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Abstract

The paper investigates the Hopf bifurcations of hepatocyte physiology time-
delayed flow for three distinct cases: bursting (explosive), chaotic and quasiperi-
odic behavior, for three distributions (Dirac, uniform and exponential).In the
first section we describe a three-dimensional system which models the Ca oscil-
lations in the living cells. This model was proposed by Borghans et. al in[2]. In
the second section, it is shown that the system obtained from the initial dynam-
ical system by incorporating time-delay in one of the state variables, exhibits
Hopf bifurcations only in the case of Dirac distribution, for explosive and chaotic
behaviour of the system.
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1 Introduction.

It is well known that the SODE (system of ordinary diferential equations) which
describes the intra-cell calcium variation in time exhibit a very rich and complex
dynamical behavior. An illustrative fact is the case when a time-delay imposed to
one of the state variables leads to unstability and Hopf bifurcations. In the present
work, we investigate the dynamics of a mathematic biological model which describes
the Calcium variations in time in the living cell, while one of the state variables
is delayed in time. The applicative biological aspects represent an important open
question in the field, and are subject of further research.

Incorporating time-delay in one of the state variables could induce unstability and
Hopf bifurcation. The calcium variations in time model is based on the mechanism of
Ca2+- induced Ca2+ release (CICR). This model takes into account Ca2+-stimulated
degradation of inositol 1,4,5- triphosphate (InsP3) by a 3-kinase ([2]).

In certain cell types, particularly in hepatocytes, complex calcium variations in
time have been observed in response to stimulation by specific agonists. As these
cells are not electrically excitable, it is likely that these complex calcium variations
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rely on the interplay between two intracellular mechanisms capable of destabilizing
the steady state. Two antagonistic effects are indeed at play: an increase in InsP3 is
expected to lead to an increase in the frequency of Ca2+ spikes, but at the same time
the InsP3 induced rise in Ca2+ will also lead to increased InsP3 metabolisis due to
the Ca2+ activation of the InsP3 3-kinase.

The model for calcium variations used in the present study, was also studied in [8],
and containes three variables, namely the concentration of free Ca2+ in the cytosol
(Z) and in the internal pool (Y), and the InsP3 concentration (A). The time evolution
of these variables is governed by the following SODE





dZ

dt
= −k · Z + V0 + β · V1 + T

dY

dt
= −T

dA

dt
= β · VM4 − VM5 ·

Ap

kp
5 + Ap

· Zn

kn
d + Zn

− ε ·A,

(1.1)

where T = kf · Y − VM2 ·
Z2

k2
2 + Z2

+ VM3 ·
Zm

km
Z + Zm

· Y 2

k2
Y + Y 2

· A4

k4
A + A4

and

• V0 refers to a constant input of Ca2+ from the extracellular medium;

• V1 is the maximum rate of stimulus-induced influx of Ca2+ from the extracellular
medium;

• β reflects the degree of stimulation of the cell by an agonist and thus only varies
between 0 and 1;

• the rates V2 and V3 refer, respectively, to pumping of cytosolic Ca2+ into the
internal stores and to the release of Ca2+ from these stores into the cytosol
in a process activated by citosolic calcium (CICR); VM2 and VM3 denote the
maximum values of these rates;

• parameters k2, kY , kZ and kA are treshold constants for pumping, release, and
activation of release by Ca2+ and by InsP3;

• kf is a rate constant measuring the passive, linear leak of Y into Z;

• k relates to the assumed linear transport of citosolic calcium into the extracel-
lular medium;

• VM4 is the maximum rate of stimulus-induced synthesis of InsP3;

• VM5 is the rate of phosphorylation of InsP3 by the 3-kinase;

• m, n and p are Hill coefficients related to the cooperative processes;

• ε is the phosphorilation rate of InsP3 by the 5-phosphatase.

We remind that from biological point of view, this SODE is based on the mechanism
of Calcium release induced by Calcium influenced by the inozitol 1,4,5-triphosphate
(IP3) degradation by a 3-kynase. This model may exhibit various types of varia-
tions as: explosion, chaos, quasi-periodicity, depending on the values assigned to the
parameters (for details, please see [4]).
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2 Biologic flow with time-delayed evolution

In the following we are interested in the study of the biological flow when one variable
coordinate is subject to time-delay. In our case, we assume this to be A - which
denotes the concentration of inozitol, leaving still open the question of biological
interpretations to their full extent.

