_{s}^{r}(E)\right)$ a tensor product can be defined and one gets a tensor algebra $T(E)$. For the tangent bundle $(T M, \tau, M)$ this reduces to the tensor algebra of the manifold M. The tensor algebra of the manifold E could be also involved. Its elements are sections in $\mathcal{T}_{s}^{r}(T E)$. The tensorial algebra of E contains the subset of d-tensor fields on E. For a general definition of these tensor
fields we refer to [4], Ch. III. Shortly, these tensor fields are defined by components depending on $\left(x^{i}, y^{a}\right)$ and transforming by a change of coordinates as tensors but with the matrices $\left(\frac{\partial \widetilde{x}^{i}}{\partial x^{j}}\right)$ and $\left(M_{b}^{a}(x)\right)$ and their inverses, only. Notice that in the law of transformation of a tensor field on E could appear also the matrix $\left(\frac{\partial M_{b}^{a}(x)}{\partial x^{i}} y^{b}\right)$.

A large class of examples is provided by the sections in the vertical bundle over E. We recall that the vertical bundle $V E \rightarrow E$ is the union of the fibres $V_{u} E=\operatorname{ker} \pi_{*, u}$ over $u \in E$, where $\pi_{*, u}$ is the differential of π. A basis of local section of $V E \rightarrow E$ is given by $\left(\left.\frac{\partial}{\partial y^{a}}\right|_{u}\right)$ and its dual is $\left.d y^{a}\right|_{u}$. The local components of any element in $\Gamma\left(T_{s}^{r}(V E)\right)$, transform under a change of coordinates on E with the matrix $\left(M_{b}^{a}(x)\right)$ and its inverse $\left(W_{b}^{a}\right)$. We call such an element a vertical tensor field.

Now if $L: E \rightarrow M$ is a smooth function on E (called usually a Lagrangian) then it is easy to check that functions $\frac{\partial L}{\partial y^{a}}, g_{a b}=\frac{1}{2} \frac{\partial^{2} L}{\partial y^{a} \partial y^{b}}, C_{a b c}=\frac{1}{2} \frac{\partial g_{a b}}{\partial y^{c}}$ define vertical tensor fields of covariance indicated by the position and number of indices.

3 Semisprays for Lie algebroids

A vector bundle $\xi=(E, \pi, M)$ is called a Lie algebroid if it has the following properties:

1. The space of sections $\Gamma(\xi)$ is endowed with a Lie algebra structure [,];
2. There exists a bundle map $\rho: E \rightarrow T M$ (called the anchor map) which induces a Lie algebra homomorphism (also denoted by ρ) from $\Gamma(\xi)$ to $\chi(M)$.
3. For any smooth functions f on M and any sections $s_{1}, s_{2} \in \Gamma(\xi)$ the following identity is satisfied

$$
\left[s_{1}, f s_{2}\right]=f\left[s_{1}, s_{2}\right]+\left(\rho\left(s_{1}\right) f\right) s_{2}
$$

Locally, we set

$$
\begin{equation*}
\rho\left(s_{a}\right)=\rho_{a}^{i} \frac{\partial}{\partial x^{i}},\left[\varepsilon_{a}, \varepsilon_{b}\right]=L_{a b}^{c} s_{c} \tag{3.1}
\end{equation*}
$$

A change of local charts implies

$$
\begin{equation*}
\widetilde{\rho}_{a}^{i}=W_{a}^{b} \rho_{b}^{j} \frac{\partial \widetilde{x}^{i}}{\partial x^{j}} \tag{3.2}
\end{equation*}
$$

where W_{a}^{b} is the inverse of the matrix $\left(M_{b}^{a}\right)$.
Examples of Lie algebroids: the tangent bundle $\tau: T M \rightarrow M$ with $\rho=$ identity, any integrable subbundle of $T M$ with the inclusion as anchor map, $T P / G$ for $P(M, G)$ a G-principal bundle, see [5].

