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Abstract

Gauge theory describe the interactions of fields and gives unified model both
at classical and quantum levels. The basic physical quantity of such a theory
is the tensor of gauge potentials describing the interacting fields. The tensorial
calculus involve a great number of calculations, that allows computer imple-
mentation. Symbolic and numerical programs, like Maple, are appropriate from
this point of view. In this paper we present some computer algebra procedures
applied to the two models of gauge theory for gravitation. Firstly, we develop a
model of Poincaré gauge self-dual theory and secondly, a deSitter gauge theory.
Both models use the Minkowski space-time, endowed with spherical symmetry.
In the first case the self-duality conditions are imposed and the equations for the
gauge fields are obtained while, in the second case we compute the strength ten-
sor. For these models we obtain analytical solutions. Also, we develop a method
for obtaining solutions without singularities of the gauge field equations.

All the calculations, including the integration of the field equations, are per-
formed using analytical procedures conceived in GRTensorII for MapleV. The
program allows to compute (without using a metric) the strength tensor, the
Riemann tensor, the Ricci tensor, the curvature scalar, the self-duality equa-
tions, the field equations and the integration of these equations.

Mathematics Subject Classification: 68W30, 81T13.
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1 Introduction

The study of field interactions using gauge theories requires a great volume of sym-
bolic calculations. For such a purpose, there are many versatile algebraic computing
systems. The most important of these are MAPLE, MATHEMATICA, REDUCE, etc.
In this paper we use the computer algebra language MAPLE, which is a comprehen-
sive computer system for advanced mathematics. It includes facilities for interactive
algebra, calculus, discrete mathematics, graphics, numerical computation, and many
other areas of mathematics. It also provides a unique environment for rapid devel-
opment of mathematical programs using its vast library of built-in functions and
operations.
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On the MAPLE platform we use the package GRTensor [7]. GRTensor is a package
for the calculation and manipulation of components of tensors and related objects.
The program is designed to operate efficiently for a wide range of applications and
allows the use of a number of different mathematical formalisms. The algorithms for
this package are optimized for the individual formalisms and transformations between
formalisms are simple and intuitive. Additionally, the package allows for customization
and expansion with the ability to define new objects, user define algorithms, and add-
on libraries. Especially, we use this property to define new objects. In designing the
package, emphasis has also been placed on the interface allowing simple user input,
as well as presenting readable output. The results of calculations are printed on the
screen in the usual form.

Recently, many works have been given with intention to develop a gauge theory
of gravitation [5]. Some authors consider the Poincaré group or deSitter group as
”active” symmetry groups, i.e. acting on the space-time coordinates [1]. Other authors
adopt the ”passive” point of view when the space-time coordinates are not affected by
group transformations [8, 11]. Only the fields change under the action of the symmetry
group.

In this paper we adopt the second point of view to develop a deSitter (DS) gauge
theory of gravitation and a Poincaré (P) self dual theory of gravitation over a spher-
ical symmetric Minkowski space-time. Therefore we restrict ourselves to recast DS
symmetry or P symmetry, and its consequences in the form of an inner symmetry.
The coordinate system used to specify the space-time events is not affected anymore
by DS or Poincaré transformations. In the particular case, when the constants of
structure vanish, we can obtain the theory of electromagnetic field.

The Section 2 presents the facilities of GRTensorII for tensorial calculus. The Sec-
tion 3 is devoted to the formulation of the Poincaré and deSitter gauge models on
a spherical symmetric Minkowski space-time. The general expressions for the com-
ponents FA

µν of the strength tensor of the gauge fields are obtained. In Section 4 we
choose a model of theory for the Poincaré group, with spherical symmetry for po-
tentials, which has four independent functions, each depending only the 3D radius
r. We give also a part of the analytical program conceived by us in GRTensor and
used to obtain the self-duality equations and field equations. Finally, an analitical
solution of these equations are obtained. The Section 5 is devoted to the formulation
a deSitter gauge model. The case of null torsion is considered and an analytical solu-
tion of Scwarzschild-deSitter type is given. The conclusion is that the deSitter group
can be considered as a ”passive” gauge symmetry group for gravitation. Therefore,
the gravitation can be described by gauge potentials defined on a Minkowski space-
time and we have not to use Riemann or Riemann-Cartan theories. The main part of
the analytical program used for these calculations is given in this section. A method
for obtaining solutions without singularities for gauge field equations is presented in
Section 6.

The tensorial calculus involves a great number of calculations and sometime it is
impossible to effectuate, them by hand. But, we can use the computer implementation
for such a purpose. From this point of view, the symbolic programs, as Maple, are
appropriate. In this paper all the calculations are performed using the GRTensorII
computer algebra package, which runs within the MapleV environment.
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2 GRTensorII, an ideal tool for work with tensors

GRTensorII is a computer algebra package for performing calculations in the general
area of differential geometry. Its purpose is the calculation of tensor components
on curved spacetimes specified in terms of a metric or a set of basis vectors. The
package contains a library of standard definitions of a large number of commonly used
curvature tensors. The standard object libraries are easily expandable by a facility for
defining new tensors. Calculations can be carried out in spaces of arbitrary dimension,
and in multiple spacetimes simultaneously. Though originally designed for use in the
field of general relativity, GRTensorII is useful in many other fields. GRTensorII is not
a stand alone package, but requires an algebraic engine. The program was originally
developed for MapleV. GRTensorII runs with all versions of Maple, MapleV Release
3 to Maple 9. A limited version (GRTensorM) has been ported to Mathematica.

GRTensorII and related software and documentation are distributed free of charge
as an aide for both research and teaching.