To obtain the dynamical system with delayed argument in the dependent variable
A(t) we recollect that for any probability density f : R → R+ obeying

∫∞
0

f(s)ds = 1,
the transformation (perturbation) of the state variable A(t) ∈ R dependent on f is
the new variable Ã(t) defined by

Ã(t) =
∫ ∞

0

A(t− s)f(s)ds =
∫ t

−∞
A(s)f(t− s)ds.(2.2)

After the time-delay process applied to A, the system (1.1) becomes




dZ

dt
= −k · Z(t) + V0 + β · V1 + kf · Y (t)− VM2 ·

Z(t)2

k2
2 + Z(t)2

+

+VM3 ·
Z(t)m

kZ(t)m + Z(t)m
· Y (t)2

k2
Y + Y (t)2

· Ã(t)4

k4
A + Ã(t)4

dY

dt
= −kf · Y (t) + VM2 ·

Z(t)2

k2
2 + Z(t)2

−

−VM3 ·
Z(t)m

kZ(t)m + Z(t)m
· Y (t)2

k2
Y + Y (t)2

· Ã(t)4

k4
A + Ã(t)4

dA

dt
= β · VM4 − VM5 ·

Ã(t)p

kp
5 + Ã(t)p

· Z(t)n

kn
d + Z(t)n

− ε · Ã(t).

(2.3)

with
Z(0) = Z0, Y (0) = Y0, A(θ) = ϕ(θ), θ ∈ [−τ, 0], τ ≥ 0,

where the transform Ã(t) is defined by (2.2) and ϕ : [−τ, 0] → R is a differentiable
function which describes the behavior of the flow in the O direction. In other words,
the initial SODE is replaced by a differential-functional system.

The equilibrium points of the system (1.1) are solutions of the nonlinear system




−kZ + V0 + βV1 = 0

−VM3

Zm

km
Z + Zm

· Y 2

k2
Y + Y 2

· A4

k4
A + A4

+ VM2

Z2

k2
Z + Z2

− kfY = 0

βV M4
− VM5 ·

Ap

kp
5 + Ap

· Zn

kn
d + Zn

− εA = 0,

(2.4)

where we shall consider the three sets of parameters corresponding to bursting, chaotic
and quasiperiodic behavior of the SODE.

The system above has in general several solutions; only the positive ones can be
accepted from physiological point of view. We denote such a solution as (Z∗, Y ∗, A∗).

From the first equation of the system above we get Z∗ =
(V0 + β · V1)

k
which is
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positive, because of the positivity of the parameters. For p = 1 (this happens in
the cases of explosion and chaos), from the third (respectively the second) equation
of the system (2.4) and the Viété relations we have at least one positive solution
for A∗ (respectively for Y ∗). In conclusion, in the case, we have at least a positive
equilibrium point (Z∗, Y ∗, A∗). For p = 2 (the case of quasiperiodicity) we have a
positive equilibrium point if the inequality

VM5 ·
(V0 + β · V1)n

(k · kd)n(V0 + β · V1)n
− β · VM4 > 0

holds always true.
Regarding the linearization of the SODE (2.3) we have the following statement

([8])
Proposition 1. The following assertions hold true:
a) The linearized SODE of the differential autonomous system with delayed argu-

ment (2.3) at its equilibrium point (Z∗, Y ∗, A∗) is



Ż(t)
Ẏ (t)
Ȧ(t)


 = M1




Z(t)
Y (t)
A(t)


 + M2




Z(t− τ)
Y (t− τ)
A(t− τ),




where

M1 =




∂f1
∂Z

∂f1
∂Y

0

∂f2
∂Z

∂f2
∂Y

0

∂f3
∂Z

∂f3
∂Y

0




∣∣∣∣∣∣∣
(Z∗,Y ∗,A∗)

, M2 =




0 0 ∂f1
∂A

0 0 ∂f2
∂A

0 0 ∂f3
∂A




∣∣∣∣∣∣∣
(Z∗,Y ∗,A∗)

and (f1, f2, f3) are the components of the field which provides the SODE (1.1).
b) The characteristic equation of the differential autonomous system with delayed

argument (2.3) is

det
(

λI −M1 −
∫ ∞

0

e−λsf(s)ds ·M2

)
= 0.(2.5)

Remark 1. By noting
∂T

∂Z

∣∣∣∣
(Z∗,Y ∗,A∗)

