The Poincare-Cartan form and conservative numerical methods

Viorel Petrehus

Abstract

The variational route to the Poincare-Cartan form for general variational problems is proposed in the lines of [8], [14]. Some conservative numerical schemes for Euler-Lagrange equations are derived.

Mathematics Subject Classification: 65P10, 58E30. Key words: Cartan-Poincare form, conservative methods.

1 The Poincare-Cartan form

In the paper [8] the authors ask if the Poincare-Cartan form can be defined from the lagrangeian as a boundary term. They solved the problem for lagrangeians on J^1Y and in the paper [14] the problem is solved for J^2Y . Here is a general solution to this problem.

Let $\pi_{X,Y}: Y \to X$ a differential fibration and J^kY the fibration of k jets of its sections. Let dim X=n+1, the dimension of the fiber equals N and let $(x^i, y^A)_{i=0...n, A=1..N}$ a system of local coordinates on Y, where $(x_i)_{i=0...n}$ are the coordinates on the base X and $(y^A)_{A=1...N}$ the coordinates on the fiber. Let (x_i, y^A, y^A_J) the derived system of local coordinates on J^kY , $J=(j_1,j_2...)$ with $j_1+j_2+... \le k$. As notation, π_{X,J^kY} is the canonical projection from J^kY on X, π_{J^a,J^kY} is the canonical projection from J^kY to J^aY for X for the total derivative on direction X and X for X

$$\mathcal{L} = L\left(x^{i}, y^{A}, y^{A}\right) \cdot dx^{0} \wedge dx^{1} \wedge ... \wedge dx^{n}$$

For any section $s: X \to Y$, $j^k(s)^* \mathcal{L} = \mathcal{L}\left(x^i, s^A(x), \frac{\partial^{|J|} s^A}{\partial x^J}\right) \cdot dx^0 \wedge dx^1 \wedge ... \wedge dx^n$ and may be integrated over X to get the action $S(s) = \int_X j^k(s)^* \mathcal{L}$. Sometimes we have

Proceedings of The 3-rd International Colloquium "Mathematics in Engineering and Numerical Physics" October 7-9, 2004, Bucharest, Romania, pp. 230-236.
© Balkan Society of Geometers, Geometry Balkan Press 2005.

to integrate over a submanifold of X. Let U a differentiable manifold of C^{∞} class, with smooth boundary and let

$$(1.1) C_U^{\infty} = \{\varphi \mid \} \varphi : U \to Y, \varphi \text{ of } C^{\infty} \text{ class}, \pi_{X,Y} \circ \varphi : U \to X \text{ is embeeding}$$

Let $\varphi_X: U \to X$, $\varphi_X = \pi_{X,Y} \circ \varphi$ and $U_X = \varphi_X(U) = \pi_{X,Y}(\varphi(U))$. Let C_U the closure of C_U^{∞} in a Banach manifold topology. The topology is not very important here and it is omitted. The tangent space to $\varphi \in C_U^{\infty}$ is

$$(1.2) T_{\varphi}C_{U}^{\infty} = \{ \mathcal{V} \in C^{\infty} (U, TY), \pi_{Y, TY} \circ \mathcal{V} = \varphi \}$$

If V is a vector field on Y then for any $\varphi \in C_U^{\infty}$ the map $V = V \circ \varphi$ belongs to $T_{\varphi}C_U^{\infty}$. V so it generates a field of tangent vectors on C_U^{∞} denoted by \tilde{V} .

Let G the group of projectable diffeomorphisms of Y so we have the commutative diagramm

(1.3)
$$\begin{array}{ccc} Y & \xrightarrow{\eta_Y} & Y \\ \downarrow \pi_{X,Y} & & \downarrow \pi_{X,Y} \\ X & \xrightarrow{\eta_X} & X \end{array}$$

The action of G on C_U^{∞} is defined by $\phi: G \times C_U^{\infty} \to C_U^{\infty}$, $\phi(\eta_Y, \varphi) = \eta_Y \circ \varphi$. It follows $(\eta_Y \circ \varphi)_X = \eta_X \circ \varphi_X$. For any $\varphi \in C_U^{\infty}$ it follows $s = \varphi \circ \varphi_X^{-1}$ is a section of Y restricted to U_X so the action $S: C_U^{\infty} \to R$ may defined by

(1.4)
$$S(\varphi) = \int_{U_X} j^k \left(\varphi \circ \varphi_X^{-1} \right)^* \mathcal{L}$$

