Geometry of Lagrangians and semisprays
on Lie algebroids

Mihai Anastasiei

Abstract

One considers a regular Lagrangian L on the total space of a Lie algebroid and
one associates to it a semispray suggested by the form of the Euler -Lagrange
equations established by A. Weinstein, [5]. Some properties of this semispray
are pointed out.
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1 Introduction

In a paper appeared in 1996,[5], Alan Weinstein proposed a Lagrangian formalism for
Lie algebroids. This is general enough to include several Lagrangian formalisms as
those on tangent bundles, on tangent subbundles and on Lie algebras. He obtains the
Euler - Lagrange equations using the Poisson structure on the dual of the given Lie
algebroid and the Legendre transformation defined by a regular Lagrangian on it. He
also defines a notion of semispray. Later on, E. Martinez,[3], develops a Lagrangian
formalism for Lie algebroids that is similar to Klein’s formalism,[2]. He mainly uses a
vector bundle which replaces the double tangent bundle from the usual case. A notion
of semispray appears in this setting,too.

In this paper we are mainly dealing with the notion of semipray in A. Weinstein’
sense. In Section 2 we recall necessary facts from the theory of vector bundles and
establish the notations following the monograph [4].

Section 3 is devoted to semisprays on Lie algebroids. We give a definition that is
a direct generalization of the one used in tangent bundle case and we prove that this
is equivalent with the definition given by A. Weinstein,[5]. A local characterization is
also provided. Three invariants are associated to any semispray.

In Section 4 we show that any regular Lagrangian on a Lie algebroid induces a
semispray. This is done on a direct way: the Euler - Lagrange equations obtained
by A. Weinstein suggest the form of the local coefficients of a semispray and by a
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direct calculation we checked that those coefficients are the appropriate ones. Some
examples are pointed out.

2 Vector bundles

Let & = (E, 7, M) be a vector bundle of rank m. Here E and M are smooth i.e. C*
manifolds with dimM = n, dimE =n + m, and 7 : E — M is a smooth submersion.
The fibres E, = 7~ 1(x), z € M are linear spaces of dimension m which are isomorphic
with the type fibre R™.

Let {(Uy, %a)}aca be an atlas on M. A vector bundle atlas is {(Uy, ¢0, R™)}aca
with the bijections pq : 7 1(Us) = Uy X R™ in the form g (u) = (7(w), o x(u)):
where ¢, r(u) * Ex(u) — R™ is a bijection. The given atlas on M and a vector bundle
atlas provide an atlas {(771(Uy), ®4)aca on E.

Here @, : 771 (Us) = ¢a(Ua)xR™ is the bijection given by ¢ (u) = (¢ (7 (1)), @a,r(u) (0)).
For x € M, we put ¢, (x) = () € R and if (Ug, 1g) is another local chart such that
x € Uy, NUg # ¢, we set ¢z(z) = T* and then ¢z o9, " has the form

(1.1) ' =7'(at,---,2"), rank (g;) =n.

Let (eq) be the canonical basis of R™. Then ¢ (€q) := eq(2) is a basis of E, and
u € E, has the form u = y%,(z).

We take (x%,y%) as coordinates on E. For the bundle chart (Ug, ¢z, R™) we
put wgyi(ea) = Z,(7) and then u = P&,(x). If we set g,(x) = MP(x)& with
rank(M?(x)) = m it follows that §* = Mg (x)y’. Thus the mapping ®5 o ! has
the form

, , oz!
[t A~ S B n =
=7 (at, -z ),rank(axj> n

¥* = Mg(z)y®, rank(M2(x)) = m.

(1.2)

The indices 4, 7, k, ... and a, b, c... will take the values 1,2, ...n and 1, 2, ...m, respec-
tively. The Einstein convention on summation will be used.

We denote by F(M), F(E) the ring of real functions on M and E respectively,
and by x(M), respectively T'(E), x(E) the module of sections of the tangent bundle
of M, respectively of the bundle £ and of the tangent bundle of E. On U,, the vector

Ok
a(z) = @5k (eq) provide a basis for I'(m~!(Uy,)) and a section A : Uy — 771 (Usy)
will take the form A(z) = A%(x)e, (), z € U,.