= Tz,
∂T

∂Y

∣∣∣∣
(Z∗,Y ∗,A∗)

= Ty,
∂T

∂A

∣∣∣∣
(Z∗,Y ∗,A∗)

=

TA,
∂f3

∂Z

∣∣∣∣
(Z∗,Y ∗,A∗)

= α and
∂f3

∂A

∣∣∣∣
(Z∗,Y ∗,A∗)

= γ the constitutive matrices of the

linearized delayed SODE (2.4) become

M1 =




Tz − k Ty 0
−Tz −Ty 0
α 0 0


 , M2 =




0 0 TA

0 0 −TA

0 0 γ


 .

Besides the Dirac distribution case, extensively studied in [8], two more notable distri-
butions are worthy to consider: the uniform distribution and the gamma distribution.
In these cases, the delayed A-component of the system has respectively the following
forms:
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A. If f is the Dirac distribution of τ ≥ 0, i.e.,

f(s) = δτ (s) =
{

1, s = τ
0, s 6= τ,

then the transform Ã(t) = A(t− τ) denotes the variable A with delayed argument.

In this case, the equation (2.5) becomes

det(λI −M1 − e−λτM2) = 0.(2.6)

which explicitely rewrites

λ3 + a1λ
2 · e−λτ + a2λ

2 + a3λ · e−λτ + a4λ + a5e
−λτ = 0 ⇔

λ3 + a2λ
2 + a4λ + (a1λ

2 + a3λ + a5)e−λτ = 0,
(2.7)

where a1 = γ, a2 = Ty−Tz+k, a3 = γ(−Ty+Tz−k)−α·TA, a4 = k·Ty, a5 = −k·Ty ·γ.
We denote the characteristic polynomial function in (2.7) by J(λ). The existence

of τ−independent solutions of (2.7) would require the condition

a5[(a1a2 − a3)2 + a2
2(a5 − a1a4)2] = 0.

In our case, we note that there exist no such solutions. Looking for the critical values
of the parameter τ at which there is an exchange of stability, we note that the solutions
of the characteristic equation (2.7) are of the form λ = λ(τ) = u(τ)± iω(τ) ∈ C, and
that the equation (2.7) is equivalent to

ReJ(λ) = Im J(λ) = 0.(2.8)

In order to study the Hopf bifurcation, the critical values of the parameter τ can be
obtained, imposing u(τ) = 0 and ω(τ) 6= 0. Under these assumptions, we infer the
nonlinear system in terms of ω and τ ,

{
(a5 − a1ω

2) cos ωτ + a3ω sin ωτ = a2ω
2

a3ω cos ωτ − (a5 − a1ω
2) sin ωτ = ω3 − a4ω;

(2.9)

solving (2.9) for cos ωτ and sin ωτ the relation cos2 ωτ + sin2 ωτ = 1 leads to the
six-degree equation in ω

ω6 + (−a2
1 + a2

2 − 2a4)ω4 + (2a1 − a2
3 + a4)ω2 − a2

5 = 0.(2.10)

By noting ω2 = x, we obtain a third-degree equation in x with positive product of
the solutions and hence the equation (2.10) provides at least two real solutions for ω,
ω = ±ω0.

In order to find solutions for τ from the system (2.9), the following inequalities
have to be satisfied

{
(a2ω

2)2 ≤ (a5 − a1ω
2)2 + (a3ω)2

ω2(ω2 − a4)2 ≤ (a5 − a1ω
2)2 + (a3ω)2.

(2.11)
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But, from system (2.9) we have (a5− a1ω
2)2 + (a3ω)2 = ω2(ω2− a4)2 and hence, the

inequalities (2.11) always hold true.
In conclusion, in the case of Dirac distribution, the system (2.9) always provides

a set of solutions (ω, τ) = (±ω0, τ0).
In order to exibit Hopf bifurcation, the transversality condition Re (λ′(τ0)) 6= 0

has to be satisfied; this is equivalent to

[2a1a2ω
2
0 − a3(ω2

0 − a4)] cos ω0τ0 − [a2a3ω0 + 2a1ω0(ω2
0 − a4)] sin ω0τ0+

+2a2ω
4
0 + (3ω2

0 − a4)(ω2
0 − a4) 6= 0

which takes place if and only if

[2a1a2ω
2
0 − a3(ω2

0 − a4)]2 + [a2a3ω0 + 2a1ω0(ω2
0 − a4)]2 <

< [2a2ω
4
0 + (3ω2

0 − a4)(ω2
0 − a4)]2

B. If f is the uniform distribution of τ > 0, i.e.,

f(s) =

{
1
τ , 0 ≤ s ≤ τ

0, s > 0
,

then Ã(t) = 1
τ

∫ 0

−τ
A(t + s)ds.