A stationary point of S is $\varphi \in C_U^{\infty}$ such that for any smooth path on G, $\lambda \to \eta^{\lambda}$ with $\eta^0 = id$ the following condition is fulfilled

$$\frac{\partial}{\partial \lambda} \left|_{\lambda=0} \mathcal{S} \left(\phi \left(\eta_Y^{\lambda}, \varphi \right) \right) \right| = \frac{\partial}{\partial \lambda} \left|_{\lambda=0} \int_{U_{\lambda, Y}} j^k \left(\varphi \lambda \circ \varphi_{\lambda, X}^{-1} \right)^* \mathcal{L} = 0$$

where $\varphi_{\lambda}=\eta_{Y}^{\lambda}\circ\varphi$, $\varphi_{\lambda,X}=\pi_{X,Y}\circ\varphi_{\lambda}$, $U_{\lambda,X}=\varphi_{\lambda,X}(U)$. Let V the infinitesimal generator of η_{Y}^{λ} and $j^{p}(V)$ the extension of V to $J^{p}Y$. Let $\theta_{J}^{A}=dy_{J}^{A}-y_{J,i}^{A}dx^{i}$, $\omega=dx^{0}\wedge dx^{1}\wedge...\wedge dx^{n}$ and $\omega_{i}=\frac{\partial}{\partial x^{i}}\,\,\lrcorner\,\,\omega=(-1)^{i}\,dx^{0}\wedge...\widehat{dx^{i}}\wedge...dx^{n}$. Let $\theta_{\mathcal{L}}$ the form defined on a coordinate system of $J^{2k-1}Y$ by

$$\theta_{\mathcal{L}} = \sum_{A=1}^{N} \sum_{1 \le |J| \le k} \sum_{J=(J',j^i,J'')} (-1)^{|J''|} D_{J''} \frac{\partial L}{\partial y_J^A} \cdot \theta_{J'}^A \wedge \omega_{j^i} + L\omega$$

In the sum (1.5) the multiindexes J, J', J'' are increasingly ordered and if $J = (j^1 j^2 ... j^l)$, then $J' = (j^1 ... j^{i-1})$, $J'' = (j^{i+1} ... j^l)$, for i = 1, 2, ... l. Then we have the following theorem

Theorem 1.1. Under the above conditions:

a) the variation of S is (if U_X is included in a system of coordinates)

(1.6)
$$\frac{\partial}{\partial \lambda} |_{\lambda=0} \mathcal{S} \left(\varphi^{\lambda} \right)$$

$$= \int_{U_X} j^{2k-1} \left(\varphi \circ \varphi_X^{-1} \right)^* \left(j^{2k-1} V \rfloor d\theta_{\mathcal{L}} \right)$$

$$+ \int_{\partial U_X} j^{2k-1} \left(\varphi \circ \varphi_X^{-1} \right)^* \left(j^{2k-1} \left(V \right) \rfloor \theta_{\mathcal{L}} \right)$$

b) There is the identity

$$\mathcal{L}\left(j^{k}\left(\varphi\circ\varphi_{X}^{-1}\right)\right)=\left(j^{2k-1}\left(\varphi\circ\varphi_{X}^{-1}\right)\right)^{*}\theta_{\mathcal{L}}$$

c) If R and S are $\pi_{X,J^{2k-1}Y}$ vertical fields, then $R \rfloor S \rfloor \theta_{\mathcal{L}} = 0$ and $\theta_{\mathcal{L}}$ depends on each point $j^{2k-1}(s)(x)$ only on dx^i , i=0..n and dy_J^A , with $|J| \leq k-1$.

d) If W is a vector field on $J^{2k-1}Y$, tangent lto the fibers of $\pi_{Y,J^{2k-1}Y}$, then $j^{2k} \left(\varphi \circ \varphi_X^{-1} \right)^* (W \, d\theta_{\mathcal{L}}) = 0$.

e) Any form $\theta \in \Lambda^{n+1} J^{2k-1} Y$, which in a coordinate system has the proprieties a), b), c), d) above, is identical to $\theta_{\mathcal{L}}$.

f) There is an unique differential form $\Theta_{\mathcal{L}} \in \Lambda^{n+1}J^{2k-1}Y$ depending on the Lagrange form \mathcal{L} , with the properties a), b), c), d) above and such that the formula (1.6) is true for any U_X . In local coordinates $\Theta_{\mathcal{L}}$ is expressed by (1.5) g) $\varphi \in C_{\mathcal{U}}^{\infty}$ is a stationary iff

$$(1.7) j^{2k-1} \left(\varphi \circ \varphi_X^{-1}\right)^* \left(W \rfloor d\Theta_{\mathcal{L}}\right) = 0$$

for any vector field W on $J^{2k-1}Y$, that is the Euler-Lagrange equations

(1.8)
$$\sum_{0 \le |J| \le k} (-1)^{|J|} \left(\frac{\partial^{|J|}}{\partial x^J} \left(\frac{\partial L}{\partial y_J^A} \left(\varphi \circ \varphi_X^{-1} \right) \right) \right) = 0, \ A = 1, 2, ...N$$

are equivalent to (1.7).

