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Abstract

A nonlinear three-dimensional differential system derived from the Lorenz
system is analyzed. Insights on bifurcation and stability are presented. The
system possesses a subcritical Hopf bifurcation. For b = 3

5
a the point S+ loses

stability. As far as we know, not many systems derived from the Lorenz system
have been studied.

Mathematics Subject Classification: 34D20, 37L10, 37G10.
Key words: Nonlinear systems, stability, Hopf bifurcation.

1 Introduction

The nonlinear differential three-dimensional system




x′ = a (y − x)
y′ = 4ax− axz
z′ = xy − bz

(1)

with a, b real numbers, a 6= 0, is derived from the Lorenz system. It help us to
understand better the family of Lorenz systems. As far as we know, not many systems
derived from Lorenz was studied. Originally, the Lorenz system was a model of
convection. In the last decades the nonlinear system was intensively studied because
the nonlinear phenomena are met in many areas, from engineering to human brain
[10, 1] and heart disease. Chaos is a phenomenon closely related to nonlinear systems.
In [8] it is studied the Duffing oscillator modified and are found the conditions to
transition to chaos.

2 Stability analysis

As we said above, not many systems derived from the Lorenz system have been
studied. We record here two of them: Lü system [4] and Chen system [9]. Good
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notes on these systems are reported in [3, 5, 11]. Of the two system, the Lü system is
the most similar to our system (1). Due to this fact we recall it here. The Lü system
is described by the following three nonlinear differential equations:





x′ = a (y − x)
y′ = −xz + cy
z′ = xy − bz

Although system (1) and Lü system are similar, having the same number of linear
and nonlinear terms but differing in some terms, they exhibit different dynamics, fig.1
a)-b). The flow of system (1) is drawn bellow together with Lü attractor.
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Figure 1: a) The attractor of the system (1) for the parametric vector (a,b)=(2,5) b)
The attractor of the Lü system for the parametric vector (a,b,c)=(36,3,20)

In the following we briefly describe some basic properties of the system (1).
Solving the three equations x′ = y′ = z′ = 0 we get that system (1) has three

isolated equilibria O(0, 0, 0), S+(2
√

b, 2
√

b, 4), S−(−2
√

b,−2
√

b, 4) if b > 0 and it has
only one isolated equilibrium O(0, 0, 0) for b < 0.

For b = 0 all points in the form (0, 0,m), m real, are non-isolated equilibria of the
system. In the following consider b 6= 0. For system (1) the divergence is:

div(f) = ∂x′
∂x + ∂y′

∂y + ∂z′
∂z = −a− b.

Hence, for all real a and b such that a + b > 0, the system (1) is dissipative, with
an exponential contraction rate:

dV
dt = e−a−b.

That is, a volume element V0 is contracted by the flow into a volume element
V0e

(−a−b)t in time t. This means that each volume containing the system trajectory
shrinks to zero as t tends to infinity at an exponential rate e−a−b . Therefore, all
system orbits are ultimately confined to a specific limit set of zero volume, and the
system asymptotic motion settles onto an attractor [5]. The system (1) is conservative
if and only if a + b = 0.
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Proposition 1. The equilibrium O(0, 0, 0) is unstable for any a 6= 0.

Proof. Indeed, the Jacobian matrix of the system at O(0, 0, 0) is J0 =

−a a 0
4a 0 0
0 0 −b


, with characteristic polynomial

(λ + b)
(
λ2 + aλ− 4a2

)
= 0.

This leads to the eigenvalues: λ1 = −b, λ2 = − 1
2a− 1

2a
√

17, λ3 = − 1
2a + 1

2a
√

17.
Now it is clear that if a > 0 ⇒ λ3 > 0 and if a < 0 ⇒ λ2 > 0. Consequently the
equilibrium point O(0, 0, 0) is unstable for any a 6= 0.