Let &* = (E*, p*, M) be the dual of the vector bundle £&. We may also consider the
tensor bundle T7(FE) over E. The set of sections I'(T7 (E)) are F(M)—modules for
any natural numbers 7, s. On the sum @, ;I'(T7 (E)) a tensor product can be defined
and one gets a tensor algebra T'(E). For the tangent bundle (T'M, 7, M) this reduces
to the tensor algebra of the manifold M. The tensor algebra of the manifold F could
be also involved. Its elements are sections in 7] (TE). The tensorial algebra of E
contains the subset of d—tensor fields on E. For a general definition of these tensor

0
fields <8k = ) provide a local basis for x(Uy,). The sections g, : U, — 7~ 1(Uy),
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fields we refer to [4], Ch. III. Shortly, these tensor fields are defined by components
depending on (z¢, y“) and transforming by a change of coordinates as tensors but with

e

13}
the matrices < x) and (Mg (x)) and their inverses, only. Notice that in the law of

oxJ

oxt
A large class of examples is provided by the sections in the vertical bundle over E.
We recall that the vertical bundle VE — E is the union of the fibres V, 2 = ker 7, ,,
over u € E, where ,, is the differential of m. A basis of local section of VE — E

. . [(OMg(x)
transformation of a tensor field on F could appear also the matrix ¥’ .

and its dual is dy®|,. The local components of any element in

is given b 0

is given —

[(T7(VE)), transform under a change of coordinates on E with the matrix (M} (x))
and its inverse (W). We call such an element a vertical tensor field.

Now if L : E — M is a smooth function on E (called usually a Lagrangian) then
oL 1 0’L ~ 10ga
ayav gab - 2 8yaayb7 abc — 2 ay(/
tensor fields of covariance indicated by the position and number of indices.

it is easy to check that functions define vertical

3 Semisprays for Lie algebroids

A vector bundle £ = (E,m, M) is called a Lie algebroid if it has the following proper-
ties:

1. The space of sections I'(¢) is endowed with a Lie algebra structure [, ];

2. There exists a bundle map p : E — T'M (called the anchor map) which induces
a Lie algebra homomorphism (also denoted by p) from I'(§) to x(M).

3. For any smooth functions f on M and any sections s1, s € I'(§) the following
identity is satisfied

[s1, [s2] = fls1,82] + (p(51)f)s2.

Locally, we set

;0
(3.1) p(sa) = p;@7 [Ea, Eb] = Lgyse,
A change of local charts implies

.y O
(3:2) Po=Wary 55

where W is the inverse of the matrix (Mg2).

Examples of Lie algebroids: the tangent bundle 7 : TM — M with p =identity,
any integrable subbundle of T'M with the inclusion as anchor map, TP/G for P(M, G)
a G—principal bundle, see [5].

For a function f on M one defines its vertical lift f¥ on E by f(u) = f(7(u)) and

its complete lift f¢ on E by f¢(u) = p’y® @ifi for u = (z,y) in E. If A = A%2)e, is a
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section in &, the vertical lift AY is a vector field on F defined by AY(z,y) = A“(m)%
and the complete lift A€ is a vector field on E defined by

S OAC Wiy O
; —Adeb)yba—ya,

A(a,y) = A% 2

Pagri +(p

b ox
In particular, e¥ = aga,ag = ph g — Lgbyba%d.

A semispray S for the tangent bundle 7 : TM — M is a vector field on T'M
which at the same time is a section in the vector bundle 7, : TTM — T M, that is we
have 7rp(S(u)) = w and 7y, (S(w)) = u, Yu € TM, where )/ is the vector bundle
projection TTM — TM. It follows that 7. ,,(S(u)) = 7ram (S(u)), Yu € TM.

This equation suggests the following

Definition 3.1. Let £ = (E, p, M) be a Lie algebroid with the anchor p. A vector
field S on E will be called a semispray if

(3.3) Teu(S(w)) = (po7g)(S(w)), Vu e E

where T : TE — E is the natural projection.

Let ¢c: I — M, I CR be acurve on M and let ¢: I — E be any curve on E such
that 7 o ¢ = ¢. Denote by ¢ the vector field that is tangent to ¢.

