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Abstract

In this paper we show that several dynamical systems with time delay can be
described as vector fields associated to smooth functions via a bracket of Leibniz
structure. Some examples illustrate the theoretical considerations.
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1. Introduction

A Leibniz structure on a smooth manifold M is defined by a tensor field B of
type (2, 0). The tensor field B and a smooth function h on M , called a Hamiltonian
function, define a vector fieldXh which generates a differential system, called a Leibniz
system. Examples of Leibniz structures are: the simplectic structures, the Poisson
and almost Poisson structures etc. If B is skewsymmetric then we have an almost
simplectic structure and if B is symmetric then we have an almost metric structure
(Section 2). A skewsymmetric tensor field P of type (2, 0), a symmetric tensor field
g of type (2, 0) and a smooth function h define a Leibniz system, which characterizes
an almost metriplectic manifold. For a skewsymmetric tensor field P of type (2, 0),
a symmetric tensor field g of type (2, 0) and two smooth functions h1, h2 one defines
an almost Leibniz structure, which in certain conditions is a Leibniz structure for the
function h = h1+h2. An example of almost Leibniz system is the revisited rigid body
(Section 3).

To define a differential system with time delay on a smooth manifold M it is
suitable to consider the product manifold M ×M and a vector field X ∈ X (M ×M)
such that X(π∗

1f) = 0, where f ∈ C∞(M) and π1 : M ×M → M is the projection.
A class of such systems is represented by these which are defined by a tensor field
of type (2, 0) having certain components null. Examples of almost Leibniz structures
with time delay are: the rigid body with time delay, the three–wave interaction with
time delay etc. In the case when the almost Leibniz structure with time delay is defined
by a skewsymmetric tensor field of type (2, 0), a symmetric tensor field of type (2, 0)
on M × M (having certain components null) and two functions h1, h2 with some
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properties, one obtain the revisited differential system with time delay associated to
the previous system (Section 4).

The results of the paper allow to approach some dynamics with time delay which
are described by vector fields on M ×M having some geometric properties as conser-
vation laws, divergence or rotor null etc. (Section 5).

This paper presents differential systems with time delay defined by almost Leibniz
structures, examples of such systems and a numerical simulation. Purposely the au-
thors leave aside the analysis of the dynamics considered since that one needs specific
methods to investigate the differential systems with time delay.

2. Leibniz systems

Let M be a smooth manifold and C∞(M) be the ring of the smooth functions on
it. A Leibniz bracket on M is a bilinear map [·, ·] : C∞(M) × C∞(M) → C∞(M)
which is a derivation on each entry, that is,

[fg, h] = [f, h]g + f [g, h], [f, gh] = [f, g]h+ g[f, h],

for any f, g, h ∈ C∞(M). We say that the pair (M, [·, ·]) is a Leibniz manifold.
Let (M, [·, ·]) be a Leibniz manifold and h ∈ C∞(M). There exist two vector fields

XR
h and XL

h on M uniquely characterized by the relations

XR
h (f) := [f, h], XL

h (f) := −[h, f ], ∀f ∈ C∞(M).

We will call XR
h the Leibniz vector field associated to the Hamiltonian function

h ∈ C∞(M) and we denote it always by Xh. The differential system generated by the
Leibniz vector field Xh will be called a Leibniz system or a Leibniz dynamics.

Since [·, ·] is a derivation on each argument it only depends on the first derivatives
of the functions and thus, we can define a tensor map B : T ∗M × T ∗M → R by

B(df, dg) := [f, g], for any f, g ∈ C∞(M).

We say that the Leibniz manifold (M, [·, ·]) is non degenerate whenever B is non
degenerate.

If (M, [·, ·]) is non degenerate then we can define a tensor field of type (0, 2) on
M , ω : X (M)×X (M) → C∞(M), by

ω(Xf , Xg) := [f, g], for any f, g ∈ C∞(M).