In the following consider the stability of the system at S+(2
√

b, 2
√

b, 4), S−(−2
√

b,−2
√

b, 4).
Because the system is invariant under the transformation (x, y, z) → (−x,−y, z) ,

one only needs to consider the stability of system (1) at S+(2
√

b, 2
√

b, 4). Under the
linear transformation (x, y, z) → (X, Y, Z)





x = X + 2
√

b

y = Y + 2
√

b
z = Z + 4

(2)

the system (1) becomes




X ′ = a (Y −X)
Y ′ = −2a

√
bZ − aXZ

Z ′ = 2
√

b (X + Y )− bZ + XY

(3)

Then, we have to consider the stability of system (3) at O(0, 0, 0). The Jacobian
matrix of system (3) at O(0, 0, 0) is:

J+ =




−a a 0
0 0 −2a

√
b

2
√

b 2
√

b −b


.

and the characteristic equation is : (*) λ3 + λ2(a + b) + 5abλ + 8a2b = 0.
Using Routh-Hurwitz conditions, this equation has all roots with negative real

parts if and only if A > 0, C > 0, AB − C > 0 where A = a + b,B = 5ab, C = 8a2b,
namely:





a + b > 0
b > 0
a (5b− 3a) > 0

Consequently, we have the theorem:

Theorem 1. The equilibrium points S+(2
√

b, 2
√

b, 4), S−(−2
√

b,−2
√

b, 4) are
asymptotically stable if and only if

(
a + b > 0, b > 0, 5ab− 3a2 > 0

)
.

Proposition 2. Equation (*) has purely imaginary roots if and only if b > 0, b =
3
5a. In this case the solutions of equation (*) are λ1 = −8

5 a, λ2,3 = ±ia
√

3.
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Proof. If λ2,3 = ±iω are the complex solutions and λ1 the real solution of (*)
then, from λ1+λ2+λ3 = −(a+b) ⇒ λ1 = −(a+b) . This easily leads to b > 0, b = 3

5a

and λ1 = −8
5 a, λ2,3 = ±ia

√
3.

In the following we will prove that the system (1) displays a Hopf bifurcation at
the point S+. For b := bc = 3

5a the point S+ loses its stability and the bifurcation
is subcritical, i.e appears an unstable limit cycle.

Theorem 2. If b = 3
5a, equation (*) has a negative solution λ1 = −8

5 a < 0
together with a pair of purely imaginary roots λ2,3 = ±ia

√
3 such that Re(λ′b (bc)) 6=

0, therefore the system (1) displays a Hopf bifurcation at the point S+ and the
bifurcation is subcritical.

Proof. If b = 3
5a the equation (*) is transformed into

(
λ +

8
5
a

) (
λ2 + 3a2

)
= 0(4)

with solutions λ1 = −8
5 a and λ2,3 = ±ia

√
3.

From (*) results that:

λ′b = − 5aλ+8a2+λ2

5ab+2λ(a+b)+3λ2 , so that

λ′b (bc) = − 5aλ+8a2+λ2

5ab+2λ(a+b)+3λ2 = − 25aλ+40a2+5λ2

16aλ+15a2+15λ2 with λ = ±ia
√

3.

Then,
Re (λ′b (bc)) = − 75

278 < 0 and
Im (λ′b (bc)) = 575

834

√
3 > 0.

Consequently, the system (3) displays a Hopf bifurcation at O (0, 0, 0), so the
system (1) displays a Hopf bifurcation at the point S+.

The fact that the Hopf bifurcation is subcritical results from the following theorem.

Theorem 3. If b = 3
5a, b > 0 the point S+(2

√
b, 2
√

b, 4) of the system (1) is
unstable for any a > 0.

