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Abstract

One considers a regular Lagrangian L on the total space of a Lie algebroid and
one associates to it a semispray suggested by the form of the Euler -Lagrange
equations established by A. Weinstein, [5]. Some properties of this semispray
are pointed out.
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1 Introduction

In a paper appeared in 1996,[5], Alan Weinstein proposed a Lagrangian formalism for
Lie algebroids. This is general enough to include several Lagrangian formalisms as
those on tangent bundles, on tangent subbundles and on Lie algebras. He obtains the
Euler - Lagrange equations using the Poisson structure on the dual of the given Lie
algebroid and the Legendre transformation defined by a regular Lagrangian on it. He
also defines a notion of semispray. Later on, E. Martinez,[3], develops a Lagrangian
formalism for Lie algebroids that is similar to Klein’s formalism,[2]. He mainly uses a
vector bundle which replaces the double tangent bundle from the usual case. A notion
of semispray appears in this setting,too.

In this paper we are mainly dealing with the notion of semipray in A. Weinstein’
sense. In Section 2 we recall necessary facts from the theory of vector bundles and
establish the notations following the monograph [4].

Section 3 is devoted to semisprays on Lie algebroids. We give a definition that is
a direct generalization of the one used in tangent bundle case and we prove that this
is equivalent with the definition given by A. Weinstein,[5]. A local characterization is
also provided. Three invariants are associated to any semispray.

In Section 4 we show that any regular Lagrangian on a Lie algebroid induces a
semispray. This is done on a direct way: the Euler - Lagrange equations obtained
by A. Weinstein suggest the form of the local coefficients of a semispray and by a
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direct calculation we checked that those coefficients are the appropriate ones. Some
examples are pointed out.

2 Vector bundles

Let ξ = (E, π,M) be a vector bundle of rank m. Here E and M are smooth i.e. C∞

manifolds with dimM = n, dimE = n+m, and π : E →M is a smooth submersion.
The fibres Ex = π−1(x), x ∈M are linear spaces of dimensionm which are isomorphic
with the type fibre Rm.

Let {(Uα, ψα)}α∈A be an atlas on M . A vector bundle atlas is {(Uα, φα,Rm)}α∈A

with the bijections φα : π−1(Uα) → Uα × Rm in the form φα(u) = (π(u), φα,π(u)),
where φα,π(u) : Eπ(u) → Rm is a bijection. The given atlas on M and a vector bundle
atlas provide an atlas {(π−1(Uα),Φα)}α∈A on E.
Here Φα : π−1(Uα) → ϕα(Uα)×Rm is the bijection given by ϕα(u) = (ψα(π(u)), φα,π(u)(u)).
For x ∈M , we put ψα(x) = (xi) ∈ Rn and if (Uβ , ψβ) is another local chart such that
x ∈ Uα ∩ Uβ ̸= ϕ, we set ψβ(x) = x̃i and then ψβ ◦ ψ−1

α has the form

(1.1) x̃i = x̃i(x1, · · · , xn), rank
(
∂x̃i

∂xj

)
= n.

Let (ea) be the canonical basis of Rm. Then φ−1
α,x(ea) := εa(x) is a basis of Ex and

u ∈ Ex has the form u = yaεa(x).
We take (xi, ya) as coordinates on E. For the bundle chart (Uβ , φβ ,Rm) we

put φ−1
β,x(ea) = ε̃a(x) and then u = ỹaε̃a(x). If we set εa(x) = M b

a(x)ε̃b with

rank(M b
a(x)) = m it follows that ỹa = Ma

b (x)y
b. Thus the mapping Φβ ◦ Φ−1

α has
the form

(1.2)
x̃i = x̃i(x1, · · · , xn), rank

(
∂x̃i

∂xj

)
= n

ỹa =Ma
b (x)y

b, rank(Ma
b (x)) = m.

The indices i, j, k, ... and a, b, c... will take the values 1, 2, ...n and 1, 2, ...m, respec-
tively. The Einstein convention on summation will be used.

We denote by F(M),F(E) the ring of real functions on M and E respectively,
and by χ(M), respectively Γ(E), χ(E) the module of sections of the tangent bundle
of M , respectively of the bundle ξ and of the tangent bundle of E. On Uα, the vector

fields

(
∂k :=

∂

∂xk

)
provide a local basis for χ(Uα). The sections εa : Ua → π−1(Uα),

εa(x) = φ−1
α,x(ea) provide a basis for Γ(π−1(Uα)) and a section A : Uα → π−1(Uα)

will take the form A(x) = Aa(x)εa(x), x ∈ Uα.
Let ξ∗ = (E∗, p∗,M) be the dual of the vector bundle ξ. We may also consider the