For a function f on M one defines its vertical lift f^{v} on E by $f^{v}(u)=f(\pi(u))$ and its complete lift f^{c} on E by $f^{c}(u)=\rho_{a}^{i} y^{a} \frac{\partial f}{\partial x^{i}}$ for $u=(x, y)$ in E. If $A=A^{a}(x) \varepsilon_{a}$ is a
section in ξ, the vertical lift A^{v} is a vector field on E defined by $A^{v}(x, y)=A^{a}(x) \frac{\partial}{\partial y^{a}}$ and the complete lift A^{c} is a vector field on E defined by

$$
A^{c}(x, y)=A^{a} \rho_{a}^{i} \frac{\partial}{\partial x^{i}}+\left(\rho_{b}^{i} \frac{\partial A^{a}}{\partial x^{i}}-A^{d} L_{d b}^{a}\right) y^{b} \frac{\partial}{\partial y^{a}} .
$$

In particular, $\varepsilon_{a}^{v}=\frac{\partial}{\partial y^{a}}, \varepsilon_{a}^{c}=\rho_{a}^{i} \frac{\partial}{\partial x^{i}}-L_{a b}^{d} y^{b} \frac{\partial}{\partial y^{d}}$.
A semispray S for the tangent bundle $\tau: T M \rightarrow M$ is a vector field on $T M$ which at the same time is a section in the vector bundle $\tau_{*}: T T M \rightarrow T M$, that is we have $\tau_{T M}(S(u))=u$ and $\tau_{*, u}(S(u))=u, \forall u \in T M$, where $\tau_{T M}$ is the vector bundle projection $T T M \rightarrow T M$. It follows that $\tau_{*, u}(S(u))=\tau_{T M}(S(u)), \forall u \in T M$.

This equation suggests the following
Definition 3.1. Let $\xi=(E, \rho, M)$ be a Lie algebroid with the anchor ρ. A vector field S on E will be called a semispray if

$$
\begin{equation*}
\pi_{*, u}(S(u))=\left(\rho \circ \tau_{E}\right)(S(u)), \forall u \in E \tag{3.3}
\end{equation*}
$$

where $\tau_{E}: T E \rightarrow E$ is the natural projection.
Let $c: I \rightarrow M, I \subseteq \mathbb{R}$ be a curve on M and let $\widetilde{c}: I \rightarrow E$ be any curve on E such that $\pi \circ \widetilde{c}=c$. Denote by $\dot{\tilde{c}}$ the vector field that is tangent to \widetilde{c}.

Definition 3.2. We say that \widetilde{c} is admissible if

$$
\pi_{*}(\dot{\tilde{c}})=\rho(\widetilde{c})
$$

In local charts on M and E, we have $c(t)=\left(x^{i}(t)\right), \widetilde{c}(t)=\left(x^{i}(t), y^{a}(t)\right)$ and $\dot{\tilde{c}}(t)=\frac{d x^{i}}{d t} \frac{\partial}{\partial x^{i}}+\frac{d y^{a}}{d t} \frac{\partial}{\partial y^{a}}, t \in I$.

It results
Lemma 3.1. The curve \widetilde{c} is admissible if and only if

$$
\begin{equation*}
\frac{d x^{i}}{d t}(t)=\rho_{a}^{i}(x(t)) y^{a}(t), \quad \forall t \in I \tag{3.4}
\end{equation*}
$$

Again in local charts, let be $S=X^{i} \frac{\partial}{\partial x^{i}}+Y^{a} \frac{\partial}{\partial y^{a}}$ a vector field on E.
This is a semispray if and only if

$$
\begin{equation*}
X^{i}(x, y)=\rho_{a}^{i}(x) y^{a} \tag{3.5}
\end{equation*}
$$

Thus the coordinates $\left(Y^{a}(x, y)\right)$ are not determined. We set for convenience $Y^{a}=$ $-2 G^{a}$. Furthermore, under a change of coordinates $\left(x^{i}, y^{u}\right) \rightarrow\left(\widetilde{x}^{i}, \widetilde{y}^{a}\right)$, the coordinates $\left(X^{i}\right),\left(G^{a}\right)$ have to change as follows:

$$
\begin{gather*}
\widetilde{X}^{i}=\frac{\partial \widetilde{x}^{i}}{\partial x^{j}}(x) X^{j} \tag{3.6}\\
\widetilde{G}^{a}=M_{b}^{a} G^{b}-\frac{1}{2} \frac{\partial M_{b}^{a}}{\partial x^{i}} y^{b} \rho_{c}^{i} y^{c} . \tag{3.7}
\end{gather*}
$$

Using (3.2) one easily sees that the coordinates $\left(X^{i}(x, y)\right)$ given by (3.5) verify (3.6).

Concluding, we have
Theorem 3.1. A vector field $S=\left(\rho_{a}^{i} y^{a}\right) \frac{\partial}{\partial x^{i}}-2 G^{a} \frac{\partial}{\partial y^{a}}$ on E is a semispray if and only if the coordinates $\left(G^{a}\right)$ transform by (3.7).