In GRTensor, when the goal is the calculation of components of indexed objects
(in particular tensors) or the defining new tensors, first of all, we must to specify the
space geometry. The simplest way to specify a space geometry is to use the makeg()
facility. This function can be used to enter all information needed to specify a coor-
dinate metric (a n× n dimensional 2-tensor) or basis (a set of n linearly independent
vectors related by a user-defined inner product). The metrics created can be saved
to ASCII files. These files can be loaded into GRTensor using either the qload() or
grload() commands. For example, in our models we use the metric from relation (1)
in the Section 3. After the first three commands from analytical program, we start
the GRTensor package in a new MapleV session and we load the metric from file
”spheric.mpl”. On screen the metric is printed in usual form (like writing by hand).

restart:
grtw():
grload(minkowski, ‘c:/maple/spheric.mpl‘);

GRTensorII Version 1.77 (R5)
3 May 2000

Developed by Peter Musgrave, Denis Pollney and Kayll Lake
Copyright 1994-2000 by the authors.

Latest version available from: http://grtensor.phy.queensu.ca/
Default spacetime = minkowski
For the minkowski spacetime:

Coordinates
x(up)

xa = [t, r, θ, φ]
Line element

ds2 = dt2 − dr2 − r2dθ2 − r2 sin(θ)2dφ2

coordonate sferice, 4 dim.

The main command provided by GRTensor to calculate and operate on tensors
with any given index configuration is grcalc(). Tensors are specified by their name
and index configuration, using abbreviations dn and up to indicate covariant (down
indices) and contravariant (up indices) indices. For instance, in program we use the
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command: grcalc(Famn(up,dn,dn)); which requests the calculation of the tensor
F a

µν from Eq. (6). Of course, before this command we must define this tensor.
In general, the commands which act on tensors take the form:

commandName(tensorSeq , [other Arguments])

Here tensorSeq is a sequence of GRTensor objects each of which has the following
form:

tensorName(indexSeq).

For above example, the name tensor is Famn. The argument indexSeq is a sequence
of names giving the configuration of the tensor. Available index type are: up, dn -
covariant/contaravariant indices; pup, pdn - partial derivatives; cup, cdn - covariant
derivative, etc. Thus Famn(up,dn,dn,pdn) refers to the objects:

F a
µν,γ =

∂F a
µν

∂xγ

where xγ are the coordinates of metric.
The grdef() command is included to facilitate the specification of new tensor in

a simple and natural manner. It allows tensors to be defined either as an equation
in terms of previously defined tensors, or by manual entry of the components values.
Inner and outer products of tensors, symmetrizations, and derivatives can all be spec-
ified as part of the tensor definitions. Furthermore, index symmetries of the newly
defined tensor can be included.

There are two ways to define a new tensor using the command grdef(). The
first method is to simply state the name of tensor, including the index structure and,
eventual, the symmetrizations. For instance, the command:

grdef(‘eta1{(a b)}‘);

used in the analytical program define a tensor with the name eta1 whose component
values are arbitrary and can be manually specified. Specifically, it creates a definition
of a covariant two-index object, eta1. The indices are listed in curly braces, {}, and as-
signed the labels a and b. The tensor would be accessed as eta1(dn,dn) in commands
such as grcalc(). The round braces ( ) indicate that this tensor is symmetric in en-
closed indices. Symmetries among tensor indices can be used in calculation programs
to significantly reduce the time it takes for a calculation by recognizing redundant
components. If we define an antisymmetric object, we use the square braces [ ].

The second method for using the command grdef()provides a complete definition
in term of previously defined tensors. For example, the tensor F a

µν from Eq. (6) is
defined in the form:

grdef(‘Famn{^a miu niu}:=ev{^a niu, miu}-omega{^a ^b niu}*
ev{^c niu}*eta1{b c}-ev{^a miu,niu}+

omega{^a ^b miu}*eta1{b c}‘);
Here we have two classes of indices: covariant indices, specified by miu, niu, etc. and
contravariant indices specified by ˆa, ˆb, etc.
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Note that the summation over the range of an index is specified by repeating the
index name, once in the covariant and once in the contravariant positions. In the
above expression we have summation over index b and c.

Certainly commonly used tensors require extra information (in addition to the
background geometry) in order to be calculated. For instance, consider the definitions
of the ’electric’ and ’magnetic’ parts of the Weyl tensor [1]:

Eab = Cabcdv
cvd, Hab = C∗abcdv

cvd.

In addition to the Weyl tensor Cabcd (which can be calculated directly from the
metric), it is required the specification of a vector field va. In this case, assuming a
single-index tensor (a vector field) v(up) had been defined, the electric and magnetic
Weyl tensors would be referenced using:

E[v](dn,dn), and H[v](dn,dn).

A more general example is the d’Alambertian derivative operator, 2 := ∇a∇a. This
definition, in GRTensor, applies to a tensor with an arbitrary number of indices as
argument. We could reference 2Rabcd using

Box[R(dn, dn, dn, dn)].

In GRTensor the operators can be used in grdef() just as they are used in calcula-
tions using grcalc(). The argument of operator is placed in square braces. Thus, the
command:

grdef(’X:=R{^a ^b}*Box[R{a b}]’);
serve to define the scalar:

X = Rab2Rab.