tensor bundle T r
s (E) over E. The set of sections Γ(T r

s (E)) are F(M)−modules for
any natural numbers r, s. On the sum ⊕r,sΓ(T

r
s (E)) a tensor product can be defined

and one gets a tensor algebra T (E). For the tangent bundle (TM, τ,M) this reduces
to the tensor algebra of the manifold M . The tensor algebra of the manifold E could
be also involved. Its elements are sections in T r

s (TE). The tensorial algebra of E
contains the subset of d−tensor fields on E. For a general definition of these tensor
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fields we refer to [4], Ch. III. Shortly, these tensor fields are defined by components
depending on (xi, ya) and transforming by a change of coordinates as tensors but with

the matrices

(
∂x̃i

∂xj

)
and (Ma

b (x)) and their inverses, only. Notice that in the law of

transformation of a tensor field on E could appear also the matrix

(
∂Ma

b (x)

∂xi
yb
)
.

A large class of examples is provided by the sections in the vertical bundle over E.
We recall that the vertical bundle V E → E is the union of the fibres VuE = kerπ∗,u
over u ∈ E, where π∗,u is the differential of π. A basis of local section of V E → E

is given by

(
∂

∂ya

∣∣∣∣
u

)
and its dual is dya|u. The local components of any element in

Γ(T r
s (V E)), transform under a change of coordinates on E with the matrix (Ma

b (x))
and its inverse (W a

b ). We call such an element a vertical tensor field.
Now if L : E → M is a smooth function on E (called usually a Lagrangian) then

it is easy to check that functions
∂L

∂ya
, gab =

1

2

∂2L

∂ya∂yb
, Cabc =

1

2

∂gab
∂yc

define vertical

tensor fields of covariance indicated by the position and number of indices.

3 Semisprays for Lie algebroids

A vector bundle ξ = (E, π,M) is called a Lie algebroid if it has the following proper-
ties:

1. The space of sections Γ(ξ) is endowed with a Lie algebra structure [, ];

2. There exists a bundle map ρ : E → TM (called the anchor map) which induces
a Lie algebra homomorphism (also denoted by ρ) from Γ(ξ) to χ(M).

3. For any smooth functions f on M and any sections s1, s2 ∈ Γ(ξ) the following
identity is satisfied

[s1, fs2] = f [s1, s2] + (ρ(s1)f)s2.

Locally, we set

(3.1) ρ(sa) = ρia
∂

∂xi
, [εa, εb] = Lc

absc,

A change of local charts implies

(3.2) ρ̃ia =W b
aρ

j
b

∂x̃i

∂xj
,

where W b
a is the inverse of the matrix (Ma

b ).
Examples of Lie algebroids: the tangent bundle τ : TM → M with ρ =identity,

any integrable subbundle of TM with the inclusion as anchor map, TP/G for P (M,G)
a G−principal bundle, see [5].

For a function f onM one defines its vertical lift fv on E by fv(u) = f(π(u)) and
its complete lift f c on E by f c(u) = ρiay

a ∂f
∂xi for u = (x, y) in E. If A = Aa(x)εa is a
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section in ξ, the vertical lift Av is a vector field on E defined by Av(x, y) = Aa(x) ∂
∂ya

and the complete lift Ac is a vector field on E defined by

Ac(x, y) = Aaρia
∂

∂xi
+ (ρib

∂Aa

∂xi
−AdLa

db)y
b ∂

∂ya
.

In particular, εva = ∂
∂ya , ε

c
a = ρia

∂
∂xi − Ld

aby
b ∂
∂yd .

A semispray S for the tangent bundle τ : TM → M is a vector field on TM
which at the same time is a section in the vector bundle τ∗ : TTM → TM , that is we
have τTM (S(u)) = u and τ∗,u(S(u)) = u, ∀u ∈ TM , where τTM is the vector bundle
projection TTM → TM . It follows that τ∗,u(S(u)) = τTM (S(u)), ∀u ∈ TM .

This equation suggests the following
Definition 3.1. Let ξ = (E, ρ,M) be a Lie algebroid with the anchor ρ. A vector

field S on E will be called a semispray if

(3.3) π∗,u(S(u)) = (ρ ◦ τE)(S(u)), ∀u ∈ E

where τE : TE → E is the natural projection.
Let c : I →M , I ⊆ R be a curve on M and let c̃ : I → E be any curve on E such

that π ◦ c̃ = c. Denote by ˙̃c the vector field that is tangent to c̃.
Definition 3.2. We say that c̃ is admissible if

π∗(˙̃c) = ρ(c̃).

In local charts on M and E, we have c(t) = (xi(t)), c̃(t) = (xi(t), ya(t)) and

˙̃c(t) =
dxi

dt

∂

∂xi
+
dya

dt

∂

∂ya
, t ∈ I.

It results
Lemma 3.1. The curve c̃ is admissible if and only if

(3.4)
dxi

dt
(t) = ρia(x(t))y

a(t), ∀t ∈ I.

