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Abstract

We study a new continued fraction expansion of reals in the unit
interval. Using the ergodic behaviour of a homogeneous random system with
complete connections associated with this expansion we obtain a Gauss-Kuzmin-
type theorem.
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1. Introduction
The Gauss-Kuzmin theorem is one of the most important results in the metrical

theory of regular continued fractions (see [5], [6]).
From the time of Gauss, a great number of Gauss-Kuzmin-type theorems followed.

The Gauss-Kuzmin problem has been generalized in various directions for other con-
tinued fraction expansions. We remark that the Gauss transformation has strong ties
with chaos theory [1], [2].

In this paper we consider another expansion of reals in the unit interval I different
from the regular continued fraction-expansion. Using the approach of dependence with
complete connections, our aim is to prove a Gauss-Kuzmin-type theorem for this new
expansion. In Section 2 we describe this expansion and the associated transformation.
In Section 3 we introduce a homogeneous random system with complete connections
associated with this expansion. In Section 4 the ergodic behaviour of this random
system allows us to obtain a convergence rate result.
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2. Another expansion and some examples

Write x ∈ [0, 1) as

(1)
2−a1

1 +
2−a2

1+
. . .

= [a1, a2, . . .],

where an are natural numbers. First, it is clear that every irrational x ∈ [0, 1) has a
unique expansion of the type of (1). Second, we note that some particular cases of this
type of continued fractions have been studied before. For example, by setting q = 1/2
and an = n, the right-hand side of (1) gives the well-known continued fraction of
Rogers and Ramanujan

q

1 +
q2

1 + q3

1+
. . .

.

Another example is the result due to Davison [3]. Let an = Fn, where Fn is the n-th
Fibonacci number. Davison showed that

2−F1

1 +
2−F2

1 +
2−F3

1+
. . .

=
1
2

∑

n≥1

2−[nφ],

where φ is the Golden Ratio and [·] denotes the entire function.
Define the transformation T : [0, 1) → [0, 1) as follows

(2) T (x) =

{
0, x = 0

[a2, a3, . . .], x = [a1, a2, . . .].

It follows from (1) and (2) that for x 6= 0 we have

(3) x =
2−a1

1 + T (x)
.

Consequently, using (3) we can write the transformation T of [0,1) as

T (x) = 2{log(1/x)/ log 2} − 1, x 6= 0,

where {u} denotes the fractionary part of a real u.
One should think of an as the incomplete quotients or digits of x. For x 6= 0, we

get
a1(x) = [log(1/x)/ log 2],

an(x) = a1(T (n−1)(x)), n ∈ N∗, n ≥ 2.
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3. Preliminary results

Let µ be a non-atomic probability measure on B (= the σ-algebra of Borel subsets
of I = [0, 1]) and define

Fn(x) = µ(Tn < x), x ∈ I, n ∈ N,

with F0(x) = µ([0, x)).
Proposition 1. For each n ∈ N, Fn satisfies the following Gauss-type relation

(4) Fn+1(x) =
∑

k≥0

(
Fn(αk)− Fn

(
αk

x + 1

))
, x ∈ I,

where α = 1/2.

Proof. Since Tn =
2−an+1

Tn+1 + 1
it follows that

Fn+1(x) = µ(Tn+1 < x) =
∑

k≥0

µ

(
αk

x + 1
< Tn < αk

)
=

=
∑

k≥0

(
Fn(αk)− Fn

(
αk

x + 1

))
.

2

We now assume that F ′0 exists and is bounded (µ has bounded density). By in-
duction we have that F ′n, n ∈ N∗, exist and are bounded as well. This allows us to
differentiate (4) term by term, obtaining

(5) F ′n+1(x) =
∑

k≥0

αk

(x + 1)2
F ′n

(
αk

x + 1

)
.

Let us introduce the function fn in (5) where

fn(x) =
F ′n(x)
ρ(x)

, n ∈ N,

with ρ(x) =
1

(x + 1)(x + 2)
, x ∈ I. Then (5) becomes

(6) fn+1(x) =
∑

k≥0

pk(x)fn

(
αk

x + 1

)
,

where

pk(x) =
αk+1(x + 1)(x + 2)

(αk + x + 1)(αk+1 + x + 1)
.

Proposition 2. The function P (x, k) = pk(x) defines a transition probability
function from (I,B) to (N,P(N)).

Proof. We have to verify that
∑

k≥0

P (x, k) = 1 for all x ∈ I. Since
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P (x, k) = αk+1 +
∆k

αk + x + 1
− ∆k+1

αk+1 + x + 1

with ∆k = αk − α2k, it follows that

∑

k≥0

P (x, k) = lim
k→∞

(
α(1− αk+1)

1− α
− ∆k+1

αk+1 + x + 1

)
= 1.

2

Proposition 2 allows us to consider the random system with complete connections
(RSCC) (see [4] Section 1.1)

(7) ((I,B), (N,P(N)), u, P )

where I,B,P(N) and P are defined previously, while u : I ×N → I is given by

u(x, k) = uk(x) =
αk

x + 1
.

Further, we denote by U the associated Markov operator of the RSCC (7) with the
transition probability function

Q(x,B) =
∑

{k∈N|uk(x)∈B}
pk(x), x ∈ I, B ∈ B.

Then Qn(·, ·) will denote the n-step transition probability function of the same Markov
chain (see [4]).