The integral curves of S are given by the system of differential equations

$$
\begin{equation*}
\frac{d x^{i}}{d t}=\rho_{a}^{i}(x) y^{a}, \frac{d y^{a}}{d t}+2 G^{a}(x, y)=0 \tag{3.8}
\end{equation*}
$$

It comes out these curves are all admissible. The converse is also true, that is we have

Theorem 3.2. A vector field on E is a semispray if and only if all its integral curves are admissible.

Remark 3.1. The characterization of a semispray provided by the Theorem 3.2 was taken by A. Weinstein ,[5], as definition for a semispray on E.

Remark 3.2. (i) Let us assume that $\rho=0$. Then the admissible curves are all curves from the fibre $E_{x_{0}}, x_{0}\left(x_{0}^{i}\right) \in M$. The integral curves of a semispray S are given by the equations $\frac{d y^{a}}{d t}+2 G^{a}\left(x_{0}, y\right)=0$.
(ii)The system of equations (3.8) is no longer equivalent with a second order differential equations as it happens for $T M$. Thus the term of "second order differential equations" used sometimes for a semispray is no longer appropriate.
(iii) Let D a distribution on M. We regard it as a subbundle of $T M$ and so we may view it as a Lie algebroid with the natural inclusion as anchor map. Using a local basis on D one can see that the admissible curves are those that are tangent to the distribution D. For details we refer to [1].

Let \widehat{S} be another semispray on E. Then $\widehat{S}=\left(\rho_{a}^{i} y^{a}\right) \frac{\partial}{\partial x^{i}}-2 \widehat{G}^{a} \frac{\partial}{\partial y^{a}}$, where the functions $\left(\widehat{G}^{a}(x, y)\right)$ have to satisfy (3.7) under a change of coordinates on E. It follows that $\widehat{S}-S=2\left(G^{a}-\widehat{G}^{a}\right) \frac{\partial}{\partial y^{a}}$ and the functions $D^{a}=G^{a}-\widehat{G}^{a}$ transform by the rule

$$
\begin{equation*}
\widehat{D}^{a}=M_{b}^{a} D^{b} \tag{3.9}
\end{equation*}
$$

So we have proved
Theorem 3.3. Any two semisprays on E differ by a vertical vector field on E.
A different point of view on semisprays for algebroids was proposed by E.Martinez, [3]. It can be shortly described as follows.

Let $\mathcal{L}^{\pi} E$ be the subset of $E \times T E$ defined by $\mathcal{L}^{\pi} E=\left\{(u, z) \mid \rho(u)=\pi_{*}(z)\right\}$ and denote by $\pi_{L}: \mathcal{L}^{\pi} E \longrightarrow E$ the mapping given by $\pi_{L}(u, z)=\tau_{E}(z)$. Then $\left(\mathcal{L}^{\pi} E, \pi_{L}, E\right)$ is a vector bundle over E of rank $2 m$. One proves that this vector bundle is also a Lie algebroid.

One associates to a section A of ξ the vertical lift A^{V} and the complete lift A^{C} as sections of $\pi_{L}: \mathcal{L}^{\pi} E \longrightarrow E$ given by

$$
A^{V}(u)=\left(0, A^{v}(u)\right), A^{C}(u)=\left(A(\pi(u)), A^{c}(u)\right), u \in E
$$

If $\left\{s_{a}\right\}$ is a local basis of $\left.\Gamma(E)\right)$, then $\left\{s_{a}^{V}, s_{s}^{C}\right\}$ is a local basis for $\Gamma\left(\mathcal{L}^{\pi} E\right)$.

The vector bundle $\left(\mathcal{L}^{\pi} E, \pi_{L}, E\right)$ admits a canonical section C called the Liouville or Euler section defined by $C(u)=\left(o, y^{a} \frac{\partial}{\partial y^{a}}\right)$ for $u=y^{a} \varepsilon_{a} \in E$. A section J of the vector bundle $\mathcal{L}^{\pi} E \otimes\left(\mathcal{L}^{\pi} E\right)^{*} \longrightarrow E$ characterized by the conditions $J\left(A^{V}\right)=$ $0, J\left(A^{C}\right)=A^{V}, A \in \Gamma E$ is called the vertical endomorphism. We have that $J^{2}=0$. A section S of the vector bundle $\left(\mathcal{L}^{\pi} E, \pi_{L}, E\right)$ is said to be a semispray if it satisfies the condition $J S=C$. This definition is equivalent with the preceding one. Indeed, in local coordinates if we set $S=A^{a} \varepsilon_{a}^{C}+S^{a} \varepsilon_{a}^{V}$, the condition $J S=C$ gives $A^{a}=y^{a}$ and so $S=y^{a}\left(\rho_{a}^{i} \frac{\partial}{\partial x^{i}}-L_{a b}^{c} y^{b} \frac{\partial}{\partial y^{c}}\right)+S^{a} \frac{\partial}{\partial y^{a}}=y^{a} \rho_{a}^{i} \frac{\partial}{\partial x^{i}}+S^{a} \frac{\partial}{\partial y^{a}}$ since $L_{a b}^{c} y^{a} y^{b}=0$.

