On a Gauss-Kuzmin-type problem for a new continued fraction expansion with explicit invariant measure

Gabriela Ileana Sebe

Abstract

We study a new continued fraction expansion of reals in the unit interval. Using the ergodic behaviour of a homogeneous random system with complete connections associated with this expansion we obtain a Gauss-Kuzmintype theorem.

Mathematics Subject Classification: 11J70, 60A10.
Key words: Gauss-Kuzmin problem, invariant measure, random system with complete connections.

1. Introduction

The Gauss-Kuzmin theorem is one of the most important results in the metrical theory of regular continued fractions (see [5], [6]).

From the time of Gauss, a great number of Gauss-Kuzmin-type theorems followed. The Gauss-Kuzmin problem has been generalized in various directions for other continued fraction expansions. We remark that the Gauss transformation has strong ties with chaos theory [1], [2].

In this paper we consider another expansion of reals in the unit interval I different from the regular continued fraction-expansion. Using the approach of dependence with complete connections, our aim is to prove a Gauss-Kuzmin-type theorem for this new expansion. In Section 2 we describe this expansion and the associated transformation. In Section 3 we introduce a homogeneous random system with complete connections associated with this expansion. In Section 4 the ergodic behaviour of this random system allows us to obtain a convergence rate result.

[^0]
2. Another expansion and some examples

Write $x \in[0,1)$ as

$$
\begin{equation*}
\frac{2^{-a_{1}}}{1+\frac{2^{-a_{2}}}{1+}}=\left[a_{1}, a_{2}, \ldots\right] \tag{1}
\end{equation*}
$$

where a_{n} are natural numbers. First, it is clear that every irrational $x \in[0,1)$ has a unique expansion of the type of (1). Second, we note that some particular cases of this type of continued fractions have been studied before. For example, by setting $q=1 / 2$ and $a_{n}=n$, the right-hand side of (1) gives the well-known continued fraction of Rogers and Ramanujan

$$
\frac{q}{1+\frac{q^{2}}{\frac{1+q^{3}}{1+}}} .
$$

Another example is the result due to Davison [3]. Let $a_{n}=F_{n}$, where F_{n} is the n-th Fibonacci number. Davison showed that

$$
\begin{gathered}
\frac{2^{-F_{1}}}{1+\frac{2^{-F_{2}}}{1+\frac{2^{-F_{3}}}{1+}}}=\frac{1}{2} \sum_{n \geq 1} 2^{-[n \phi]}, \\
\ddots
\end{gathered}
$$

where ϕ is the Golden Ratio and [•] denotes the entire function.
Define the transformation $T:[0,1) \rightarrow[0,1)$ as follows

$$
T(x)= \begin{cases}0, & x=0 \tag{2}\\ {\left[a_{2}, a_{3}, \ldots\right],} & x=\left[a_{1}, a_{2}, \ldots\right] .\end{cases}
$$

It follows from (1) and (2) that for $x \neq 0$ we have

$$
\begin{equation*}
x=\frac{2^{-a_{1}}}{1+T(x)} . \tag{3}
\end{equation*}
$$

Consequently, using (3) we can write the transformation T of $[0,1$) as

$$
T(x)=2^{\{\log (1 / x) / \log 2\}}-1, \quad x \neq 0
$$

where $\{u\}$ denotes the fractionary part of a real u.
One should think of a_{n} as the incomplete quotients or digits of x. For $x \neq 0$, we get

$$
\begin{aligned}
& a_{1}(x)=[\log (1 / x) / \log 2] \\
& a_{n}(x)=a_{1}\left(T^{(n-1)}(x)\right), n \in \mathbf{N}^{*}, n \geq 2
\end{aligned}
$$

3. Preliminary results

Let μ be a non-atomic probability measure on $\mathcal{B}(=$ the σ-algebra of Borel subsets of $I=[0,1]$) and define

$$
F_{n}(x)=\mu\left(T^{n}<x\right), x \in I, n \in \mathbf{N}
$$

with $F_{0}(x)=\mu([0, x))$.
Proposition 1. For each $n \in \mathbf{N}, F_{n}$ satisfies the following Gauss-type relation

$$
\begin{equation*}
F_{n+1}(x)=\sum_{k \geq 0}\left(F_{n}\left(\alpha^{k}\right)-F_{n}\left(\frac{\alpha^{k}}{x+1}\right)\right), x \in I \tag{4}
\end{equation*}
$$

where $\alpha=1 / 2$.
Proof. Since $T^{n}=\frac{2^{-a_{n+1}}}{T^{n+1}+1}$ it follows that

$$
\begin{aligned}
F_{n+1}(x)=\mu\left(T^{n+1}<x\right) & =\sum_{k \geq 0} \mu\left(\frac{\alpha^{k}}{x+1}<T^{n}<\alpha^{k}\right)= \\
& =\sum_{k \geq 0}\left(F_{n}\left(\alpha^{k}\right)-F_{n}\left(\frac{\alpha^{k}}{x+1}\right)\right)
\end{aligned}
$$