A limitation on the use of operators, however, is that they can only be used on
individual objects, not for functions of objects. To define, for instance, the object:

Tab = 2(RacdbR
cd),

a two stage definition is needed. First we define an intermediate tensor:

grdef(’Tint{a b}:=R{a c d b}*R{^c ^d}’);
and afterthat:

grdef(’T{a b}:=Box[Tint{a b}]’);
GRTensor allows the definition of objects which depend on multiple background
geometries. Such objects arise, for instance, when one considers the junction between
two spacetimes described by different metrics. The objects which are to use alter-
nate background geometries are indexed using angle braces, 〈 〉. For example, in the
following definition of tensor Dg, we use two different metrics:

grdef(’Dg{a b} := g〈1〉{a b}-g〈2〉{a b}’);
Here, the indices 〈1〉 and 〈2〉 in the objects g{a b} indicate that the components of
g(dn, dn) should be taken from metrics specified by the user at calculation time. To
calculate the object Dg we use the command grcalc() in the form:

grcalc(1=s1,2=s2,Dg(dn,dn));

In this example s1 and s2 are the name of spacetimes that have been previously loaded
in the session.
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3 Models of gauge theory

We will present two models of gauge theory: a self-dual theory of a Poincaré group and
a theory of the deSitter group. For both models we use a 4-dimensional Minkowski
space-time, endowed with spherical symmetry:

ds2 = dt2 − dr2 − r2
(
dθ2 + sin2 θdϕ2

)
(3.1)

The groups P and DS are both 10-dimensional and theirs infinitesimal generators are
denoted by Pa and Mab = −Mba, a, b = 0, 1, 2, 3 [4, 6]. In order to give a general
formulation of the gauge theory for the Poincaré and deSitter group, we will denote
these generators by XA, A = 1, 2, ..., 10. Then, the equations of structure can be
written under the general form:

[XA, XB ] = ifC
ABXC ,(3.2)

where fC
AB = − fC

BA are the constants of structure whose concrete expressions will
be given below (see Eq.(3.5) and Eq.(3.6)).

Let us suppose now that the deSitter group DS and Poincaré groups are gauge
groups for gravitation; corresponding, we introduce 10 gauge fields hA

µ (x), A =
1, 2, ..., 10, µ = 0, 1, 2, 3. Then, we construct the tensor of the gauge fields (strength
tensor) Fµν = FA

µνXA which takes its values in the Lie algebra of the deSitter group
DS (Lie algebra-valued tensor). The components of this tensor are given by:

FA
µν = ∂µhA

ν − ∂νhA
µ + fA

BChB
µ hC

ν .(3.3)

We notice that if the constants of structure fA
BC vanish, the tensor FA

µν become anal-
ogous to the tensor of the electromagnetic field and we will obtain a theory of elec-
tromagnetic field in the Minkowski space.

In order to write the constants of structure fC
AB , we use the following notation for

the index A:

A =
{

a = 0, 1, 2, 3,
[ab] = [01], [02], [03], [12], [13], [23].(3.4)

This means that we have Xa = Pa, X[bc] = Mab. We find the following expressions
for the constants of structure :

fa
bc = f

[ab]
c[de] = fa

[bc][de] = f
[ab]
cd = 0,

fa
b[cd] = −fa

[cd]b =
1
2

(ηbcδ
a
d − ηbdδ

a
c ) ,(3.5)

f
[ef ]
[ab][cd] =

1
4

(
ηbcδ

e
aδf

d − ηacδ
e
bδ

f
d + ηadδ

e
bδ

f
c − ηbdδ

e
aδf

c

)
− e ←→ f,

for the case of P group. In the case of deSitter group we have the same thing, with
an exception:

f
[ab]
cd = 4λ2

(
δb
cδ

a
d − δa

c δb
d

)
= −f

[ab]
dc ,(3.6)

where λ is a deformation parameter. When λ → 0, we obtain the Poincaré-Lie alge-
bra. Here ηab =diag(1,−1,−1,−1) is the Minkowski metric used on the Poincaré or
deSitter group manifold and δa

b is the usual Kronecker symbol.
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We will denote the gauge fields hA
µ (x) by ea

µ (x) (tetrad fields) if A = a and by
ωab

µ (x) = −ωba
µ (x) (spin connection) if A = [ab]. Then, introducing the relations (3.5),

respectively (3.5) and (3.6), into the definition (3.3), we find the following expressions
of the strength tensor components:

F a
µν = ∂µea

ν − ∂νea
µ +

(
ωab

µ ec
ν − ωab

ν ec
µ

)
ηbc = T a

µν ,(3.7)

F ab
µν = ∂µωab

ν − ∂νωab
µ +

(
ωac

µ ωdb
ν − ωac

ν ωdb
µ

)
ηcd = Rab

µν(3.8)

for P group and, in the case of DS group, the same relation for F a
µν but for F ab

µν we
obtain.

F ab
µν = ∂µωab

ν − ∂νωab
µ +

(
ωac

µ ωdb
ν − ωac

ν ωdb
µ

)
ηcd − 4λ2

(
ea
µeb

ν − ea
νeb

µ

)
.(3.9)

These relation are calculated using the analytical program which is presented bel-
low. We remark the complexity of calculations, for example, here, the indices µ and ν
are indices for space and a, b are indices for group. From the point of geometrical sig-
nificance, the quantity F a

µν = T a
µν is interpreted as the torsion tensor and F ab

µν = Rab
µν

as the curvature tensor of a Riemann-Cartan space-time defined by the gravitational
gauge fields ea

µ and ωab
µ .

In the following section, we present the two models and also the main parts of
analytical programs used to perform all calculations.