The proof cosists in a lengthy computation with differntial forms.

Example 1. $n=0, N=1, k > 1, \mathcal{L} = L(t, q, \dot{q}, q^{(2)}, ...q^{(k)}) dt$, then (1.5) becomes

$$\Theta_{\mathcal{L}} = \sum_{s=1}^{k} \sum_{a=0}^{s-1} (-1)^a \frac{d^a}{dt^a} \left(\frac{\partial L}{\partial q^{(s)}} \right) \theta_{s-a-1} + Ldt$$
$$= \sum_{b=0}^{k-1} \sum_{a=0}^{k-b-1} (-1)^a \frac{d^a}{dt^a} \left(\frac{\partial L}{\partial q^{(a+b+1)}} \right) \theta_b + Ldt$$

where $\theta_b = dq^{(b)} - q^{(b+1)}dt$.

2 Conservative numerical schemes

Consider a variational problem with the lagrange form $\mathcal{L} = L\left(q,\dot{q},q^{(2)},...q^{(k)}\right)dt$ on J^kY where $Y = R \times Q$ and assume the matrix $\left(\frac{\partial^2 L}{\partial q^{i(k)}\partial q^{j(k)}}\right)_{i,j=1...\dim(Q)}$ is nondegenerate. A point $\gamma \in J^{2k-1}Y$ is represented by $(t,q(t),q'(t),...q^{(2k-1)}(t))$ where q is a curve from R to Q. Two fibers of J^kY over t_0 and over t_1 are identified by translation $j^k(s)(t_0) \to j^k(s')(t_1)$ where $s'(t) = s(t-t_1+t_0)$. Any such fiber is called the k tangent space T^kQ . The solution of the Euler-Lagrange equations with initial conditions $(t_0,q(t_0),q'(0),...q^{(2k-1)}(t_0))$ gives at time t_1 the point $(t_1,q(t_1),q'(t_1),...q^{(2k-1)}(t_1))$ and this correspondence defines a diffeomorphism $F_{t_0,t_1}:\pi_{R,J^{2k-1}Y}^{-1}(t_0)\to\pi_{R,J^{2k-1}Y}^{-1}(t_1)$ or equivalently $F_t:T^{2k-1}Q\to T^{2k-1}Q$ with $t=t_1-t_0$, because L is independent of t. Let

$$S_{t}\left(q\left(t_{0}\right),q'\left(0\right),...q^{\left(2k-1\right)}\left(t_{0}\right)\right)=\int_{\left[t_{0},t_{1}\right]}L\left(q\left(t\right),q'\left(t\right),...q^{\left(k\right)}\left(t\right)\right)dt$$

In this way S_t is defined on $T^{2k-1}Q$. We have

Proposition 2.1. If
$$\Theta_{\mathcal{L}} = \sum_{b=0}^{k-1} \sum_{a=0}^{k-b-1} (-1)^a \frac{d^a}{dt^a} \left(\frac{\partial L}{\partial q^{(a+b+1)}} \right) \theta_b$$
 then

$$F_t^* \left(\Theta_{\mathcal{L}} \right) - \Theta_{\mathcal{L}} = dS_t$$

and

$$F_t^*\left(d\Theta_{\mathcal{L}}\right) = d\Theta_{\mathcal{L}}$$

Proof. In the formula (1.6) U_X is $[t_0,t_1]$, $\varphi\circ\varphi_X^{-1}(t)=q(t)$ and $V=j^{2k-1}(V_0)$ where V_0 is the projection of V on Q and V is the field generated by a variation of initial conditions $(q(t_0),q'(0),...q^{(2k-1)}(t_0))$. One remarks that $V=0\frac{\partial}{\partial t}+...$ The first integral is zero thanks to point g) of the above theorem. The second is

$$\Theta_{\mathcal{L}}\left(V\left(t_{1}, q\left(t_{1}\right), q'\left(t_{1}\right), ... q^{(2k-1)}\left(t_{1}\right)\right)\right) \\
-\Theta_{\mathcal{L}}\left(V\left(t_{0}, q\left(t_{0}\right), q'\left(0\right), ... q^{(2k-1)}\left(t_{0}\right)\right)\right) \\
= \left(F_{t}^{*}\left(\Theta_{\mathcal{L}}\right) - \Theta_{\mathcal{L}}\right)\left(V\left(t_{0}, q\left(t_{0}\right), q'\left(0\right), ... q^{(2k-1)}\left(t_{0}\right)\right)\right)$$

which is $dS_t (V (t_0, q(t_0), q'(0), ...q^{(2k-1)}(t_0)))$ by (1.6). QED.