We now assume that F_{0}^{\prime} exists and is bounded (μ has bounded density). By induction we have that $F_{n}^{\prime}, n \in \mathbf{N}^{*}$, exist and are bounded as well. This allows us to differentiate (4) term by term, obtaining

$$
\begin{equation*}
F_{n+1}^{\prime}(x)=\sum_{k \geq 0} \frac{\alpha^{k}}{(x+1)^{2}} F_{n}^{\prime}\left(\frac{\alpha^{k}}{x+1}\right) \tag{5}
\end{equation*}
$$

Let us introduce the function f_{n} in (5) where

$$
f_{n}(x)=\frac{F_{n}^{\prime}(x)}{\rho(x)}, \quad n \in \mathbf{N}
$$

with $\rho(x)=\frac{1}{(x+1)(x+2)}, x \in I$. Then (5) becomes

$$
\begin{equation*}
f_{n+1}(x)=\sum_{k \geq 0} p_{k}(x) f_{n}\left(\frac{\alpha^{k}}{x+1}\right) \tag{6}
\end{equation*}
$$

where

$$
p_{k}(x)=\frac{\alpha^{k+1}(x+1)(x+2)}{\left(\alpha^{k}+x+1\right)\left(\alpha^{k+1}+x+1\right)} .
$$

Proposition 2. The function $P(x, k)=p_{k}(x)$ defines a transition probability function from (I, \mathcal{B}) to $(\mathbf{N}, \mathcal{P}(\mathbf{N}))$.

Proof. We have to verify that $\sum_{k \geq 0} P(x, k)=1$ for all $x \in I$. Since

$$
P(x, k)=\alpha^{k+1}+\frac{\Delta_{k}}{\alpha^{k}+x+1}-\frac{\Delta_{k+1}}{\alpha^{k+1}+x+1}
$$

with $\Delta_{k}=\alpha^{k}-\alpha^{2 k}$, it follows that

$$
\sum_{k \geq 0} P(x, k)=\lim _{k \rightarrow \infty}\left(\frac{\alpha\left(1-\alpha^{k+1}\right)}{1-\alpha}-\frac{\Delta_{k+1}}{\alpha^{k+1}+x+1}\right)=1
$$

Proposition 2 allows us to consider the random system with complete connections (RSCC) (see [4] Section 1.1)

$$
\begin{equation*}
((I, \mathcal{B}),(\mathbf{N}, \mathcal{P}(\mathbf{N})), u, P) \tag{7}
\end{equation*}
$$

where $I, \mathcal{B}, \mathcal{P}(\mathbf{N})$ and P are defined previously, while $u: I \times \mathbf{N} \rightarrow I$ is given by

$$
u(x, k)=u_{k}(x)=\frac{\alpha^{k}}{x+1}
$$

Further, we denote by U the associated Markov operator of the RSCC (7) with the transition probability function

$$
Q(x, B)=\sum_{\left\{k \in \mathbf{N} \mid u_{k}(x) \in B\right\}} p_{k}(x), x \in I, B \in \mathcal{B} .
$$

Then $Q^{n}(\cdot, \cdot)$ will denote the n-step transition probability function of the same Markov chain (see [4]).