The ergodic behaviour of the RSCC (7) allows us to find the limiting distribution
function F = F∞ and the invariant measure Q∞ induced by F . To study the ergodicity
of the RSCC (7), let us consider the norm || · ||L defined on L(I) (= the space of
Lipschitz real-valued functions defined on I) by

||f ||L = sup
x∈I

|f(x)|+ sup
x′ 6=x′′

|f(x′)− f(x′′)|
|x′ − x′′| , f ∈ L(I).

Proposition 3. The RSCC (7) is uniformly ergodic.
Proof. We have

d

dx
u(x, k) = − αk

(x + 1)2
,

d

dx
P (x, k) = − ∆k

(αk + x + 1)2
+

∆k+1

(αk+1 + x + 1)2
,

for all x ∈ I and k ∈ N, so that sup
x∈I

∣∣∣∣
d

dx
u(x, k)

∣∣∣∣ = αk and sup
x∈I

∣∣∣∣
d

dx
P (x, k)

∣∣∣∣ < ∞.

Hence the requirements of definition of an RSCC with contraction are fulfiled (see
Definition 3.1.15 in [4]). By Theorem 3.1.6 in [4]), it follows that the Markov chain
associated with this RSCC with contraction is a Doeblin-Fortet chain and its transi-
tion operator is a Doeblin-Fortet operator. To prove the regularity of U w.r.t. L(I)
let us define recursively xn+1 = (xn + 2)−1, n ∈ N, with x0 = x. A criterion of
regularity is expressed in Theorem 3.2.13 in [4], in terms of the supports

∑
n(x) of
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the n-step transition probability functions Qn(x, ·), n ∈ N∗. Clearly xn+1 ∈
∑

1(xn)
and therefore Lemma 3.2.14 in [4] and an induction argument lead to the conclusion
that xn ∈

∑
n(x), n ∈ N∗. But lim

n→∞
xn =

√
2− 1 for any x ∈ I. Hence

d
(∑

n(x),
√

2 + 1
) ≤ |xn −

√
2− 1| → 0 as n →∞,

where d(x, y) = |x − y|, ∀x, y ∈ I. Finally, the regularity of U w.r.t. L(I) follows
from Theorem 3.2.13 in [4]. Moreover, Qn(·, ·) converges uniformly to a probability
measure Q∞ and that there exist two positive constants q < 1 and K such that

(8) ||Unf − U∞f ||L ≤ Kqn||f ||L, ∀n ∈ N∗, ∀f ∈ L(I),

where

(9) Unf(·) =
∫

I

f(y)Qn(·, dy), U∞f(·) =
∫

I

f(y)Q∞(dy).

2

Proposition 4. The invariant probability measure Q∞ of the transformation T

has the density ρ(x) =
1

(x + 1)(x + 2)
, x ∈ I, with the normalizing factor

1
log(4/3)

.

Proof. On account of the uniqueness of Q∞ we have to show that
∫

I

Q(x,B)Q∞(dx) =

Q∞(B) for any B ∈ B. Since the intervals [0, u) ⊂ I generate B it is sufficient to check
the above equation just for B = [0, u), 0 < u ≤ 1. We have

Q(x, [0, u)) =
∑

{k|0≤uk(x)<u}
P (x, k).

Then

1
log(4/3)

∫

I

Q(x, [0, u))ρ(x)dx =

=
1

log(4/3)

∫

I

∑

k≥
[

log u(x+1)
log α

]
+1

(
1

αk+1 + x + 1
− 1

αk + x + 1

)
dx =

=
1

log(4/3)
log

2(u + 1)
u + 2

= Q∞([0, u)).

Similarly we can treat the case α < u ≤ 1 and obtain the desired result.
2

4. Main result

Now we are able to find the limiting distribution function

F (x) = F∞(x) = lim
n→∞

µ(Tn < x)

and obtain a convergence rate result.
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Theorem 1 (A Gauss-Kuzmin-Type Theorem). If µ has a Riemann inte-
grable density, then

F (x) =
1

log(4/3)
log

2(x + 1)
x + 2

, x ∈ I.

If the density of µ is a Lipschitz function, then there exist two positive constants q < 1
and K such that for all x ∈ I, n ∈ N∗

µ(Tn < x) =
1

log(4/3)
(1 + θqn) log

2(x + 1)
x + 2

,

where θ = θ(µ, n, x), with |θ| ≤ K.
Proof. By virtue of (9) we have

U∞f0 =
∫

I

f0(x)Q∞(dx) =
1

log(4/3)
, f0 ∈ L(I).

Taking into account (8) there exist two constants q < 1 and K such that

||Unf0 − U∞f0|| ≤ Kqn||f0||L, ∀n ∈ N∗.

As L(I) is a dense subset of C(I) (= the metric space of real continuous functions
defined on I with the supremum norm ||f || = sup

x∈I
|f(x)|) we have

(10) lim
n→∞

||(Un − U∞)f0|| = 0

for all f0 ∈ C(I). Therefore (10) remains valid for measurable f0 that are Q∞-almost
surely continuous, that is, for Riemann-integrable f0. We have

F (x) = lim
n→∞

µ(Tn < x) = lim
n→∞

∫ x

0

Unf0(u)ρ(u)du =

=
1

log(4/3)

∫ x

0

ρ(u)du =
1

log(4/3)
log

2(x + 1)
x + 2

.

2

Remark. The study of optimality of the convergence rate remains an open ques-
tion. A Wirsing-type approach [8] to the Perron-Frobenius operator of the associated
transformation under its invariant measure, allows us to obtain a near-optimal solu-
tion to this problem and will appear in [7].
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