4 Model I. Results and analytical program

We consider a particular form of spherically gauge fields of the Poincaré group given
by the following ansatz:

e0
µ = (A, 0, 0, 0) , e1

µ =
(

0,
1

r2A
, 0, 0

)
,

e2
µ = (0, 0, rC, 0) , e3

µ = (0, 0, 0, rC sin θ)(4.1)

and

ω01
µ = (U, 0, 0, 0) , ω02

µ = ω03
µ = ω12

µ = ω13
µ = (0, 0, 0, 0) ,

ω23
µ = (iV, 0, 0, cos θ) ,(4.2)

where A, C,U and V are functions only of the 3D radius r. We use the above expres-
sions to compute the components of the tensors F a

µν and F ab
µν . We remark that we

performed all the calculations using an analytical program conceived by us and given
in this section.

In order to obtain a self-dual model, first of all, we consider the dual tensor ∗Fµν

[5, 6, 9, 10]. In our case, the components of the dual tensor ∗Fµν are:

∗F a
µν =

1
2
√−gεµνρσF aρσ and ∗Fab

µν =
1
2
√−gεµνρσFabρσ,(4.3)

where ”∗” is the Hodge dual map and εµνρσ is the Levi-Civita symbol of rank four,
with ε0123 = 1.
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The field equations are solved for arbitrary gauge fields, which satisfy the self-
duality condition [5, 6, 9, 10]:

∗F a
µν = iF a

µν , ∗F ab
µν = iF ab

µν .(4.4)

Now, we write the self-duality equations. The calculations are performed using
the same analytical program and we obtain equations (4.5)-(4.6). For the first set of
equations (4.4), we have obtained only two independent equations:

A′ +
U

r2A
= 0, rC ′ + (1− rV )C = 0.(4.5)

The second set of equations (4.4) reduces too only to the following two independent
equations:

U ′ = 0, V ′ = − 1
r2

.(4.6)

The equations (4.5) and (4.6) are the self-duality equations on the Minkowski
space-time endowed with spherical symmetry and with the Poincaré group as gauge
group. We remark that these equations are of the first order unlike the Y-M equations
which are of the second order. From this reason, the search of solutions is easier. We
remember that, for the Minkowski space-time, the solutions of self-duality equations
are automatically solutions for the Y-M equations [1].

For example, the field equation in this case are [9]:

Eaν ≡ 1√−g
∂µ

(√−gF aµν
)

+ fa
b[cd] eb

µ F cdµν + fa
[bc]d ωbc

µ F dµν = 0,(4.7)

Eabν ≡ 1√−g
∂µ

(√−gF abµν
)

+ f
[ab]
[cd][ef ] ωcd

µ F efµν = 0.(4.8)

¿From here, with the analytical program, we find only four independent equations,
which are:

A′′ +
2A′

r
+

2U ′

r2A
− UA′

r2A2
= 0,

r2C ′′ + 2rC ′ +
(
1− r2V 2

)
C = 0,(4.9)

AU ′ − UA′ − U2

r2A
= 0,

rV ′′ + 2V ′ = 0.

The equations (4.9) are the Y-M equations for the our ansatz. These equations can
be obtained from the self-duality equations if we derive the first equation from (4.5)
with respect to r, respectively the second equation, and using the equations (4.6).
As a consequence, we proved that the solutions of the self-duality equations are also
solutions for the Y-M equations.

If we define, as usually, a new metric g by the formula:

gµν = ea
µeb

vηab,(4.10)

then we obtain the following expression for the square of the line element:
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dσ2 =
(

a +
2α

r

)
dt2 − 1

r4
(
a + 2α

r

)dr2 −(4.11)

b2r2e2βr
(
dθ2 + sin2 θ dϕ2

)
.

In particular, if we choose the constants of integration α, β, a and b equal to: α = −m,
β = 0, a = 1, b = 1, then the expression of the square of the line element can
be considered as solution for the gravitational field in vacuum, created by a mass
distribution m with spherical symmetry, which is valid only in the region 0 < r < 2m.

The calculations of this paper, starting with the relations (3.7), were made using
an analytical program written by us in the package GRTensor. We used GRTensorII
version 1.77 which run on the MapleV platform. Because the group index a takes the
values 0, 1, 2, 3 and the spatial index µ takes the same values, 0, 1, 2, 3, there have not
appeared problems with the indices and we have not need to work with each com-
ponent for the group index [6]. For the raising and lowering the group indices a we
use the Minkowski (flat) metric ηab = (1,−1,−1,−1), whereas for the spatial indices
µ we used the metric gµν given by the relation (1). The analytical program allows
to calculate: the components of the strength tensor field F a

µν , respectively F ab
µν , the

components ∗F a
µν , respectively ∗F ab

µν , the self-duality equations and the Y-M equa-
tions. In program we denoted F a

µν by Famn, ∗F a
µν by Famndual, F ab

µν by Fabmn, ∗F ab
µν

by Fabmndual, the self-duality equations by SDamn and respectively by SDabmn,
the Y-M equations by Ean respectively Eabmn. The metric gµν is loaded from the
file ”spheric.mpl” and the potentials ea

µ, ωab
µν are introduced during of the running of

program (by the command ”grcalc”). Below, we list the part of program, which allows
to define and to calculate the quantities previously specified.

