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Abstract

Section 1 describes a nonholonomic economic system as a Gibbs-Pfaff distri-
bution on R5. Section 2 interprets the economical equilibrium after interaction
states as the set of all constrained critical points of an objective function, and
gives an example of totally degenerate interaction.
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1 Nonholonomic economic system

A nonholonomic economic system means the nonholonomic hypersurface (the Gibbs-
Pfaff distribution) {R5, Ω = 0}, where R5 = {(G, I, E, P,Q)|G = potential growth,
I = internal politic stability, E = entropy, P = price, Q = production quantity },
and Ω = dG− IdE + PdQ = 0 is the Gibbs-Pfaff equation describing the ”mobility”
of economic variables.

Since the Gibbs-Pfaff form Ω is a contact form, the Gibbs-Pfaff equation is not
completely integrable and its maximal integral manifolds are 2-dimensional.

Let us fix E and Q as states variables of the system. Then the maximal integral
surfaces of the Gibbs-Pfaff equation are of the form

G = f(E,Q), I =
∂f

∂E
, P = − ∂f

∂Q
,

where f is an arbitrary C2 function.
The Gibbs-Pfaff economic distribution can be expressed contravariantly by

GPD = sp {X1 = ∂I , X2 = I∂G + ∂E , X3 = ∂P , X4 = ∂Q − P∂G}.
The vector fields Xi, i = 1, 2, 3, 4 satisfy

[X1, X2] = ∂G, [Xi, Xj ] = 0, i 6= 1, j 6= 2, i 6= j.

Consequently they determine a Lie algebra whose constants of structure are C1
12 = 1

and Ci
jk = 0 otherwise (with regards to indices). Since the vector fields X1, X2, X3, X4,
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[X1, X2] = ∂G are linearly independent at each point of R5, any two points of R5 are
joined by a concatenation of field lines of X1, X2, X3, X4 [3]. On the other hand, we
have:

1) Orbits of X1 : G = c1, E = c2, P = c3, Q = c4 (straight lines);
2) Orbits of X2 : G = c1E + c2, I = c1, P = c3, Q = c4 (straight lines);
3) Orbits of X3 : G = c1, I = c2, E = c3, Q = c4 (straight lines);
4) Orbits of X4 := G = −c4Q + c1, I = c2, E = c3, P = c4 (straight lines).
A complementary distribution to GPD (1-dimensional and even orthogonal to

GPD with respect to the Euclidean metric in R5) is

GPD′ = sp {N = ∂G − I∂E + P∂Q}.
The field lines of the vector field N are

I = c1, E = c1G + d1, P = c2, Q = c2G + d2,

where c1, c2, d1, d2 are arbitrary constants (family of straight lines).
Let c(t) = (G(t), I(t), E(t), P (t), Q(t)), t ∈ I, be an integral curve of the Gibbs-

Pfaff equation Ω = 0, with the starting point (G(0), I(0), E(0), P (0), Q(0)). Then

G(t)−G(0) =
∫

c

IdE − PdQ.

2 An example of totally degenerate
interaction of two nonholonomic systems

Our point of view is that two nonholonomic economic systems

{R5, Ω1 = dG1 − I1dE1 + P1dQ1 = 0}
{R5, Ω2 = dG2 − I2dE2 + P2dQ2 = 0}

interact on the product nonholonomic economic system {R5 × R5, Ω1 = 0,Ω2 = 0},
if they have a common objective function whose constrained critical points are of
interest.

In other words, the ”economical equilibrium after interaction states” is described
by the set of all critical points of an objective function f constrained by the constant
level sets of other functions, say g, h, and by the Gibbs-Pfaff equations Ω1 = 0, Ω2 = 0.

These constrained critical points are zeros of the Lagrange 1-form

L = df + λ1dg + λ2dh + λ3Ω1 + λ4Ω2

which belong to the set g = c1, h = c2. Such a critical point is called degenerate if the
restriction of the quadratic form

dL = d2f + λ1d
2g + λ2d

2h + λ3dΩ1 + λ4dΩ2

to the subspace dg = 0, dh = 0, Ω1 = 0, Ω2 = 0 is degenerate ( the operator d means
usual differentiation). The interaction is called totally degenerate if all critical points
are degenerate.
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Now let us accept that we are interested in an objective function f(G1, G2) and
two holonomic constraints g(E1, E2) = c1, h(Q1, Q2) = c2.