A function f ∈ C∞(M) such that [f, g] = 0 (respectively, [g, f ] = 0) for any
g ∈ C∞(M) is called a left (respectively, right) Casimir of the Leibniz manifold
(M, [·, ·]).

A Leibniz manifold (M, [·, ·]) where the bracket is antisymmetric, that is,

[f, g] = −[g, f ], ∀f, g ∈ C∞(M),

is called an almost Poisson manifold. If (M, [·, ·]) is an almost Poisson manifold
we define the Jacobiator of the bracket [·, ·] as the map J : C∞(M) × C∞(M) ×
C∞(M) → C∞(M) given by
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J (f, g, h) :=
∑
cyclic
(f,g,h)

[[f, g], h], for any f, g, h ∈ C∞(M).

An almost Poisson manifold for which the Jacobiator is the zero map is a Poisson
manifold. If (M, [·, ·]) is a non degenerate Leibniz manifold for which the tensor field
ω is a closed 2–form on M then (M,ω) is a symplectic manifold.

We point out a relevant variety of systems described via a Leibniz bracket, [6]. Let
g ∈ T 0

2 (M) be a pseudometric on the smooth manifold M , that is, a symmetric non
degenerate tensor field of type (0, 2) on M . Let g# : T ∗M → TM be the associated
sharp vector bundle map. Given any smooth function h ∈ C∞(M) we define its
gradient ∇h : M → TM as the vector field on M given by ∇h = g#dh. In these
conditions let [·, ·] : C∞(M)× C∞(M) → R be the Leibniz bracket defined by

[f, h] := g(∇f,∇h), for any f, h ∈ C∞(M),

that is the pseudometric bracket associated to g. It is clearly symmetric and non
degenerate. The Leibniz vector field Xh associated to any function h ∈ C∞(M) is
such that Xh = ∇h, that is Xh generates a gradient dynamical system. In local
coordinates the vector field Xh has the components

Xi
h = gij

∂h

∂xj
,

where (gij) are the contravariant components of g and i, j = 1, 2, . . . ,dimM .
A problem in dynamics is the study of the interactions between waves of different

frequencies with different resonance conditions. A particular case the three–wave
interaction can be formulated as a gradient dynamical system in R3, using the
Leibniz bracket induced by the constant pseudometric g with the components gii =
1/siγi, gij = 0 for i ̸= j, where s1, s2, s3 ∈ {−1, 1}, γ1, γ2, γ3 ∈ R∗, γ1 + γ2 + γ3 = 0
and the Hamiltonian function h : R3 → R, h(x1, x2, x3) = x1x2x3. The Leibniz vector
field associated to h generates the gradient dynamical system given by

ẋ1 = s1γ1x
2x3, ẋ2 = s2γ2x

1x3, ẋ3 = s3γ3x
1x2.

3. Almost metriplectic systems

Let M be a smooth manifold, P a skewsymmetric tensor field of type (2, 0) and g
a symmetric tensor field of type (2, 0). The map [·, ·] : C∞(M)× C∞(M) → C∞(M)
given by

[f, h] := P (df, dh) + g(df, dh), ∀f, h ∈ C∞(M),

defines a Leibniz bracket on M . The Leibniz vector field Xh associated to the Hamil-
tonian function h ∈ C∞(M) is such that

Xh(f) = P (df, dh) + g(df, dh), for any f ∈ C∞(M).

In local coordinates Xh has the components

Xi
h = P ij ∂h

∂xj
+ gij

∂h

∂xj
,
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where P ij = P (dxi, dxj), gij = g(dxi, dxj).
If P is a Poisson tensor field and g is a non degenerate tensor field, then

(M,P, g, [·, ·]) is called a metriplectic manifold of the first kind.
If P is a tensor field defining a simplectic structure and g is a tensor field defining

a Riemannian structure on M , then the corresponding metriplectic manifold (M,P, g)
was studied by E. Kähler ([5]), where [·, ·] was called an interior product).