For a semispray on $T M$, a case when this is equivalent with a system of second order differential equations (SODE), there exists a way to find geometric invariants that to determine, up to a change of coordinates, the solutions of the system.

This way led to a KCC-theory named so as after Kosambi, Cartan and Chern.
The KCC-theory apparently does not work for semisprays on Lie algebroids. However, at least formally we can associate to a semispray $S=\left(\rho_{a}^{i} y^{a}\right) \frac{\partial}{\partial x^{i}}-2 G^{a}(x, y) \frac{\partial}{\partial y^{a}}$, the following invariants:

$$
\begin{gather*}
\zeta^{a}=2 G^{a}-\frac{\partial G^{a}}{\partial y^{b}} y^{b}, \tag{3.10}\\
\Xi^{a}=\frac{\partial G^{a}}{\partial y^{b}}-\frac{\partial G^{a}}{\partial y^{b} \partial y^{c}} y^{c}, \tag{3.11}\\
\Gamma^{a}=2 G^{a}-2 \frac{\partial G^{a}}{\partial y^{b}} y^{b}+\frac{\partial G^{a}}{\partial y^{b} \partial y^{c}} y^{b} y^{c} . \tag{3.12}
\end{gather*}
$$

Indeed, it is not difficult to check that all these sets of functions define vertical vector fields on E.

To find a complete list of such invariants could be a future task.

4 A semispray derived from a regular Lagrangian

Let $L: E \rightarrow R$ be a regular Lagrangian on the Lie algebroid ($E,[],, \rho$), that is L is a smooth functions such that the matrix with the entries

$$
\begin{equation*}
g_{a b}(x, y)=\frac{1}{2} \frac{\partial^{2} L}{\partial y^{a} \partial y^{b}}, \tag{4.1}
\end{equation*}
$$

is of rank m.
In [5], one associates to L the Euler - Lagrange equations

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial L}{\partial y^{a}}\right)=\rho_{a}^{i} \frac{\partial L}{\partial x^{i}}+L_{b a}^{c} y^{b} \frac{\partial L}{\partial y^{c}}, \tag{4.2}
\end{equation*}
$$

for $c(t)=\left(x^{i}(t), y^{a}(t)\right)$ an admissible curve.
Expanding the derivative in (4.2), using (4.1) and (3.4), we may put (4.2) in the form

$$
\begin{equation*}
\frac{d y^{a}}{d t}+2 G_{L}^{a}(x, y)=0 \tag{4.3}
\end{equation*}
$$

with the notation

$$
\begin{equation*}
G_{L}^{a}=\frac{1}{4} g^{a b}\left(\frac{\partial^{2} L}{\partial y^{b} \partial x^{i}} \rho_{c}^{i} y^{c}-\rho_{b}^{i} \frac{\partial L}{\partial x^{j}}-L_{b d}^{c} y^{d} \frac{\partial L}{\partial y^{c}}\right) \tag{4.4}
\end{equation*}
$$

We show that the function $\left(G_{L}^{a}\right)$ verifies (3.7) under a change of coordinates on E.
We set

$$
\begin{equation*}
E_{a}=4 g_{a b} G^{b} \tag{4.5}
\end{equation*}
$$

where

$$
\begin{equation*}
E_{a}=\frac{\partial^{2} L}{\partial y^{a} \partial x^{i}} \rho_{b}^{i} y^{b}-\rho_{a}^{i} \frac{\partial L}{\partial x^{i}}-L_{b a}^{c} y^{b} \frac{\partial L}{\partial y^{c}} \tag{4.6}
\end{equation*}
$$