Definition 3.2. We say that ¢ is admissible if

m.(6) = p(@).

In local charts on M and E, we have c(t) = (x%(t)), ¢(t) = (x%(t),y*(t)) and
=20 (WO g

~dt Oxt dt oy’ '

It results

Lemma 3.1. The curve ¢ is admissible if and only if

dz’
dt

(3.4) (t) = pe(x(t)y*(t), vt e I.

Again in local charts, let be § = X*

8. + Y‘li a vector field on E.
oxt Ay

This is a semispray if and only if

(3.5) X' (x,y) = pl(x)y".

Thus the coordinates (Y*(z,y)) are not determined. We set for convenience Y* =
—2G*. Furthermore, under a change of coordinates (2%, y*) — (2*, §®), the coordinates
(X%, (G*) have to change as follows:

o 0F
(3.6) X = S @)X,
~ 1OMg o
3.7 a_ pfe b = b b i, c
( ) G b G 2 9zt Y Pe

Using (3.2) one easily sees that the coordinates (X*(z,y)) given by (3.5) verify
(3.6).
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0 0

Concluding, we have
Theorem 3.1. A vector field S = (piy®)— — 2G*
oz’ oy®

and only if the coordinates (G*) transform by (3.7).
The integral curves of S are given by the system of differential equations

on E is a semispray if

dz’ i o dy®
(3.8) g = Pal@)yts

+2G%(z,y) = 0.

It comes out these curves are all admissible. The converse is also true, that is we
have

Theorem 3.2. A vector field on F is a semispray if and only if all its integral
curves are admissible.

Remark 3.1. The characterization of a semispray provided by the Theorem 3.2
was taken by A. Weinstein ,[5], as definition for a semispray on E.

Remark 3.2. (i) Let us assume that p = 0. Then the admissible curves are all
curves from the fibre E,, xo(x}) € M. The integral curves of a semispray S are given

a
by the equations % + 2G%(xo,y) = 0.

(ii) The system of equations (3.8) is no longer equivalent with a second order dif-
ferential equations as it happens for 7M. Thus the term of ”second order differential
equations” used sometimes for a semispray is no longer appropriate.

(iii) Let D a distribution on M. We regard it as a subbundle of TM and so we
may view it as a Lie algebroid with the natural inclusion as anchor map. Using a local
basis on D one can see that the admissible curves are those that are tangent to the
distribution D. For details we refer to [1].

~ 0
Er 2(}"18—ya7 where the

functions (@“(w,y)) have to satisfy (3.7) under a change of coordinates on E. It

N 9 N
follows that S — S = 2(G* — Ga)a—ya and the functions D* = G* — G* transform by

Let S be another semispray on E. Then S = (ply®)

the rule
(3.9) D® = M¢D.

So we have proved

Theorem 3.3. Any two semisprays on E differ by a vertical vector field on E.

A different point of view on semisprays for algebroids was proposed by E.Martinez,|[3].
It can be shortly described as follows.

Let LTE be the subset of E x TE defined by L™E = {(u, 2)|p(u) = m.(2)} and
denote by 7y, : LTE — FE the mapping given by 7, (u, 2) = 7g(2). Then (L"E, 7, F)
is a vector bundle over E of rank 2m.One proves that this vector bundle is also a Lie
algebroid.

One associates to a section A of ¢ the vertical lift AV and the complete lift A® as
sections of 7wy, : LTE — E given by

AV (u) = (0, 4% (w)), A (u) = (A(n(u), A°(u)),u € E.

If {s,} is a local basis of ['(E)), then {sY, s} is a local basis for ['(L™E).
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The vector bundle (L™E, 71, E) admits a canonical section C' called the Liouwille
or Euler section defined by C(u) = (o,y” 620) for u = y®¢, € E. A section J of
the vector bundle L™E @(L™E)* — E characterized by the conditions J(AY) =
0,J(AY) = AV, A € TE is called the vertical endomorphism. We have that J? = 0.
A section S of the vector bundle (L™E, 7, E) is said to be a semispray if it satisfies
the condition JS = C. This definition is equivalent with the preceding one. Indeed,
in local coordinates if we set S = A% + S%Y | the condition JS = C gives A® = y¢
and so S = y*(pl, a?ci — LSyyb 8?/“) + 5 2a =y’ a?:i + S¢ 62a since L¢,y%y" = 0.