An example of a metriplectic system is the equation arising from the Landau–
Lifschitz model for the magnetization vector field x = (x1, x2, x3)T ∈ X (R3) in an
external vector field B = (B1, B2, B3)T ∈ X (R3),

ẋ = γx×B +
λ

∥x∥2
(x× (x×B)),

where γ and λ are physical parameters, [1], [6]. The Leibniz bracket describing the
dynamical system is

[f, h](x) = x · (∇f(x)×∇h(x)) +
λ

γ∥x∥2
(x×∇f(x)) · (x×∇h(x)) ,

where × denotes the standard cross product in R3, ∇ is the Euclidean gradient,
f, h ∈ C∞(R3), x ∈ R3 and h(x) = γB · x is the Hamiltonian function.

Let M be a smooth manifold and P, g ∈ T 2
0 (M) two tensor fields of type (2, 0).

Consider the map [·, (·, ·)] : C∞(M) × C∞(M) × C∞(M) → C∞(M) defined by the
relation

[f, (h1, h2)] := P (df, dh1) + g(df, dh2), ∀f, h1, h2 ∈ C∞(M).

Proposition 3.1. The bracket map [·, (·, ·)] satisfies the following properties:
a) [fh, (h1, h2)] = [f, (h1, h2)]h+ f [h, (h1, h2)];
b) [f, h(h1, h2)] = h[f, (h1, h2)] + h1P (df, dh) + h2g(df, dh);
c) [f, l(h, h)] = l[f, (h, h)] + h[f, (l, l)],

for any f, h, l, h1, h2 ∈ C∞(M).
The bracket [·, (·, ·)] is a left derivation called an almost Leibniz bracket and the

structure (M,P, g, [·(·, ·)] is said to be an almost Leibniz manifold. The restriction
of [·, (·, ·)] to C∞(M)×△C∞(M), where △C∞(M) is the diagonal of C

∞(M)×C∞(M),
defines a Leibniz bracket on (M,P, g), because the bracket [f, h] := [f, (h, h)], ∀f, h ∈
C∞(M) is a derivation on each argument.

If P is a Poisson tensor field and g is a non degenerate symmetric tensor field,
then (M,P, g, [·, (·, ·)]) is called a metriplectic manifold of the second kind.
Such a structure is considered in [2]. Given h1, h2 ∈ C∞(M) the Leibniz vector field
associated to (h1, h2) is such that

X(h1,h2)(f) = P (df, dh1) + g(df, dh2), ∀f ∈ C∞(M).

In local coordinates the corresponding differential system is

ẋi = [xi, (h1, h2)] = P ij ∂h1

∂xj
+ gij

∂h2

∂xj
, i, j = 1, . . .dimM.

Proposition 3.2. Let (M,P, g, [·, (·, ·)]) be an almost Leibniz manifold with P
skewsymmetric, g symmetric (respectively, a multiplectic manifold of second kind)
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and let h1, h2 ∈ C∞(M) be two functions such that P (df, dh2) = 0, g(df, dh1) = 0,
for any f ∈ C∞(M). The Hamiltonian function h = h1 + h2 defines on M an almost
metriplectic (respectively, a metriplectic) system of the first kind.

Proposition 3.2 is useful when we consider the revisited differential system of
a (almost) Poisson differential system with a Hamiltonian function and a Casimir
function. More precisely we have

Proposition 3.3. For a (almost) Poisson differential system on M given by the
tensor field P , with a Hamiltonian function h1 and a Casimir function h2, there
exists a tensor field g such that (M,P, g, [·, (·, ·)]) is a metriplectic manifold of the
second kind. The differential system associated to this structure is called the revisited
differential system of the initial system.

For example the rigid body with the Poisson structure

P =

 0 x3 −x2

−x3 0 x1

x2 −x1 0

 ,

the Hamiltonian function h1 =
1

2
[a1(x

1)2+a2(x
2)2+a3(x

3)2] and the Casimir function

h2 =
1

2
[(x1)2 + (x2)2 + (x3)2] has the differential system

ẋ1 = (a2 − a3)x
2x3, ẋ2 = (a3 − a1)x

1x3, ẋ3 = (a1 − a2)x
1x2.