In this case, the equation (2.5) becomes

det
(

λI −M1 − 1− e−λτ

λτ
M2

)
= 0,(2.12)

which explicitely rewrites

λ3 + a1λ
2 + a4λ + (a1λ

2 + a3λ + a5)
1− e−λτ

λτ
= 0

with ai, i = 1, 5 the same as in the case of Dirac distribution.
In order to study the Hopf bifurcation and imposing the conditions Re (λ(τ)) = 0

and Im (λ(τ)) 6= 0, the characteristic equation is equivalent to the nonlinear system
{

(a5 − a1ω
2) cos ωτ + a3ω sin ωτ = τω4 − (a4τ + a1)ω2 + a5

−a3ω · cosωτ + (a5 − a1ω
2) sin ωτ = (a2ω − a3)ω.

(2.13)

C. If f is the gamma distribution of τ > 0, i.e.,

f(s) =
dm

Γ(m)
sm−1e−ds, s ≥ 0, d > 0,

then

Ã(t) =
dm

Γ(m)

∫ t

−∞
A(s)(t− s)m−1e−d(t−s)ds.

For m = 1, we obtain the exponential distribution
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f(s) =
d

Γ(1)
e−ds, s ≥ 0, d > 0,

and Ã(t) = d
Γ(1)

∫ t

−∞A(s)e−d(t−s)ds. In this case the equation (2.5) becomes

det
(

λI −M1 − d

λ + d
M2

)
= 0.(2.14)

which explicitely rewrites

λ3 + a2λ
2 + a4λ + (a1λ

2 + a3λ + a5)
d

λ + d
= 0

with the constants a5, i = 1, 5, the same as in the case of Dirac distribution.
Following the same steps as in the cases of Dirac and uniform distribution, we note

that in this case the vanishing of the real and the imaginar parts of the characteristic
polynomial function is equivalent to

{
ω4 − (da1 + da2 + a4)ω2 + a5d = 0

(d + a2)ω2 − d(a3 + a4) = 0
(2.15)

system which has real solutions for ω if and only if
d(a3 + a4)

d + a2
> 0 and

[(a1 + a2)(a3 + a4) + a5]d2 + [(a3 + a4)(a1a2 + a2
2 + a3 + 2a4) + 2a2a5]d+

+[(a3 + a4)a2a4 + a2
2a5] = 0.

We shall point out the cases when the SODE leads to explosion, chaos and quasi-
periodicity. The first one was thoroughly investigated in [8], in the case of the Dirac
distribution. For the three cases of parameter sets and for the three types of distrib-
utions we further develop the basic results regarding the stability and bifurcation of
the considered delayed SODE.

I. The case of explosion. The values of the parameters which lead to the event
called ”explosion” are:

β = 0.46, n = 2, m = 4, p = 1, K2 = 0.1µM, k5 = 1µM,

kA = 0.1µM, kd = 0.6µM, kY = 0.2µM,

kZ = 0.3µM, k = 0.1667s−1, kf = 0.0167s−1, ε = 0.0167s−1,

V0 = 0.0333µM · s−1, V1 = 0.0333µM · s−1, VM2 = 0.1µM · s−1,

VM3 = 0.3333µM · s−1, VM4 = 0.0417µM · s−1, VM5 = 0.5µM · s−1.

We attach to the autonomous SODE (1.1) the initial condition Z(0) = Z0, Y (0) =
Y0, A(0) = A0. In this case is known the following ([8]):

Proposition 2. a) The only non-negative equilibrium point is

(Z∗, Y ∗, A∗) = (0.2916496701; 0.2344675015; 0.1989819160).
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b) The eigenvalues of the Jacobian matrix of the field at this point are

{−0.07285104555, 0.02709536609± i 0.2468748453};(2.16)

c) The constitutive matrices of the liniarized delayed SODE (2.5) are

M1 =

(
0.3886052798 0.3240919299 0
−0.5553052794 −0.3240919299 0
−0.08796881783 0 0

)
, M2 =

(
0 0 0.103140906
0 0 −0.103140906
0 0 −0.08317366327

)
.