The numerical method tries to emulate the invariance of $d\Theta$ of this proposition. In the lines of [10], in a way which differs in some points from [11] here is proposed a scheme for k order variational problems for unidimensional integrals. The lagrange form is $L\left(q,q',...q^{(k)}\right)dt$. For small positive h, the solution is uniquely defined by 2k points of Q, $(q_0,q_1...q_{k-1}q_k,q_{k+1},...q_{2k-1})$ such that $q\left(0\right)=q_0,q\left(h\right)=q_1,...,q\left((2k-1)h\right)=q_{2k-1}$. We take the discrete analogue of $T^{2k-1}Q$ as $Q^{2k}=Q^k\times Q^k$ where $Q^k=Q\times Q\times ...\times Q$ (k times). A point $(q_0,q_1...q_{k-1}q_k,q_{k+1},...q_{2k-1})\in Q^k$ denoted by split into two groups $(q_0,q_1...q_{k-1})\in Q^k$ and $(q_k,q_{k+1},...q_{2k-1})\in Q^k$ denoted by

 $q_{(0,k-1)}$ and $q_{(2k,2k-1)}$. In what follows, h is a constant time stamp, $L\left(q\left(t\right),q'\left(t\right),...,q^{(k)}\left(t\right)\right)$ is approximated on [0,h] by

$$L_d(q_0, q_1, ... q_k) = L\left(q_0, \frac{q_1 - q_0}{h}, \frac{q_2 - 2q_1 + q_0}{h^2}, ...\right)$$

and analogously on [h, 2h] etc.

The integral $\int_0^h L(q(t), q'(t), ...q^{(k)}(t)) dt$ is approximated by $hL_d(q_0, q_1, ...q_k)$ whence $\int_0^{kh} L(q(t), q'(t), ...q^{(k)}(t)) dt$ is approximated by the dicrete action

$$S_d\left(q_{(0,k-1)},q_{(k,2k-1)},h\right) = h\sum_{i=0}^{k-1} L_d\left(q_i,q_{i+1},..q_{i+k-1}\right)$$

The discrete dynamics consists in passing from $(q_{(0,k-1)},q_{(k,2k-1)}) \in Q^{2k}$ to $(q_{(k,2k-1)},q_{(2k,3k-1)},q_{(2k,3k-1)}) \in Q^{2k}$ in such a way that the discrete action

 $S_d\left(q_{(0,k-1)},q_{(k,2k-1)},h\right)+S_d\left(q_{(k,2k-1)},q_{(2k,3k-1)},h\right)$ is minimum for variations with fixed endpoints. If D_1 is the derivative by respect of the first group of variables and D_2 is the derivative by respect of the second group of variables then minimum condition reads

$$(2.9) D_2 S_d \left(q_{(0,k-1)}, q_{(k,2k-1)}, h \right) + D_1 S_d \left(q_{(k,2k-1)}, q_{(2k,3k-1)}, h \right) = 0$$

This is the discrete analogue of Euler-Lagrange equations. The (2.9) is an implicit equation which gives $q_{(2k,3k-1)}$ as function of $(q_{(0,k-1)},q_{(k,2k-1)})$ and h and defines $F_d:Q^{2k}\to Q^{2k}$ by $(q_{(0,k-1)},q_{(k,2k-1)})\to (q_{(k,2k-1)},q_{(2k,3k-1)})$. One defines as in [10] the differential forms on Q^{2k} by

$$\Theta_{L_d}^+\left(q_{(0,k-1)},q_{(k,2k-1)}\right) = D_2 S_d\left(q_{(0,k-1)},q_{(k,2k-1)},h\right) \cdot dq_{(k,2k-1)}$$

and

$$\Theta_{L_d}^-\left(q_{(0,k-1)},q_{(k,2k-1)}\right) = -D_1S_d\left(q_{(0,k-1)},q_{(k,2k-1)},h\right) \cdot dq_{(0,k-1)}$$