For a semispray on TM, a case when this is equivalent with a system of second
order differential equations (SODE), there exists a way to find geometric invariants
that to determine, up to a change of coordinates, the solutions of the system.

This way led to a KCC-theory named so as after Kosambi, Cartan and Chern.

The KCC-theory apparently does not work for semisprays on Lie algebroids. How-
0
- —2G(z,y) —,
oxt (2,9) dy°

ever, at least formally we can associate to a semispray S = (ply®)

the following invariants:

oG*
3.10 T =9Gr — — 4
(3.10) ¢ oY
oG° oG*
3.11 B — — —qf
( ) ayb aybaycy ’
a a 8Ga b aGa b, c
(3.12) r*=2G*-2 By Yy + 8ybaycy ye.

Indeed, it is not difficult to check that all these sets of functions define vertical
vector fields on F.
To find a complete list of such invariants could be a future task.

4 A semispray derived from a regular Lagrangian

Let L: E — R be a regular Lagrangian on the Lie algebroid (E,[,], p), that is L is a

smooth functions such that the matrix with the entries
1 0%L

4.1 - -

( ) gab(x7 y) 2 ayaayb bl

is of rank m.
In [5], one associates to L the Euler - Lagrange equations

d (oL\ ,0L . ,0L
(42) % (aya) _pa@ +Lbay 8yc7

for c(t) = (2*(t),y*(t)) an admissible curve.
Expanding the derivative in (4.2), using (4.1) and (3.4), we may put (4.2) in the
form
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dy® a
(4.3) L+ 263 (2,) =0,
with the notation
1 L . o oL
4.4 a _ —_ab oty — ot ¢ d )
(4.4) GL =79 < ayrar "V " Py ~ Liay 8yc>

We show that the function (G¢) verifies (3.7) under a change of coordinates on E.
We set

(4.5) E, = 4g,4G®,
where
9?L . 0L oL
4.6 = ———p b_ gt = L b .
( ) (9ya8zl PoY Pa ot ba¥Y 8yc

Then we use (3.2) as well as the following equations:

OL _ 0L 0% | 9L oM¢
ori 9% 9r | oge oxt ¥

(6]

PL (9L aier _ OM¢ [\ | 0L oM}
Byaozrt e\ 9ybazi 0zt | %oz Y ) T oyd o
c e c Te oMy oMy
Lach = MaMéiLcd_Fp(li ax]f _pf ax]?
in order to derive
o ~ aMg c i
(4.7) Ea = MEy + 2MGoa— iy’

Using this in (4.5) one shows that G4 is related to G% as in (3.7).
Thus we have proved
Theorem 4.1. Let L be a reqular Lagrangian on the Lie algebroid (E,[,], p). Then

L defines a semispray Sp, = (pLy®)
given by (4.4).

Example 4.1. Let gqp(x) be the coefficients of a Riemannian metric in the Lie
algebroid (E,[,], p). Then

(4.8) L(z,y) = gap(2)y"y"

— 2G%(m,y)a—ya, where the functions G are

ozt

is a regular Lagrangian on E. The semispray associated to it is determined by the
functions

(4.9) G =

1 b 89170 1 1 agcd i d
§ga ( O Pa — 5@% — Lggec | y°y°.

Example 4.2. A more general example is provided by the regular Lagrangians
which are homogeneous of degree 2 in (y*). By the Euler theorem one obtains
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(4.10) L(z,y) = ga(z, y)y"y’,

where (gqp(x,y)) are homogeneous functions of degree 0.

As e are homogeneous functions of degree 1 and the derivative with respect to
_ Y
(z7) does not affect the degree of homogeneity, it results that the coefficients (G*)
from (4.4) are homogeneous of degree 2 in (y*). This fact is equivalent with (* = 0
and so we have a meaning of the invariant (. The corresponding semispray is called

a spray.
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