I.A. The Dirac distribution case. In this case

a1 = 0.08317366327, a2 = −0.0645133499 a3 = 0.0037073737193,

a4 = 0.0540261246 a5 = 0.00449355070.

Using the Maple 8 software package, we detect that the only real solutions are
(ω0, τ0) with

ω0 ∈ {±0.08289718923}, τ0 = 21.25439515.

Since λ(τ) = ±iω(τ), it follows that λ′(τ0) = 0.002089008054 − 0.003141707558i,
hence the transversality condition Re λ′(τ0) = 0.002089008054 > 0 is satisfied.

While τ passes through τ0, the function u(τ) changes from negative to positive
values. It follows that the critical value of τ for which the Hopf bifurcation appears
is exactly τ = τ0.

Based on Maple computations is known the following ([8])

Proposition 3. a) For τ = 0, the equation (2.7) has just three roots, which are
the eigenvalues (2.16) of the Jacobian matrix of the vector field at the considered
equilibrium point.

b) For τ = τ0 the equation (2.7) has two imaginary conjugate roots λ = ±iω, an
infinity of roots with negative real part and no root with positive real part.

I.B. The uniform distribution case. In this case, the equation (2.5) becomes

0.0540261246λ + 0.00449355070 (1−e−λτ )
λτ − 0.0645133499λ2+

+0.003707371930 (1−e−λτ )
τ + λ3 + 0.08317366327λ (1−e−λτ )

τ = 0.

Following the same steps like in the case of Dirac distribution, we obtain that there
exist no solutions for the bifurcation parameter τ0.

I.C. The Gamma distribution case. In this case, the equation (2.5) becomes
(2.14), which explicitely rewrites

0.540261246λ + 0.00449355070 d
λ+d − 0.0645133499λ2+

+0.003707371930 dλ
λ+d + λ3 + 0.08317366327λ2 d

λ+d = 0.

Using the graphic package Maple 8, we obtain that there exists no solution for the
equation (2.15) for u = 0 in terms of τ0 and ω0.

II. The case of Chaos. The parameters which lead to the event called ”explo-
sion” are:
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β = 0.65, n = 4, m = 2, p = 1, k2 = 0.1µM, k5 = 0.3194µM, kA = 0.1µM,

kd = 1µM, kY = 0.3µM, kZ = 0.6µM, k = 0.1667s−1, kf = 0.0167s−1,

ε = 0.2167s−1, V0 = 0.0333µMs−1, V1 = 0.0333µMs−1, VM2 = 0.1µMs−1,

VM3 = 0.5µMs−1, VM4 = 0.05µMs−1, VM5 = 0.8333µMs−1.

We attach to the autonomous SODE (1.1) the initial condition Z(0) = Z0, Y (0) =
Y0, A(0) = A0. In this case we obtain the following:

Proposition 4. a) The only non-negative equilibrium point

(Z∗, Y ∗, A∗) = (0.3296040792; 0.7830862038; 0.1365437815);

b) The eigenvalues of the Jacobian matrix of the field at this point are

{−0.1767271957, 0.2753920311± i0.9217492250};
c) The constitutive matrices of the liniarized delayed SODE (2.5) are

M1 =

(
0.1523424612 0.0423568326 0
−0.3190424612 −0.0423568326 0
−0.03491470092 0 0

)
, M2 =

(
0 0 0.513718989
0 0 −0.513718989
0 0 −0.2316344181

)
;

II.A. The Dirac distribution case. For the Dirac distribution, the equation
(2.5) becomes (2.7), where

a1 = 0.2316344181, a2 = −0.1099856286, a3 = −0.00754011222,

a4 = 0.007060883993, a5 = 0.001635543755.

Following the same steps as in the precedent case, we obtain

τ0 = 24.86935346, ω0 = ±0.07612239751

and Proposition 3 holds true.

II.B. The uniform distribution case. In this case Ã(t) = 1
τ

∫ 0

−τ
A(t + s)ds

and the equation (2.5) becomes (2.12), which explicitely rewrites

0.007060883993λ + 0.001635543755 (1−e−λτ )
λτ − 0.1099856286λ2−

−0.00754011222 (1−e−λτ )
τ + λ3 + 0.2316344181λ(1−e−λτ )

τ = 0.