Program ”Poincare.mws”

restart: grtw():
grload (minkowski, ‘c:/maple/spheric.mpl‘);
grdef(‘ev{ˆa miu}‘); grcalc(ev(up,dn));
grdef(‘omega{[ˆa ˆb] miu}‘); grcalc(omega(up,up,dn));
grdef(‘eta1{(a b)}‘); grcalc(eta1(dn,dn));
grdef(‘Famn{ˆa miu niu}:= ev{ˆa niu, miu} - omega{ˆa ˆb niu}*

ev{ˆc niu}*eta1{b c}-ev{ˆa miu,niu} +
omega{ˆa ˆb miu}* eta1{b c}‘);

grcalc(Famn(up,dn,dn)); grdisplay( );
grdef(‘Famndual{ˆa miu niu}:=1/2*rˆ2*sin(theta)*

LevCS{miu niu rho sigma}*g{ˆrho ˆc}*g{ˆsigma ˆd}
*Famn{ˆa c d}‘);

grdef(‘SDamn{ˆa miu niu}:=Famndual{ˆa miu niu}-
I*Famn{ˆa miu niu}‘);

grcalc(Famndual(up,dn,dn), SDamn(up,dn,dn)); grdisplay( );
grdef{‘Fabmn{ˆa ˆb miu niu}:=omega{ˆa ˆb niu, miu}-

omega{ˆa ˆb miu, niu}+ (omega{ˆa ˆc miu}*omega{ˆd ˆb niu}-
omega{ˆa ˆc niu}*omega{ˆd ˆb miu})*eta1{c d}‘);

grcalc{Fabmn(up,up,dn,dn)); grdisplay( );
grdef(‘Fabmndual{ˆa ˆb miu niu}:=1/2*rˆ2 sin(theta)*

LevCS{miu niu rho sigma}*g{ˆrho ˆgamma}*g{ˆsigma ˆtau}*
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Fabmn{ˆa ˆb gamma tau}‘);
grdef(‘SDabmn{ˆa ˆb miu niu}:=Fabmndual{ˆa ˆb miu niu}-

I*Fabmn{ˆa miu niu}‘);
grcalc(SDabmn(up,up,dn,dn)); grdisplay( );
grdef(‘GFamn{ˆa ˆmiu ˆniu}:=rˆ2*sin(theta)*Famn{ˆa ˆmiu ˆniu}‘);
grcalc(GFamn(up,up,up));
grdef(‘Ean{ˆa ˆniu}:=1/(rˆ2*sin(theta))*GFamn{ˆa ˆmiu ˆniu, miu}+

1/2*(eta1{b c}*kdelta{ˆa d} - eta1{b d}*kdelta{ˆa c})*
ev{ˆb miu}*Fabmn{ˆc ˆd ˆmiu ˆniu}-
1/2*(eta1{d b}*kdelta{ˆa c} - eta1{d c}*kdelta{ˆa b})*
omega{ˆb ˆc miu}*Famn{ˆd ˆmiu ˆniu}‘);

grcalc(Ean(up,up); grdisplay( );
grdef(‘GFabmn{ˆa ˆb ˆmiu ˆniu}:=

rˆ2*sin(theta)*Fabmn{ˆa ˆb ˆmiu ˆniu}‘);
grcalc(GFabmn(up,up,up,up));
grdef(‘Eabn{ˆa ˆb ˆniu}:=

1/(rˆ2*sin(theta))*GFabmn{ˆa ˆb ˆmiu ˆniu, miu} +
( 1/4*(eta1{d e}*kdelta{ˆa c}*kdelta{ˆb f} - eta1{c e}*
kdelta{ˆa d}* kdelta{ˆb f} + eta1{c f}*kdelta{ˆa d}*
kdelta{ˆb e} - eta1{d f}*kdelta{ˆa c}*kdelta{ˆb e})
-1/4*(eta1{d e}*kdelta{ˆb c}*kdelta{ˆa f} -
eta1{c e}*kdelta{ˆb d}* kdelta{ˆa f} +
eta1{c f}*kdelta{ˆb d}*kdelta{ˆa e} -
eta1{d f}*kdelta{ˆa c}*kdelta{ˆb e} ) )*
omega{ˆc ˆd miu}*Fabmn{ˆe ˆf ˆmiu ˆniu} ‘);

grcalc(Eabn(up,up,up)); grdisplay( );

5 Model II. Results and analytical program

We consider a particular form of spherically gauge fields of the deSitter group DS
given by the following ansatz:

e0
µ = (A, 0, 0, 0) , e1

µ =
(

0,
1
A

, 0, 0
)

,(5.1)

e2
µ = (0, 0, rC, 0) , e3

µ = (0, 0, 0, rC sin θ)

ω01
µ = (U, 0, 0, 0) , ω12

µ = (0, 0,W, 0) , ω13
µ = (0, 0, 0, Z sin θ) ,(5.2)

ω23
µ = (V, 0, 0, cos θ) , ω02

µ = ω03
µ = (0, 0, 0, 0) ,

where A,C,U, V,W, and Z are functions only of the 3D radius r. We use the above
expressions to compute the components of the tensors F a

µν and F ab
µν . From this point

at the end we performed all the calculations using an analytical program conceived
by us and presented bellow.

In the following, we develop an Einstein model for gravitation, i.e. we will suppose
that the torsion vanishes. First of all, we calculate the Riemann tensor of the model,
defined by the formula [3]:
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R̃ρσ
µν = F ab

µνeρ
aeσ

b .(5.3)

Then, we calculate the components of the Ricci tensor, defined as:

R̃ν
µ = Rab

µρe
ν
aeρ

b = R̃νρ
µρ,(5.4)

where the sum over the index ρ = 0, 1, 2, 3 is understand in the last equality.
In order to write the equations of Einstein, we calculate the curvature scalar

R̃ = R̃µ
µ (sum over µ = 0, 1, 2, 3). The equations of Einstein for the vacuum can be

written in the form:
R̃ν

µ −
1
2
δν
µR̃ = 0.(5.5)

For the above model, if we consider the case of null torsion (F a
µν = 0), that is:

U = −AA′, V = 0,W = Z = A (C + rC ′)(5.6)

and the supplementary condition C = 1, we obtained only two independent equations:

−2AA′

r
+

1−A2

r2
+ 12λ2 = 0,(5.7)

−2AA′

r
+ U ′ + 12λ2 = 0.