The ergodic behaviour of the RSCC (7) allows us to find the limiting distribution function $F=F_{\infty}$ and the invariant measure Q^{∞} induced by F. To study the ergodicity of the RSCC (7), let us consider the norm $\|\cdot\|_{L}$ defined on $L(I)$ ($=$ the space of Lipschitz real-valued functions defined on I) by

$$
\|f\|_{L}=\sup _{x \in I}|f(x)|+\sup _{x^{\prime} \neq x^{\prime \prime}} \frac{\left|f\left(x^{\prime}\right)-f\left(x^{\prime \prime}\right)\right|}{\left|x^{\prime}-x^{\prime \prime}\right|}, f \in L(I) .
$$

Proposition 3. The RSCC (7) is uniformly ergodic.
Proof. We have

$$
\begin{gathered}
\frac{d}{d x} u(x, k)=-\frac{\alpha^{k}}{(x+1)^{2}} \\
\frac{d}{d x} P(x, k)=-\frac{\Delta_{k}}{\left(\alpha^{k}+x+1\right)^{2}}+\frac{\Delta_{k+1}}{\left(\alpha^{k+1}+x+1\right)^{2}}
\end{gathered}
$$

for all $x \in I$ and $k \in \mathbf{N}$, so that $\sup _{x \in I}\left|\frac{d}{d x} u(x, k)\right|=\alpha^{k}$ and $\sup _{x \in I}\left|\frac{d}{d x} P(x, k)\right|<\infty$. Hence the requirements of definition of an RSCC with contraction are fulfiled (see Definition 3.1.15 in [4]). By Theorem 3.1.6 in [4]), it follows that the Markov chain associated with this RSCC with contraction is a Doeblin-Fortet chain and its transition operator is a Doeblin-Fortet operator. To prove the regularity of U w.r.t. $L(I)$ let us define recursively $x_{n+1}=\left(x_{n}+2\right)^{-1}, n \in \mathbf{N}$, with $x_{0}=x$. A criterion of regularity is expressed in Theorem 3.2.13 in [4], in terms of the supports $\sum_{n}(x)$ of
the n-step transition probability functions $Q^{n}(x, \cdot), n \in \mathbf{N}^{*}$. Clearly $x_{n+1} \in \sum_{1}\left(x_{n}\right)$ and therefore Lemma 3.2.14 in [4] and an induction argument lead to the conclusion that $x_{n} \in \sum_{n}(x), n \in \mathbf{N}^{*}$. But $\lim _{n \rightarrow \infty} x_{n}=\sqrt{2}-1$ for any $x \in I$. Hence

$$
d\left(\sum_{n}(x), \sqrt{2}+1\right) \leq\left|x_{n}-\sqrt{2}-1\right| \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty,
$$

where $d(x, y)=|x-y|, \forall x, y \in I$. Finally, the regularity of U w.r.t. $L(I)$ follows from Theorem 3.2.13 in [4]. Moreover, $Q^{n}(\cdot, \cdot)$ converges uniformly to a probability measure Q^{∞} and that there exist two positive constants $q<1$ and K such that

$$
\begin{equation*}
\left\|U^{n} f-U^{\infty} f\right\|_{L} \leq K q^{n}\|f\|_{L}, \quad \forall n \in \mathbf{N}^{*}, \quad \forall f \in L(I) \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
U^{n} f(\cdot)=\int_{I} f(y) Q^{n}(\cdot, d y), \quad U^{\infty} f(\cdot)=\int_{I} f(y) Q^{\infty}(d y) \tag{9}
\end{equation*}
$$

Proposition 4. The invariant probability measure Q^{∞} of the transformation T has the density $\rho(x)=\frac{1}{(x+1)(x+2)}, x \in I$, with the normalizing factor $\frac{1}{\log (4 / 3)}$.

Proof. On account of the uniqueness of Q^{∞} we have to show that $\int_{I} Q(x, B) Q^{\infty}(d x)=$ $Q^{\infty}(B)$ for any $B \in \mathcal{B}$. Since the intervals $[0, u) \subset I$ generate \mathcal{B} it is sufficient to check the above equation just for $B=[0, u), 0<u \leq 1$. We have

$$
Q(x,[0, u))=\sum_{\left\{k \mid 0 \leq u_{k}(x)<u\right\}} P(x, k)
$$

Then

$$
\begin{aligned}
& \frac{1}{\log (4 / 3)} \int_{I} Q(x,[0, u)) \rho(x) d x= \\
& =\frac{1}{\log (4 / 3)} \int_{I} \sum_{k \geq\left[\frac{\log u(x+1)}{\log \alpha}\right]+1}\left(\frac{1}{\alpha^{k+1}+x+1}-\frac{1}{\alpha^{k}+x+1}\right) d x= \\
& =\frac{1}{\log (4 / 3)} \log \frac{2(u+1)}{u+2}=Q^{\infty}([0, u)) .
\end{aligned}
$$

Similarly we can treat the case $\alpha<u \leq 1$ and obtain the desired result.