Proof. In this case the system (3) becomes:





X ′ = a(Y −X)

Y ′ = −XZa− 2Za
√

3
5a

Z ′ = XY − 3
5Za + 2 (X + Y )

√
3
5a

(5)
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and λ1 = −8
5 a < 0, λ2,3 = ±ia

√
3 with a > 0 are the eigenvalues of the Jacobian

matrix of this system. Then, the eigenvectors corresponding to λ1 = −8
5 a, λ2 = ia

√
3,

λ3 = −ia
√

3 are, respectively,

v1 =



− 25

12

√
3
5a

5
4

√
3
5a

1


 , v2 =




1
2

√
3
5a + 1

2 i
√

1
5a

2i
√

1
5a

1


 and

v3 =




1
2

√
3
5a− 1

2 i
√

1
5a

−2i
√

1
5a

1




Then, the vectors w = v2+v3
2 =

(
1
2

√
3
5a, 0, 1

)
, w′ = v2−v3

2i =
(

1
2

√
1
5a, 2

√
1
5a, 0

)

and v1 provide us the following linear transformation of the system (5):




X
Y
Z


 =




1
2

√
3
5a 1

2

√
1
5a − 25

12

√
3
5a

0 2
√

1
5a 5

4

√
3
5a

1 0 1







X1

Y1

Z1


(6)

or,equivalently,




X1

Y1

Z1


 =




48
139

√
5
3a − 12

139

√
5
3a

115
139

30
139

√
5
a

62
139

√
5
a − 15

139

√
3

− 48
139

√
5
3a

12
139

√
5
3a

24
139







X
Y
Z


(7)

namely,





X1 = 115
139Z + 48

139

√
5
3aX − 12

139

√
5
3aY

Y1 = − 15
139Z

√
3 + 30

139

√
5
aX + 62

139

√
5
aY

Z1 = 24
139Z − 48

139

√
5
3aX + 12

139

√
5
3aY

After some calculations, the system (5) is transformed into:
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X ′
1 = aY1

√
3 + 25

139aX1Y1

√
3 + 193

1112aX1Z1 − 1907
3336aY1Z1

√
3 +

+ 6
139aX2

1 + 23
139aY 2

1 − 3275
2224aZ2

1

Y ′
1 = −aX1

√
3− 40

139aX1Y1 + 2221
3336aX1Z1

√
3 + 7

1112aY1Z1 −

− 31
139aX2

1

√
3− 3

139aY 2
1

√
3 + 7325

6672aZ2
1

√
3

Z ′1 = − 8
5aZ1 + 14

695aX1Y1

√
3 + 28

139aX1Z1 − 19
139aY1Z1

√
3−

− 6
139aX2

1 + 24
695aY 2

1 − 25
278aZ2

1

(8)

Then, the 2-dimensional local center manifold of system (8) near the origin is the
set :

W c
loc (O1) =

{
(X1, Y1, Z1) ∈ R3 | Z1 = h (X1, Y1) , |X1|+ |Y1| ¿ 1

}
where

h (0, 0) = ∂h
∂X1

(0, 0) = ∂h
∂Y1

(0, 0) = 0.

With the substitution Z1 = h (X1, Y1) in (8), the vector field on the center
manifold is:





X ′
1 = aY1

√
3 + 25

139aX1Y1

√
3 + 193

1112aX1h− 1907
3336aY1h

√
3 +

+ 6
139aX2

1 + 23
139aY 2

1 − 3275
2224ah2

Y ′
1 = −aX1

√
3− 40

139aX1Y1 + 2221
3336aX1h

√
3 + 7

1112aY1h−

− 6
139aX2

1 + 24
695aY 2

1 − 25
278ah2

(9)

Assume that Z1 = h (X1, Y1) = a11X
2
1 + a12X1Y1 + a22Y

2
1 + ...