Following the same steps like in the case of Dirac distribution, we obtain that there
exists no solution for the equation (2.13) for u = 0 in terms of τ0 and ω0.

II.C. The case of Gamma distribution. In this case we have

Ã(t) =
d

Γ(1)

∫ t

−∞
A(s)e−d(t−s)ds,

and the equation (2.5) becomes (2.14), which explicitely rewrites

0.007060883993λ + 0.001635543755d/(λ + d)− 0.1099856286λ2−
−0.00754011222dλ/(λ + d) + λ3 + 0.2316344181λ2d/(λ + d) = 0.
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Using the graphic package Maple 8, we obtain that there exists no solution for the
equation (2.15) for u = 0 in terms of τ0 and ω0.

III. The case of quasiperiodicity. In the following we shall use the values of
the parameters which lead to the event called ”quasiperiodicity”, namely:

β = 0.51, n = 4, m = 2, p = 2, k2 = 0.1µM, k5 = 0.3µM, kA = 0.2µM,

kd = 0.5µM, kY = 0.2µM, kZ = 0.5µM, k = 0.1667s−1, kf = 0.0167s−1,

ε = 0.0017s−1, V0 = 0.0333µMs−1, V1 = 0.0333µMs−1, VM2 = 0.1µMs−1,

VM3 = 0.3333µMs−1, VM4 = 0.0833µMs−1, VM5 = 0.5µMs−1.

We obtain the following:
Proposition 5. a) The only equilibrium point of the SODE is

(Z∗, Y ∗, A∗) = (0.3016376725; 0.6476260612;−0.5077053483);

We obtained a negative solution which can not be acceptable from a physiological point
of view.

b) The eigenvalues of the Jacobian matrix of the field at this point are

{−0.1767271957, 0.2753920311± i0.9217492250}.
In the cases of * explosion-Dirac distribution subcase and * chaos-Dirac distribution
, the initial dynamical SODE becomes subject to the following result, known as the
Hopf bifurcation theorem ([14])

Theorem 1. Let X ∈ X (Rn × R) 3 (x, τ), n ≥ 2 be a C∞ vector field,
which differentiably depends on the parameter τ and obeys the property that the
set E : X(x, τ) = 0 contains the isolated point x = x(τ), τ ∈ I ⊂ R . Consider in a
neighborhood of the stationary point x = x(τ) the linear approximation

dx

dt
= A(τ)x, A(τ) =

[
∂Xi

∂xj
(x(τ), τ)

]

of the system dx
dt = X(x, τ). Denote by λ1(τ), . . . , λn(τ) the eigenvalues of A(τ) and

assume that

λ1(τ) = µ(τ) + iω(τ), λ2(τ) = µ(τ)− iω(τ) = λ̄1(τ).

For n > 2, additionally assume that Re(λk(τ)) < 0, k = 3, . . . n and that exists
an isolated value τ0 ∈ I such that u(τ0) = 0, ω(τ0) 6= 0 and du

dτ > 0. Under these
hypotheses, one of the following assertions holds true:

a) The stationary point x = x(τ0) is a center; for τ 6= τ0 neighbor to τ0, there
exists no periodic orbit around x(τ);

b) There exists a number b > τ0 s.t. for each τ ∈ (τ0, b) there exists an unique
induced orbit around the stationary point x(τ) in a neighborhood of this point. This
1-parameter family of closed orbits split at the stationary point x(τ0), i.e., for τ → τ0,
the diameter of the closed orbit varies with |τ − τ0|1/2. In this case, for τ ≤ τ0, τ ∈ I,
there exist no closed orbit neighbor to x(τ).
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c) There exists a number a < τ0 s.t. for each τ ∈ (a, τ0) there exists an unique
closed orbit around the stationary point x(τ0) in one of its neighborhoods. This 1-
parameter family of closed orbits split at the stationary point x(τ0), i.e., for τ → τ0,
the diameter of the closed orbit varies with |τ − τ0|1/2. In this case, for τ ≥ τ0, τ ∈ I,
there exist no closed orbit neighbor to x(τ).

We note that though in the case τ = 0, in a certain neighborhood of the singular
point there exist no closed orbits, for the delayed system at a certain delay τ 6= 0,
the SODE may exhibit one of the situations b) or c) in the Theorem, hence the pres-
ence of closed orbits arbitrarily close to the singular point may occur; their complete
characterization of these cases is subject of further research.
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