A tensor field g defining the revisited differential system has the components

g11 =−a22(x
2)2− a23(x

3)2, g22 =−a21(x
1)2− a23(x

3)2, g33 = −a21(x1)2− a22(x
2)2,

g12 = g21 = a1a2x
1x2, g13 = g31 = a1a3x

1x3, g23 = g32 = a2a3x
2x3.

The revisited differential system is

ẋ1 = (a2 − a3)x
2x3 + a2(a1 − a2)x

1(x2)2 + a3(a1 − a3)x
1(x3)2,

ẋ2 = (a3 − a1)x
1x3 + a3(a2 − a3)x

2(x3)2 + a1(a2 − a1)x
2(x1)2,

ẋ3 = (a1 − a2)x
1x2 + a1(a3 − a1)x

3(x1)2 + a2(a3 − a1)x
3(x2)2.

4. Leibniz systems with time delay

Let M be a n–dimensional smooth manifold, the product manifold M × M =
{(x̃, x) | x̃ ∈ M,x ∈ M} and the canonical projections π1 : M ×M → M , π2 : M ×
M → M . A vector field X on M ×M satisfying the condition X(π∗

1f) = 0, for any

f ∈ C∞(M) is given in a local chart by X (x̃, x) = Xi (x̃, x)
∂

∂xi
.

A differential system with time delay is a differential system associated to a
vector field X on M ×M for which X(π∗

1f) = 0, ∀f ∈ C∞(M) and it is given in a
local chart by

(4.1) ẋi(t) = Xi (x̃(t), x(t)) , i = 1, 2, . . . , n,

where x̃(t) = x(t − τ), with τ > 0 and the initial condition x(θ) = φ(θ), θ ∈ [−τ, 0]
and φ : [−τ, 0] → M are smooth maps.
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Some systems of differential equations with time delay in Rn were studied in
[3], [4]. For such a system are relevant the geometric properties of the vector field
defining that system as first integrals (constants of the motion), Morse functions,
almost metriplectic structure etc.

Example 4.1. The rigid body with time delay in all directions. Let a1, a2, a3 ∈ R
be three distinct numbers and the vector field X ∈ X (R3 ×R3) with the components

(4.2) X1 = a2x
2x̃3 − a3x

3x̃2, X2 = a3x
3x̃1 − a1x

1x̃3, X3 = a1x
1x̃2 − a2x

2x̃1.

The corresponding differential system with time delay is

(4.3)

ẋ1(t) = a2x
2(t)x3(t− τ)− a3x

3(t)x2(t− τ),

ẋ2(t) = a3x
3(t)x1(t− τ)− a1x

1(t)x3(t− τ),

ẋ3(t) = a1x
1(t)x2(t− τ)− a2x

2(t)x1(t− τ),

with the initial condition xi(θ) = φi(θ), i = 1, 2, 3, θ ∈ [−τ, 0], τ ≥ 0. If

h1 ∈ C∞(R3), h1(x) =
1

2
[(x1)2 + (x2)2 + (x3)2] and h2 ∈ C∞(R3), h2(x) =

1

2
[a1(x

1)2 + a2(x
2)2 + a3(x

3)2], then X(π∗
2h2) = 0 and X(π∗

1h1) = α ∈ C∞(R3 ×R3)

with α (x̃, x) ̸= 0 for (x̃, x) in an open setD ⊂ R3×R3, α (x̃, x) = a1x
1
(
x̃2x3 − x̃3x2

)
+

a2x
2
(
x̃3x1 − x̃1x3

)
+ a3x

3
(
x̃1x2 − x̃2x1

)
. h2 is a first integral for (4.3).