Substituting X1 = w + u, Y1 = i (w − u), system(9) becomes

w′ = iaw
√

3+ 93
1112ahu+ 25

278ahw+ 29
139auw− 73

100ah2+ 23
278au2− 57

278aw2− 1
25 iahu

√
3−

− 86
139 iahw

√
3 + 34

139 iauw
√

3− 27
50 iah2

√
3 + 3

278 iau2
√

3 + 53
278 iaw2

√
3

u′ = −iau
√

3+ 25
278ahu+ 2

25ahw+ 29
139auw− 73

100ah2− 57
278au2 + 23

278aw2 + 86
139 iahu

√
3+

+ 1
25 iahw

√
3− 34

139 iauw
√

3 + 27
50 iah2

√
3− 53

278 iau2
√

3− 3
278 iaw2

√
3

where u = w.
From
Z1 = a11X

2
1 + a12X1Y1 + a22Y

2
1 + O

(
|w|3

)
,
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in complex variables Z1 is in the form

Z1 = N11w
2 + N12wu + N22u

2 + O
(
|w|3

)
(10)

with Z ′1 = 2N11w
′w + N12 (w′u + wu′) + 2N22u

′u
Using the above terms w′ and u′, after some calculations, this leads to

Z ′1 = 2iaw2N11

√
3− 2iau2N22

√
3 + O

(
|w|3

)
(11)

On the other hand, from (8) we have:

Z ′1 = − 8
5aZ1 + 14

695aX1Y1

√
3 + 28

139aX1Z1 − 19
139aY1Z1

√
3−

− 6
139aX2

1 + 24
695aY 2

1 − 25
278aZ2

1

and then, also after some calculations, we have that

(**) Z ′1 = − 8
5au2N22 − 8

5aw2N11 − 8
5auwN12 − 12

695auw − 14
695 iau2

√
3− 54

695au2+

+ 14
695 iaw2

√
3− 54

695aw2 + O
(
|w|3

)

Equating coefficients of w2, wu, u2 in (11) and (**) one can find:

N11 = − 1
500 + 1

50 i, N12 = − 3
278 and N22 = − 1

500 i
√

3− 1
50

and
h = w2

(
1
50 i− 1

500

)− 3
278uw − u2

(
1

500 i
√

3 + 1
50

)

Then, the dynamics on the center manifold is governed by the equation [6]:

w′ = iaw
√

3+ 93
1112ahu+ 25

278ahw+ 29
139auw− 73

100ah2+ 23
278au2− 57

278aw2− 1
25 iahu

√
3−

− 86
139 iahw

√
3 + 34

139 iauw
√

3− 27
50 iah2

√
3 + 3

278 iau2
√

3 + 53
278 iaw2

√
3,

that is:
w′ = iaw

√
3 +

(
53
278 i

√
3− 57

278

)
aw2 +

(
23
278 + 3

278 i
√

3
)
au2 +

(
29
139 + 34

139 i
√

3
)
auw +(

1
125 + 7

100 i
√

3
)
auw2 + +O

(
|w|3

)

because we are interested only in coefficients of w2, wu, u2, w2u. Note by:
g20 = 2

(
53
278 i

√
3− 57

278

)
a, g11 =

(
29
139 + 34

139 i
√

3
)
a

g02 = 2
(

23
278 + 3

278 i
√

3
)
a, g21 = 2

(
1

125 + 7
100 i

√
3
)
a

Now we are able to use the first Lyapunov coefficient to prove that the point
S+ is unstable and the bifurcation is subcritical , a method related in [2]. The first
Lyapunov coefficient is defined as:

`1 (0) = Re(C(0))√
3a

where

C(0) = i
2
√

3a

(
g20g11 − 2 |g11|2 − 1

3 |g02|2
)

+ g21
2 ' (

1.8377× 10−2 − 0.1157i
)
a

Hence, `1 > 0. Consequently, the point O(0, 0, 0) of the system (3) is unstable,
so the point S+(2

√
b, 2
√

b, 4) of the system (1) is unstable and the Hopf bifurcation
is subcritical.
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3 Conclusions

Using a rigorous mathematical analysis based on symbolic and numerical computa-
tions we have studied a relative new system. There are obtained some insights on
stability and bifurcation. The system possesses a Hopf bifurcation and the bifurcation
is subcritical. Surely, there is still a lot of work, and this paper is a step in analyzing
this system.
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