Then we use (3.2) as well as the following equations:

$$
\begin{gathered}
\frac{\partial L}{\partial x^{i}}=\frac{\partial L}{\partial \widetilde{x}^{j}} \frac{\partial \widetilde{x}^{j}}{\partial x^{i}}+\frac{\partial L}{\partial \widetilde{y}^{a}} \frac{\partial M_{c}^{a}}{\partial x^{i}} y^{c} \\
\frac{\partial^{2} L}{\partial y^{a} \partial x^{i}}=M_{a}^{b}\left(\frac{\partial^{2} L}{\partial y^{b} \partial \widetilde{x}^{j}} \frac{\partial \widetilde{x}^{j}}{\partial x^{i}}+2 \widetilde{g}_{d b} \frac{\partial M_{c}^{d}}{\partial x^{i}} y^{c}\right)+\frac{\partial L}{\partial \widetilde{y}^{d}} \frac{\partial M_{a}^{d}}{\partial x^{i}} \\
L_{a b}^{c} M_{c}^{e}=M_{a}^{c} M_{b}^{d} \widetilde{L}_{c d}^{e}+\rho_{a}^{k} \frac{\partial M_{b}^{e}}{\partial x^{k}}-\rho_{b}^{k} \frac{\partial M_{a}^{e}}{\partial x^{k}}
\end{gathered}
$$

in order to derive

$$
\begin{equation*}
E_{a}=M_{a}^{b} \widetilde{E}_{b}+2 M_{a}^{b} \widetilde{g}_{b d} \frac{\partial M_{c}^{d}}{\partial x^{i}} y^{c} \rho_{d}^{i} y^{d} \tag{4.7}
\end{equation*}
$$

Using this in (4.5) one shows that \widetilde{G}_{L}^{a} is related to G_{L}^{a} as in (3.7).
Thus we have proved
Theorem 4.1. Let L be a regular Lagrangian on the Lie algebroid ($E,[],, \rho$). Then L defines a semispray $S_{L}=\left(\rho_{a}^{i} y^{a}\right) \frac{\partial}{\partial x^{i}}-2 G_{L}^{a}(x, y) \frac{\partial}{\partial y^{a}}$, where the functions G_{L}^{a} are given by (4.4).

Example 4.1. Let $g_{a b}(x)$ be the coefficients of a Riemannian metric in the Lie $\operatorname{algebroid}(E,[],, \rho)$. Then

$$
\begin{equation*}
L(x, y)=g_{a b}(x) y^{a} y^{b} \tag{4.8}
\end{equation*}
$$

is a regular Lagrangian on E. The semispray associated to it is determined by the functions

$$
\begin{equation*}
G^{a}=\frac{1}{2} g^{a b}\left(\frac{\partial g_{b c}}{\partial x^{i}} \rho_{d}^{i}-\frac{1}{2} \frac{\partial g_{c d}}{\partial x^{i}} \rho_{b}^{i}-L_{d b}^{e} g_{e c}\right) y^{c} y^{d} \tag{4.9}
\end{equation*}
$$

Example 4.2. A more general example is provided by the regular Lagrangians which are homogeneous of degree 2 in $\left(y^{a}\right)$. By the Euler theorem one obtains

$$
\begin{equation*}
L(x, y)=g_{a b}(x, y) y^{a} y^{b}, \tag{4.10}
\end{equation*}
$$

where $\left(g_{a b}(x, y)\right)$ are homogeneous functions of degree 0 .
As $\frac{\partial}{\partial y^{a}}$ are homogeneous functions of degree 1 and the derivative with respect to $\left(x^{j}\right)$ does not affect the degree of homogeneity, it results that the coefficients $\left(G^{a}\right)$ from (4.4) are homogeneous of degree 2 in $\left(y^{a}\right)$. This fact is equivalent with $\zeta^{a}=0$ and so we have a meaning of the invariant ζ^{a}. The corresponding semispray is called a spray.

References

[1] Anastasiei M., Distributions on spray spaces, BJGA, 6 (2001), 1-6.
[2] Klein J., Espaces variationnels et mécanique, Ann. Inst. Fourier (Grenoble) 12 (1962), 1-124.
[3] Martinez E., Lagrangian mechanics on Lie algebroids, Acta Applicandae Mathematicae, 67 (2001), 295-320.
[4] Miron R., Anastasiei M., Geometry of Lagrange spaces: theory and applications, FTPH 59, Kluwer Academic Publishers, 1994.
[5] Weinstein A., Lagrangian Mechanics and Grupoids, Fields Institute Communications, vol. 7, 1996, p. 207-231.

Author's address:
Mihai Anastasiei
Faculty of Mathematics, University Al.I.Cuza, Iaşi, 700506, Romania.
Mathematics Institute "O.Mayer" Iaşi,
Iaşi Branch of the Romanian Academy, Iaşi, Romania.
email: anastas@uaic.ro

[^0]: Thể Fifth Conference of Balkan Society of Geometers, Aug. 29 - Sept. 2, 2005, Mangalia, Romania; BSG Proceedings 13, Geometry Balkan Press pp. 10-17.
 (C) Balkan Society of Geometers, 2006.