The equations (5.7) are compatible if we chose the function A(r) so that:

U ′ =
1−A2

r2
.(5.8)

Tacking into account first condition (5.6), the condition (5.8) becomes:

r2
(
A2

)′′ − 2A2 + 2 = 0.(5.9)

The solution of the equation (5.9) is the following:

A2 = 1 +
α

r
+ βr2,(5.10)

where α and β are two arbitrary constants. This solution verifies also the equations
of Einstein (5.7) if and only if β = 4λ2. But, according to the result of MacDowell-
Mansouri [6], the cosmological constant of the model is identified as Λ = −12λ2.
Then, the solution (5.10) have the form:

A2 = 1 +
α

r
− Λ

3
r2.(5.11)

In particular, if we chose α = −2M , then we obtain the Scwarzschild-deSitter solution:

A2 = 1− 2M

r
− Λ

3
r2.(5.12)

In the limit λ → 0, we obtain the Schwarzschild solution:

A2 = 1− 2M

r
,(5.13)
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and for α = 0 the solution (5.11) is that of deSitter.
The spin connection components are determined by tetrads ea

µ (i.e. they are not
independent fields):

U = −M

r2
+

Λ
3

r, W = Z =
(

1− 2M

r
− Λ

3
r2

)1/2

.(5.14)

The previous results show that the model presented in this paper can be considered
as a gauge theory for the ”active” deSitter symmetry group.

All the calculations of this section, inclusive the integration of the field equation
(5.9), were made using an analytical program written in the package GRTensorII,
running on the MapleV platform. The analytical program allows to calculate: the
components of the strength tensor field F a

µν , respectively F ab
µν , the components of the

Riemann tensor R̃ρσ
µν , the components of the Ricci tensor R̃ν

µ, the curvature scalar R̃,
the field equations (the Einstein tensor). We remark that the Riemann tensor, the
Ricci tensor, the curvature scalar and the field equations are computed without using
a metric. For this purpose we use only the tetrad fields ea

µ and their inverses eµ
a . In

program we denoted F a
µν by Famn, F ab

µν by Fabmn, R̃ρσ
µν by Rtetrad, R̃ν

µ by Ricci, R̃ by
Rtilda, the field equation (the equation of Einstein) by Eq. The initial metric is loaded
from the file ”spheric.mpl” and the potentials ea

µ (denoted by ev) and ωab
µ (denoted by

omega) are introduced during of the running program (by the command ”grcalc”).
The integration of equation (5.9) has been done also in the analytical program, where
we denoted A2 with y. Below we list the part of program which allows to define and
to calculate the quantities previously specified.

Program ”DeSitter.mws”

restart: grtw():
grload(minkowski, ‘c:/maple/spheric.mpl‘);
grdef(‘ev{ˆa miu}‘); grcalc(ev(up,dn));
grdef(‘omega{[ˆa ˆb] miu}‘); grcalc(omega(up,up,dn));
grdef(‘eta1{(a b)}‘); grcalc(eta1(dn,dn));
grdef(‘Famn{ˆa miu niu} := ev{ˆa niu,miu} - ev{ˆa miu,niu}

+ omega{ˆa ˆb miu}*ev{ˆc niu}*eta1{b c}
- omega{ˆa ˆb niu}*ev{ˆc miu}*eta1{b c}‘);

grcalc(Famn(up,dn,dn)); grdisplay( );
grdef(‘Fabmn{ˆa ˆb miu niu} := omega{ˆa ˆb niu, miu}

- omega{ˆa ˆb miu, niu} + (omega{ˆa ˆc miu}
*omega{ˆd ˆb niu} - omega{ˆa ˆc niu}
*omega{ˆd ˆb miu})*eta1{c d} +4*lambdaˆ2*(kdelta{ˆb c}
*kdelta{ˆa d} - kdelta{ˆa c}*kdelta{ˆb d})*ev{ˆc miu}
*ev{ˆd niu} ‘);

grcalc(Fabmn(up,up,dn,dn)); grdisplay( );
grdef(‘evi{ˆmiu a}‘); grcalc(evi(up,dn));
grdef(‘Rtetrad{ˆrho ˆsigma miu niu }:=Fabmn{ˆa ˆb miu niu}*

evi{ˆrho a}*evi{ˆsigma b}‘);
grcalc(Rtetrad(up,up,dn,dn)); grdisplay( );
grdef(‘Ricci{ˆniu miu}:=Rtetrad{ˆniu ˆrho miu rho}‘);
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grcalc(Ricci(up,dn)); grdisplay( );
grdef(‘Rtilda:=Ricci{ˆmiu miu}‘); grcalc(Rtilda); grdisplay( );
grdef(‘Eq{ˆniu miu}:= Ricci{ˆniu miu} - 1/2*kdelta{ˆniu miu}*Rtilda‘);
grcalc(Eq(up,dn)); grdisplay( );
with(DEtools, odeadvisor); ode1 := diff(y(r),r,r) = 2*y(r)/rˆ2-2/rˆ2;
odeadvisor(ode1); dsolve(ode1);

6 Solutions without singularities

We use the method of Lagrange-multipliers in order to obtain solutions without sin-
gularities of DS-gauge theory of gravitation. Namely, we impose some restrictions [2]
on two invariants I1 and I2 of the theory. Introducing the Lagrange-multiplier ϕ1 (t)
and ϕ2 (t), the integral of action can be rewritten as:

Sg = − 1
16πG

∫
d4xe [F + ϕ1 (t) f1 (I1) + ϕ2 (t) f2 (I2) + V (ϕ1, ϕ2)] ,(6.1)

where
F = F ab

µνeµ
aeν

b , e = det
(
ea
µ

)
.(6.2)

and eν
b is the inverse of ea

µ. The quantities fi (Ii), i = 1, 2 are functions which must
be chosen in an appropriate form in order to obtain solutions without singularities of
the corresponding field equations. Thus, the potential V (ϕ1, ϕ2) have to satisfy the
constraint equations [2]:

f1 (I1) = − ∂V

∂ϕ1
, f2 (I2) = − ∂V

∂ϕ2
,(6.3)

The model can be simplified further if we assume:

V (ϕ1, ϕ2) = V1 (ϕ1) + V2 (ϕ2) ,(6.4)

and chose the invariants I1, I2 in the form

I1 = F −
√

3
(
4F a

µFµ
a − F 2

)1/2
,(6.5)

respectively
I2 = 4F a

µFµ
a − F 2.(6.6)

In these expressions, the quantities F a
µ are defined by

F a
µ = F ab

µνeν
b .(6.7)

As an example, we chose the functions f1 and f2 in the simple form [2]:

f1 (I1) = I1, f2 (I2) = −
√

I2.(6.8)

Then, the action Sg in Eq. (6.1) becomes:

Sg = − 1
16πG

∫
d4xe

[
F + ϕ1I1 − ϕ2

√
I2 + V1 (ϕ1) + V2(ϕ2)

]
.(6.9)
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Now, all we have to do is to write the variational field equations which follow from
(6.9) and search their solutions without singularities.

We choose a particular form of spherically gauge fields ea
µ (x) and ωab

µ (x) given by
the following ansatz:

e0
µ = (N(t), 0, 0, 0) , e1

µ =
(

0,
a (t)√
1− kr2

, 0, 0
)

,

e2
µ = (0, 0, ra (t) , 0) , e3

µ = (0, 0, 0, ra (t) sin θ) ,(6.10)

respectively

ω01
µ =

(
0,− a′ (t)

N (t)
√

1− kr2
, 0, 0

)
, ω02

µ =
(

0, 0,−ra′ (t)
N (t)

, 0
)

,

ω03
µ =

(
0, 0, 0,−ra′ (t) sin θ

N (t)

)
, ω12

µ =
(
0, 0,

√
1− kr2, 0

)
,(6.11)

ω13
µ =

(
0, 0, 0,

√
1− kr2 sin θ

)
, ω23

µ = (0, 0, 0, cos θ) ,

where N (t) and a (t) are functions only of the time variable, k is a constant, and a′ is
the derivative of a (t) with respect to the variable t. The choice (6.11) of gauge fields
ωab

µ (x) assures that all components of the strength tensor F a
µν vanish. If we remember

the Riemann-Cartan theory of gravitation, then this result implies the vanishing of
the torsion tensor T ρ

µν =e
ρ
a F a

µν , in accord with GR theory. Here, e
ρ
adenotes the inverse

of ea
µ with the properties:

ea
µ e

µ
b = δa

b , ea
µ e

ν
a= δν

µ.(6.12)

¿From this point to the end we performed all the calculations using an analytical
program conceived by us which is presented in the final part of this Section.

Using the Eqs. (6.10) and (6.11), we obtain the following expressions of the invari-
ants F , I1 and I2 above defined:

F = −6
aa′′N − aa′N ′ + kN3 + a′2N + 8λ2a2N3

a2N3
,(6.13)

I1 = −12
kN2 + a′2 + 4λ2a2N2

a2N2
,(6.14)

and respectively

I2 = 12

(
kN3 + a′2N − aa′′N + aa′N ′)2

a4N6
.(6.15)

where a′′ is the second derivative of a (t) with respect to the variable t. Introducing
these expressions into Eq. (6.9) and imposing the variational principle δSg = 0 with
respect to N (t), ϕ1 (t) and ϕ2 (t), we obtain the corresponding field equations. We
write now these equations for the particular case N (t) = 1 which is of interest in our
model:

−1
2

(V1 + V2) + 3H2 (1− 2ϕ1) + 3
k

a2
(1 + 2ϕ1)− 2Λ

=
√

3
(

ϕ′2 + 3Hϕ2 − k

Ha2
ϕ2

)
,(6.16)
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k

a2
+ H2 − Λ

3
=

1
12

dV1

dϕ1
, H =

a′

a
,(6.17)

H ′ − k

a2
= − 1

2
√

3
dV2

dϕ2
, H ′ =

dH

dt
=

a′′a− a′2

a2
,(6.18)

where ϕ′2 is the derivative of ϕ2 (t) with respect to t, and Λ = −12λ2 is interpreted
as cosmological constant [4, 9].

If we consider the limit λ −→ 0, or equivalently Λ = 0, we obtain the results in
Ref. [2], but, for Λ 6= 0 we can study in addition the dependence on the cosmological
constant of the solutions (without singularities) obtained by solving the Eqs.(6.16)-
(6.18). We make also the mention that the Eqs. (6.17) and (6.18) are identically
with the constraints (6.3) introduced into the integral of action Sg by means of the
Lagrange-multiplier fields ϕ1 (t) and ϕ2 (t).

Below, we list down the part of program which allows to define and to calculate
the quantities needed in obtaining of Eqs. (6.16)-(6.18).