Theorem. The critical points of the function f(G1, G2) constrained by g(E1, E2) =
c1, h(Q1, Q2) = c2, Ω1 = 0, Ω2 = 0 are degenerate.

Proof. We can use MAPLE.
> with(linalg):

> A := hessian(f(G1, G2) + lambda1 ∗ g(E1, E2) + lambda2 ∗ h(Q1, Q2),

[G1, I1, E1, P1, Q1, G2, I2, E2, P2, Q2]);

> L1 := matrix([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0,−1/2, 0, 0, 0, 0, 0, 0, 0],

[0,−1/2, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1/2, 0, 0, 0, 0, 0], [0, 0, 0, 1/2, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]);

> L2 := matrix([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0,−1/2, 0, 0], [0, 0, 0, 0, 0, 0,−1/2, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 1/2], [0, 0, 0, 0, 0, 0, 0, 0, 1/2, 0]]);

> B := matadd(A, lambda3 ∗ L1);
> C := matadd(B, lambda4 ∗ L2);

C :=




∂2

∂G1 2 f(G1 , G2 ) , 0 , 0 , 0 , 0 , ∂2

∂G2 ∂G1 f(G1 , G2 ) , 0 , 0 , 0 , 0

0 , 0 , −λ3
2

, 0 , 0 , 0 , 0 , 0 , 0 , 0

0 , −λ3
2

, λ1 ( ∂2

∂E1 2 g(E1 , E2 )) , 0 , 0 , 0 , 0 , λ1 ( ∂2

∂E2 ∂E1 g(E1 , E2 )) , 0 , 0

0 , 0 , 0 , 0 ,
λ3
2

, 0 , 0 , 0 , 0 , 0

0 , 0 , 0 ,
λ3
2

, λ2 ( ∂2

∂Q1 2 h(Q1 , Q2 )) , 0 , 0 , 0 , 0 , λ2 ( ∂2

∂Q2 ∂Q1 h(Q1 , Q2 ))

∂2

∂G2 ∂G1 f(G1 , G2 ) , 0 , 0 , 0 , 0 , ∂2

∂G2 2 f(G1 , G2 ) , 0 , 0 , 0 , 0

0 , 0 , 0 , 0 , 0 , 0 , 0 , −λ4
2

, 0 , 0

0 , 0 , λ1 ( ∂2

∂E2 ∂E1 g(E1 , E2 )) , 0 , 0 , 0 , −λ4
2

, λ1 ( ∂2

∂E2 2 g(E1 , E2 )) , 0 , 0

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
λ4
2

0 , 0 , 0 , 0 , λ2 ( ∂2

∂Q2 ∂Q1 h(Q1 , Q2 )) , 0 , 0 , 0 ,
λ4
2

, λ2 ( ∂2

∂Q2 2 h(Q1 , Q2 ))
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> definite(C,′ positivedef
′);

false

> det(C);

λ34λ44

256
((

∂2

∂G1 2 f(G1 , G2 )) (
∂2

∂G2 2 f(G1 , G2 )) − (
∂2

∂G2 ∂G1
f(G1 , G2 ))2 )

> U := matrix([[0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [−I1 ∗ diff(g(E1, E2), E2)/diff(g(E1, E2), E1),

0,−diff(g(E1, E2), E2)/diff(g(E1, E2), E1), 0, 0, I2, 0, 1, 0, 0], [0, 0, 0, 0, 0,

0, 0, 0, 1, 0], [P1 ∗ diff(h(Q1, Q2), Q2)/diff(h(Q1, Q2), Q1), 0,

0, 0,−diff(h(Q1, Q2), Q2)/diff(h(Q1, Q2), Q1),−P2, 0, 0, 0, 1]]);

> V := transpose(U);
> C1 := multiply(U,C, V );
> definite(C1,′ positivedef

′);
false

> det(C1);
0
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