4. Main result

Now we are able to find the limiting distribution function

$$
F(x)=F_{\infty}(x)=\lim _{n \rightarrow \infty} \mu\left(T^{n}<x\right)
$$

and obtain a convergence rate result.

Theorem 1 (A Gauss-Kuzmin-Type Theorem). If μ has a Riemann integrable density, then

$$
F(x)=\frac{1}{\log (4 / 3)} \log \frac{2(x+1)}{x+2}, \quad x \in I
$$

If the density of μ is a Lipschitz function, then there exist two positive constants $q<1$ and K such that for all $x \in I, n \in \mathbf{N}^{*}$

$$
\mu\left(T^{n}<x\right)=\frac{1}{\log (4 / 3)}\left(1+\theta q^{n}\right) \log \frac{2(x+1)}{x+2}
$$

where $\theta=\theta(\mu, n, x)$, with $|\theta| \leq K$.
Proof. By virtue of (9) we have

$$
U^{\infty} f_{0}=\int_{I} f_{0}(x) Q^{\infty}(d x)=\frac{1}{\log (4 / 3)}, \quad f_{0} \in L(I)
$$

Taking into account (8) there exist two constants $q<1$ and K such that

$$
\left\|U^{n} f_{0}-U^{\infty} f_{0}\right\| \leq K q^{n}\left\|f_{0}\right\|_{L}, \quad \forall n \in \mathbf{N}^{*}
$$

As $L(I)$ is a dense subset of $C(I)(=$ the metric space of real continuous functions defined on I with the supremum norm $\left.\|f\|=\sup _{x \in I}|f(x)|\right)$ we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\left(U^{n}-U^{\infty}\right) f_{0}\right\|=0 \tag{10}
\end{equation*}
$$

for all $f_{0} \in C(I)$. Therefore (10) remains valid for measurable f_{0} that are Q^{∞}-almost surely continuous, that is, for Riemann-integrable f_{0}. We have

$$
\begin{aligned}
F(x) & =\lim _{n \rightarrow \infty} \mu\left(T^{n}<x\right)=\lim _{n \rightarrow \infty} \int_{0}^{x} U^{n} f_{0}(u) \rho(u) d u= \\
& =\frac{1}{\log (4 / 3)} \int_{0}^{x} \rho(u) d u=\frac{1}{\log (4 / 3)} \log \frac{2(x+1)}{x+2}
\end{aligned}
$$

Remark. The study of optimality of the convergence rate remains an open question. A Wirsing-type approach [8] to the Perron-Frobenius operator of the associated transformation under its invariant measure, allows us to obtain a near-optimal solution to this problem and will appear in [7].

References

[1] R.M. Corless, Continued fractions and chaos, Amer. Math. Monthly 99 (1992), no.3, 203-215.
[2] P. Cvitanović, Circle maps: irrationally winding, From Number Theory to Physics (Les Houches, 1989) (M. Waldschmidt, P. Moussa, J.M. Luck, and C. Itzykson, eds.), Springer-Verlag, Berlin, 1992, 631-658.
[3] J.L. Davison, A series and its associated continued fraction, Proc. Amer. Math. Soc. 63 (1977), no.1, 29-32.
[4] M. Iosifescu and Ş. Grigorescu, Dependence with Complete Connections and Its Applications, Cambridge University Press, Cambridge, 1990.
[5] M. Iosifescu and C. Kraaikamp, Metrical Theory of Continued Fractions, Kluwer Academic Publishers, Dordrecht, 2002.
[6] F. Schweiger, Ergodic Theory of Fibred Systems and Metric Number Theory, Clarendon Press, Oxford Univ. Press, New York, 1995.
[7] G.I. Sebe, A Wirsing-type approach to some continued fraction expansion, Int. J. Math. Math. Sci. (to appear).
[8] E. Wirsing, On the theorem of Gauss-Kuzmin-Lévy and a Frobenius-type theorem for function spaces, Acta Arith. 24 (1974), 507-528.

Gabriela Ileana Sebe
University Politehnica of Bucharest, Department of Mathematics I, 313 Splaiul Independentei, RO-060042 Bucharest, Romania
e-mail: gisebe@mathem.pub.ro

[^0]: Prơceedings of The 3-rd International Colloquium "Mathematics in Engineering and Numerical Physics" October 7-9 , 2004, Bucharest, Romania, pp. 252-258.
 (c) Balkan Society of Geometers, Geometry Balkan Press 2005.