Program ”DS gauge theory.mws”

restart: grtw( ):
grload(minkowski, ‘c:/maple/spheric.mpl‘);
grdef(‘ev{ˆa mu}‘); grcalc(ev(up,dn));
grdef(‘eta1{(a b)}‘); grcalc(eta1(dn,dn))
grdef(‘omega{[ˆa ˆb] mu}‘); grcalc(omega(up,up,dn));
grdef(‘Famn{ˆa mu nu} := ev{ˆa nu,mu} - ev{ˆa mu,nu}

+ omega{ˆa ˆb mu}*ev{ˆc nu}*eta1{b c}
- omega{ˆa ˆb nu}*ev{ˆc mu}*eta1{b c}‘);

grcalc(Famn(up,dn,dn));
grdef(‘Fabmn{ˆa ˆb mu nu} := omega{ˆa ˆb nu, mu}-

omega{ˆa ˆb mu, nu}+ (omega{ˆa ˆc mu}*omega{ˆd ˆb nu} -
omega{ˆa ˆc nu}*omega{ˆd ˆb mu})*eta1{c d}-
4*lambdaˆ2*( ev{ˆa mu}*ev{ˆb nu} - ev{ˆb mu}*ev{ˆa nu})‘);

grcalc(Rabmn(up,up,dn,dn));
grdef(‘R:=Rabmn{ˆa ˆb mu nu}*einv{a ˆmu}*einv{b ˆnu}‘);
grcalc(R); grdef(‘F{ˆa mu}:=Rabmn{ˆa ˆb mu nu}*einv{b ˆnu}‘);
grcalc(F(up,dn));
grdef(‘I2:=4*F{ˆa mu}*Finv{a ˆmu}-(R)ˆ2‘); grcalc(I2);
grdef(‘I1:=R-sqrt(3)*sqrt(I2)‘); grcalc(I1);
grdef(‘de‘); grcalc(de);
grdef(‘Lg:=(R+phi1(t)*I1-phi2(t)*sqrt(I2)+V1(phi1)+

V2(phi2))*de‘); grcalc(Lg); grdisplay( );

The solution of Eqs. (6.16)-(6.18) includes a dependence on the cosmological con-
stant Λ. We suppose that the Lagrange-multiplier function ϕ1 (t) is absent, and con-
sider the case when k = 0. Then, denoting ϕ2 (t) = ϕ (t) and V2 (ϕ2) = V (ϕ), the
Eqs. (6.16)-(6.18) become:
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H ′ = − 1
2
√

3
dV

dϕ
,(6.19)

ϕ′ = −3Hϕ +
√

3H − 1
2
√

3H
V − 2Λ√

3H
.

We consider the potential V (ϕ) of the simple form:

V (ϕ) = 2
√

3λ2

(
ϕ2

1 + ϕ2
+

24√
3

)
,(6.20)

where λ is the real parameter that determines the cosmological constant Λ. This
parameter coincides with the constant H0 in Ref. [2] that has been interpreted as a
Planck scale of the model. Therefore, in our example the Planck scale is related to the
cosmological constant Λ. For small values of H and ϕ, the Eqs. (6.19) can be written
as:

H ′ ' −2λ2ϕ, ϕ′ (t) '
√

3H2 − λ2ϕ2

H
.(6.21)

These equations have the periodic solution

ϕ (t) = ϕ0 sin (ωt) , H (t) =
ωϕ0

2
√

3
[cos (ωt)− 1] ,(6.22)

where ϕ0 is an integration constant and ω = 2× 31/4λ is the frequency of oscillation
of the corresponding gravitational field described by the gauge potentials ea

µ (x) and
ωab

µ (x). This solution has no singularities and it is valid if the cosmological constant is
negative (Λ < 0). The case with positive cosmological constant (Λ > 0) can be studied
choosing the anti-de-Sitter group as gauge group. But, the deformation parameter
λ will be then pure imaginary. We emphasize that there are possible also periodic
solutions if we suppose a time-dependent cosmological ”constant”. In particular, we
can consider a cosmological constant which is itself a periodic function on time. It will
be also of interest to apply the previous method in obtaining non-singular solutions
of the gauge theories with internal groups of symmetry.

7 Concluding Remarks

In this paper, we developed two model of gauge theory of gravitation, one for Poincaré
group and another for deSitter group. The space-time Minkowski with spherical sym-
metry is considered. In these cases, if all the constants of structure vanish, then we
obtain a analogous theory for the electromagnetic field. For both models we have
obtained analytical solutions.

Also, we developed a de-Sitter gauge theory of gravitation on a spherical sym-
metric Minkowski space-time as base manifold. This theory allows a complementary
description of the gravitational effects in which the mathematical structure of the un-
derlying space-time is not affected by physical events [11]. Only the gauge potentials
ea
µ (x) and ωab

µ (x) of the gravitational field change as functions of coordinates. This
is important when we consider a quantum gauge theory of gravitation.

In order to obtain solutions without singularities, we imposed constraints on some
invariants of the gauge model we considered. The solutions in this paper are time-
periodic and correspond to a fixed (negative) cosmological constant Λ whose value is
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related to the Planck scale and that determines the frequency of the corresponding
gravitational field.

All the calculations from this paper were performed using analytical procedures,
which are written in GRTensorII computer algebra system. The procedures are con-
ceived for a general form of the potentials. The main part of these procedures are
given in the Section 3, Section 4 and Section 6. Because the tensorial operations from
this paper are very difficult and sometime impossible to perform, the utilization of a
computer algebra system is not only useful but also necessary.
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