Again in local charts, let be S = Xi ∂

∂xi
+ Y a ∂

∂ya
a vector field on E.

This is a semispray if and only if

(3.5) Xi(x, y) = ρia(x)y
a.

Thus the coordinates (Y a(x, y)) are not determined. We set for convenience Y a =
−2Ga. Furthermore, under a change of coordinates (xi, yu) → (x̃i, ỹa), the coordinates
(Xi), (Ga) have to change as follows:

(3.6) X̃i =
∂x̃i

∂xj
(x)Xj ,

(3.7) G̃a =Ma
b G

b − 1

2

∂Ma
b

∂xi
ybρicy

c.

Using (3.2) one easily sees that the coordinates (Xi(x, y)) given by (3.5) verify
(3.6).
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Concluding, we have

Theorem 3.1. A vector field S = (ρiay
a)

∂

∂xi
− 2Ga ∂

∂ya
on E is a semispray if

and only if the coordinates (Ga) transform by (3.7).
The integral curves of S are given by the system of differential equations

(3.8)
dxi

dt
= ρia(x)y

a,
dya

dt
+ 2Ga(x, y) = 0.

It comes out these curves are all admissible. The converse is also true, that is we
have

Theorem 3.2. A vector field on E is a semispray if and only if all its integral
curves are admissible.

Remark 3.1. The characterization of a semispray provided by the Theorem 3.2
was taken by A. Weinstein ,[5], as definition for a semispray on E.

Remark 3.2. (i) Let us assume that ρ = 0. Then the admissible curves are all
curves from the fibre Ex0

, x0(x
i
0) ∈M . The integral curves of a semispray S are given

by the equations
dya

dt
+ 2Ga(x0, y) = 0.

(ii)The system of equations (3.8) is no longer equivalent with a second order dif-
ferential equations as it happens for TM . Thus the term of ”second order differential
equations” used sometimes for a semispray is no longer appropriate.

(iii) Let D a distribution on M . We regard it as a subbundle of TM and so we
may view it as a Lie algebroid with the natural inclusion as anchor map. Using a local
basis on D one can see that the admissible curves are those that are tangent to the
distribution D. For details we refer to [1].

Let Ŝ be another semispray on E. Then Ŝ = (ρiay
a)

∂

∂xi
− 2Ĝa ∂

∂ya
, where the

functions (Ĝa(x, y)) have to satisfy (3.7) under a change of coordinates on E. It

follows that Ŝ − S = 2(Ga − Ĝa)
∂

∂ya
and the functions Da = Ga − Ĝa transform by

the rule

(3.9) D̂a =Ma
bD

b.

So we have proved
Theorem 3.3. Any two semisprays on E differ by a vertical vector field on E.
A different point of view on semisprays for algebroids was proposed by E.Martinez,[3].

It can be shortly described as follows.
Let LπE be the subset of E × TE defined by LπE = {(u, z)|ρ(u) = π∗(z)} and

denote by πL : LπE −→ E the mapping given by πL(u, z) = τE(z). Then (LπE, πL, E)
is a vector bundle over E of rank 2m.One proves that this vector bundle is also a Lie
algebroid.

One associates to a section A of ξ the vertical lift AV and the complete lift AC as
sections of πL : LπE −→ E given by

AV (u) = (0, Av(u)), AC(u) = (A(π(u)), Ac(u)), u ∈ E.

If {sa} is a local basis of Γ(E)), then {sVa , sCs } is a local basis for Γ(LπE).
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The vector bundle (LπE, πL, E) admits a canonical section C called the Liouville
or Euler section defined by C(u) = (o, ya ∂

∂ya ) for u = yaεa ∈ E. A section J of

the vector bundle LπE
⊗

(LπE)∗ −→ E characterized by the conditions J(AV ) =
0, J(AC) = AV , A ∈ ΓE is called the vertical endomorphism. We have that J2 = 0.
A section S of the vector bundle (LπE, πL, E) is said to be a semispray if it satisfies
the condition JS = C. This definition is equivalent with the preceding one. Indeed,
in local coordinates if we set S = AaεCa + SaεVa , the condition JS = C gives Aa = ya

and so S = ya(ρia
∂

∂xi − Lc
aby

b ∂
∂yc ) + Sa ∂

∂ya = yaρia
∂

∂xi + Sa ∂
∂ya since Lc

aby
ayb = 0.

For a semispray on TM , a case when this is equivalent with a system of second
order differential equations (SODE), there exists a way to find geometric invariants
that to determine, up to a change of coordinates, the solutions of the system.