Example 4.2. The revisited rigid body with time delay. Let a1, a2, a3 be three
distinct real numbers and the vector field X ∈ X (R3 × R3) with the components

(4.4)

X1 = (a2 − a3)x
2x3 + a2(a1 − a2)x̃

1x̃2x2 + a3(a1 − a3)x̃
1x̃3x3,

X2 = (a3 − a1)x
1x3 + a3(a2 − a1)x̃

2x̃3x3 + a1(a2 − a1)x̃
2x̃1x1,

X3 = (a1 − a2)x
1x2 + a1(a3 − a1)x̃

3x̃1x1 + a2(a3 − a2)x̃
3x̃2x2.

The differential system associated to X is the differential system with time delay
of the revisited rigid body. Let P be the skew symmetric tensor field of type (2, 0) on

R3 × R3 given by P = P ij(x)
∂

∂xi
⊗ ∂

∂xj
, where

(
P ij(x)

)
=

 0 x3 −x2

−x3 0 x1

x2 −x1 0


and g the symmetric tensor field of type (2, 0) on R3×R3 given by g = gij (x̃, x)

∂

∂x̃i
⊗

∂

∂xj
, where

(
gij (x̃, x)

)
=

 −a22x
2x̃2− a23x

3x̃3 a1a2x̃
1x2 a1a3x̃

1x3

a1a2x̃
1x2 −a21x

1x̃1− a23x
3x̃3 a2a3x̃

2x3

a1a3x̃
1x3 a2a3x̃

2x3 −a21x̃
1x1− a22x̃

2x2

 .

If h1 (x̃) =
1

2

[(
x̃1

)2
+
(
x̃2

)2
+
(
x̃3

)2]
, h2(x) =

1

2

[
a1

(
x1

)2
+ a2(x

2)2 + a3(x
3)2

]
,

then the components (4.4) of X satisfy the relations
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Xi (x̃, x) = P ij(x)
∂h2

∂xj
+ gij (x̃, x)

∂h1

∂x̃j
, i, j = 1, 2, 3.

Let T 2
0 (M ×M) be the modulus of the tensor fields of type (2, 0) on the product

manifold M ×M and let us denote

T 02 :=
{
P ∈T 2

0 (M×M)|P (π∗
1f1, π

∗
1f2)=P (π∗

1f1, π
∗
2f2) = 0,∀f1, f2∈C∞(M)

}
,

T 11 :=
{
g∈T 2

0 (M×M)|g(π∗
1f1, π

∗
1f2) = g(π∗

2f1, π
∗
2f2) = 0,∀f1, f2 ∈ C∞(M)

}
.

Consider P ∈T 02, g∈T 11 and the map [·, (·, ·)] : C∞(M)×C∞(M×M)×C∞(M ×
M) → C∞(M ×M) defined by the relation

[f, (h1, h2)] :=P (dπ∗
2f, dh2) + g(dπ∗

2f, dh1),∀f ∈C∞(M), h1, h2∈C∞(M ×M).

Proposition 4.1. The bracket map [·, (·, ·)] satisfies the following properties:
a) [f1f2, (h1, h2)] = [f1, (h1, h2)]f2 + f1[f2, (h1, h2)];
b) [f, h(h1, h2)] = h[f, (h1, h2)] + h1P (dπ∗

2f, dh) + h2g(dπ
∗
2f, dh);

c) [f, l(h, h)] = l[f, (h, h)] + h[f, (l, l)],
for any f1, f2 ∈ C∞(M) and h, l, h1, h2 ∈ C∞(M ×M).

The bracket [·, (·, ·)] is called the almost Leibniz bracket with time delay and
the structure (M,P, g, [·, (·, ·)]) is said be an almost Leibniz manifold with time
delay. For two functions h1, h2 ∈ C∞(M ×M) the relation Xh1h2

(f) = [f, (h1, h2)]
defines a vector field such that Xh1h2

(π∗
1f) = 0. In local coordinates

Xi
h1h2

= P ij ∂h2

∂xj
+ gij

∂h1

∂x̃j
, i, j = 1, 2, . . . , n.

By a straighforward calculation it results
Proposition 4.2. If the tensor field P ∈ T 02(M × M) is skewsymmetric, the

tensor field g ∈ T 11(M × M) is symmetric and h1, h2 ∈ C∞(M × M) satisfy the
conditions P (dπ∗

2f, dh1) = 0, g(dπ∗
2f, dh2) = 0, ∀f ∈ C∞(M), then [f, (h1, h2)] =

[f, (h, h)], where h = h1 + h2.
Proposition 4.2 allows the local determination of a tensor field g in terms of deriva-

tives of the functions h1, h2.
Proposition 4.3 Let h1, h2 ∈ C∞(Rn × Rn),

D =

{
(x̃, x) ∈ Rn × Rn | ∂h2

∂xi
̸= 0, i = 1, 2, . . . , n

}
and let P ∈ T 02(D) be a skewsymmetric tensor field such that P (dπ∗

2f, dπ
∗
2h1) = 0,

∀f ∈ C∞(M). There exists a symmetric tensor field g ∈ T 11(D) with g(dπ∗
2f, dπ

∗
2h2) =

0, ∀f ∈ C∞(M) such that (D,P, g, [·, (·, ·)]) is a almost Leibniz structure with time
delay.

The differential system

(4.5) ẋi = P ij (x̃, x)
∂h2 (x̃, x)

∂xj
+ gij (x̃, x)

∂h1 (x̃, x)

∂x̃j
, i, j = 1, 2, . . . , n,

is called the revisited differential system with time delay associated to the
differential system with time delay given by
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ẋi = P ij (x̃, x)
∂h2 (x̃, x)

∂xi
, i, j = 1, 2, . . . , n,

where x̃(t) = x(t− τ), τ > 0.

Example 4.3. Consider the differential system with time delay on R3 ×R3 given
by the tensor field P with the components

(P ij) =

 0 x3 −x̃2

−x3 0 x1

x̃2 −x1 0


and the function h1 (x̃, x) = a1x̃

1x1 + a2x̃
2x2 + a3x̃

3x3, that is

(4.6)

ẋ1(t) = a2x
2(t− τ)x3(t)− a3x

2(t− τ)x3(t− τ),

ẋ2(t) = a3x
1(t)x3(t− τ)− a1x

1(t− τ)x3(t),

ẋ3(t) = a1x
1(t− τ)x2(t− τ)− a2x

1(t)x2(t− τ).

The orbit of that system, for a1 = 0.6, a2 = 0.4, a3 = 0.2, is given in Fig. 1.

The function h2 (x̃, x) =
1

2
(x1)2 + x2x̃2 +

1

2
(x3)2 has the property P (dh2, df) = 0,

∀f ∈ C∞(R3 × R3). Based on Proposition 4.3 there exists a tensor field g such that
g(dh1, df) = 0, ∀f ∈ C∞(R3 × R3). Its components are

(gij) =

 −a22x
2x̃2 − a3x

3x̃3 a1a2x̃
1x2 a1a3x̃

1x3

a1a2x̃
1x2 −a21x

1x̃1 − a3x
3x̃3 a2a3x̃

2x3

a1a3x̃
1x2 a2a3x̃

2x3 −a21x
1x̃1 − a22x

2x̃2

 .

The revisited differential system with time delay associated to the system (4.6) is
the following:

(4.7)

ẋ1(t) = a2x
2(t− τ)x3(t)− a3x

2(t− τ)x3(t− τ),

ẋ2(t) = a3x
1(t)x3(t− τ)− a1x

1(t− τ)x3(t)−
−a21x

1(t)x1(t− τ)x2(t)− a23x
2(t)x3(t)x3(t− τ),

ẋ3(t) = a1x
1(t− τ)x2(t− τ)− a2x

1(t)x2(t− τ).

The orbit of that system, for a1 = 0.6, a2 = 0.4, a3 = 0.2 is given in Fig.2.
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5. Conclusions

The methods utilized in our paper allow an approach of the differential systems
with time delay having some geometrical properties by means of differential geometry.
The authors are convinced that several other thing of differential geometry accompany
the study of the differential systems with time delay.
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