This way led to a KCC-theory named so as after Kosambi, Cartan and Chern.
The KCC-theory apparently does not work for semisprays on Lie algebroids. How-

ever, at least formally we can associate to a semispray S = (ρiay
a)

∂

∂xi
−2Ga(x, y)

∂

∂ya
,

the following invariants:

(3.10) ζa = 2Ga − ∂Ga

∂yb
yb,

(3.11) Ξa =
∂Ga

∂yb
− ∂Ga

∂yb∂yc
yc,

(3.12) Γa = 2Ga − 2
∂Ga

∂yb
yb +

∂Ga

∂yb∂yc
ybyc.

Indeed, it is not difficult to check that all these sets of functions define vertical
vector fields on E.

To find a complete list of such invariants could be a future task.

4 A semispray derived from a regular Lagrangian

Let L : E → R be a regular Lagrangian on the Lie algebroid (E, [, ], ρ), that is L is a
smooth functions such that the matrix with the entries

(4.1) gab(x, y) =
1

2

∂2L

∂ya∂yb
,

is of rank m.
In [5], one associates to L the Euler - Lagrange equations

(4.2)
d

dt

(
∂L

∂ya

)
= ρia

∂L

∂xi
+ Lc

bay
b ∂L

∂yc
,

for c(t) = (xi(t), ya(t)) an admissible curve.
Expanding the derivative in (4.2), using (4.1) and (3.4), we may put (4.2) in the

form
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(4.3)
dya

dt
+ 2Ga

L(x, y) = 0,

with the notation

(4.4) Ga
L =

1

4
gab

(
∂2L

∂yb∂xi
ρicy

c − ρib
∂L

∂xj
− Lc

bdy
d ∂L

∂yc

)
.

We show that the function (Ga
L) verifies (3.7) under a change of coordinates on E.

We set

(4.5) Ea = 4gabG
b,

where

(4.6) Ea =
∂2L

∂ya∂xi
ρiby

b − ρia
∂L

∂xi
− Lc

bay
b ∂L

∂yc
.

Then we use (3.2) as well as the following equations:

∂L

∂xi
=

∂L

∂x̃j
∂x̃j

∂xi
+
∂L

∂ỹa
∂Ma

c

∂xi
yc

∂2L

∂ya∂xi
=M b

a

(
∂2L

∂yb∂x̃j
∂x̃j

∂xi
+ 2g̃db

∂Md
c

∂xi
yc
)
+
∂L

∂ỹd
∂Md

a

∂xi

Lc
abM

e
c =M c

aM
d
b L̃

e
cd + ρka

∂Me
b

∂xk
− ρkb

∂Me
a

∂xk

in order to derive

(4.7) Ea =M b
aẼb + 2M b

a g̃bd
∂Md

c

∂xi
ycρidy

d.

Using this in (4.5) one shows that G̃a
L is related to Ga

L as in (3.7).
Thus we have proved
Theorem 4.1. Let L be a regular Lagrangian on the Lie algebroid (E, [, ], ρ). Then

L defines a semispray SL = (ρiay
a)

∂

∂xi
− 2Ga

L(x, y)
∂

∂ya
, where the functions Ga

L are

given by (4.4).
Example 4.1. Let gab(x) be the coefficients of a Riemannian metric in the Lie

algebroid (E, [, ], ρ). Then

(4.8) L(x, y) = gab(x)y
ayb

is a regular Lagrangian on E. The semispray associated to it is determined by the
functions

(4.9) Ga =
1

2
gab

(
∂gbc
∂xi

ρid −
1

2

∂gcd
∂xi

ρib − Le
dbgec

)
ycyd.

Example 4.2. A more general example is provided by the regular Lagrangians
which are homogeneous of degree 2 in (ya). By the Euler theorem one obtains
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(4.10) L(x, y) = gab(x, y)y
ayb,

where (gab(x, y)) are homogeneous functions of degree 0.

As
∂

∂ya
are homogeneous functions of degree 1 and the derivative with respect to

(xj) does not affect the degree of homogeneity, it results that the coefficients (Ga)
from (4.4) are homogeneous of degree 2 in (ya). This fact is equivalent with ζa = 0
and so we have a meaning of the invariant ζa. The corresponding semispray is called
a spray.
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[2] Klein J., Espaces variationnels et mécanique, Ann. Inst. Fourier (Grenoble) 12
(1962), 1-124.

[3] Martinez E., Lagrangian mechanics on Lie algebroids, Acta Applicandae Mathe-
maticae, 67 (2001), 295-320.

[4] Miron R., Anastasiei M., Geometry of Lagrange spaces: theory and applications,
FTPH 59, Kluwer Academic Publishers, 1994.

[5] Weinstein A., Lagrangian Mechanics and Grupoids, Fields Institute Communica-
tions, vol. 7, 1996, p. 207-231.

Author’s address:

Mihai Anastasiei

Faculty of Mathematics, University Al.I.Cuza,
Iaşi, 700506, Romania.

Mathematics Institute ”O.Mayer” Iaşi,
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