It follows

$$dS_d = \Theta_L^+ - \Theta_L^-$$

whence $d\Theta_d^+ = d\Theta_d^-$ and we define $\Omega_{L_d} = d\Theta_d^+ = d\Theta_d^-$. Using local coordinates we get

(2.10)
$$\Omega_{L_d} = \frac{\partial^2 S_d \left(q_{(0,k-1)}, q_{(k,2k-1)}, h \right)}{\partial q_{(0,k-1)} \partial q_{(k,2k-1)}} dq_{(0,k-1)} \wedge q_{(k,2k-1)}$$

The following proposition is the discrete analogue of proposition (2.1)

Proposition 2.2. With the above notations a) $F_d^* \Theta_{L_d}^+ - \Theta_{L_d}^- = dS_d + dF_d^* S_d$ and b) $F_d^* (\Omega_{L_d}) = \Omega_{L_d}$.

Proof. Using the discrete Euler-Lagrange equations we get (d=exterior derivative)

$$(dS_d + dF_d^*S_d) (q_{(0,k-1)}, q_{(k,2k-1)}, h)$$

$$= dS_d (q_{(0,k-1)}, q_{(k,2k-1)}, h) + dS_d (q_{(k,2k-1)}, q_{(2k,3k-1)}, h)$$

$$= D_1S_d (q_{(0,k-1)}, q_{(k,2k-1)}, h) dq_{(0,k-1)}$$

$$+ D_2S_d (q_{(k,2k-1)}, q_{(2k,3k-1)}, h) dq_{(k,2k-1)}$$

$$= (-\Theta_{L_d}^- + F_d^*\Theta_{L_d}^+) (q_{(0,k-1)}, q_{(k,2k-1)}).$$

The exterior derivative of a) gives b).

QED.

This numerical scheme conseves the form (2.10).

Example 2. Let $L(q, q', q'') = \frac{1}{2}q''^t A q'' + \frac{1}{2}q'^t B q' - V(q)$ where A and B are $N \times N$ symmetric matrices, A nosingular and V is a function defined on $Q = R^N$. Then

$$S_d\left(q_{(0,1)},q_{(2,3)}\right) = h \begin{bmatrix} \left(\frac{q_2 - 2q_1 + q_0}{h^2}\right)^t A \left(\frac{q_2 - 2q_1 + q_0}{h^2}\right) + \left(\frac{q_1 - q_0}{h}\right)^t B \left(\frac{q_1 - q_0}{h}\right) - V(q_0) \\ \left(\frac{q_3 - 2q_2 + q_1}{h^2}\right)^t A \left(\frac{q_3 - 2q_2 + q_1}{h^2}\right) + \left(\frac{q_2 - q_1}{h}\right)^t B \left(\frac{q_2 - q_1}{h}\right) - V(q_1) \end{bmatrix}$$

The equations (2.9) are $D_2S_d(q_{(0,1)},q_{(2,3)}) + D_1S_d(q_{(2,3)},q_{(4,5)}) = 0$ which finally give

$$(2.11) q_4 = 4q_3 - 6q_2 + 4q_1 - q_0 + h^2 A^{-1} B (q_3 - 2q_2 + q_1) + \frac{h^4}{2} A^{-1} V'(q_2)$$

$$(2.12) q_5 = 4q_4 - 6q_3 + 4q_2 - q_1 + h^2 A^{-1} B (q_4 - 2q_3 + q_2) + \frac{h^4}{2} A^{-1} V'(q_3)$$

that is $F_d: Q^4 \to Q^4$ is given by $F_d(q_0, q_1, q_2, q_3) = (q_2, q_3, q_4, q_5)$ with q_4, q_5 given by previous formula. By iteration q_{2k+4} and q_{2k+5} are given by translation of (2.11-2.12) as functions of $q_{2k+3}, q_{2k+2}, q_{2k+1}$ and q_{2k} . The form Ω_{L_d} invariated by F_d is (2.10)

$$\Omega_{L_d} = \frac{1}{h^3} A_{i,j} \left(2dq_0^i \wedge dq_2^j - 8dq_1^i \wedge dq_2^j + 2dq_1^i \wedge dq_3^j \right) \\
- \frac{2}{h} B_{i,j} dq_1^i \wedge dq_2^j$$

To control the quality of approximation let

(2.13)

$$S_d^E\left(q_{(0,k-1)},q_{(k,2k-1)},h\right) = \int_0^{kh} L\left(\tilde{q}_{(0,2k-1)}\left(t\right),\tilde{q}'_{(0,2k-1)}\left(t\right),...\tilde{q}^{(k)}_{(0,2k-1)}\left(t\right)\right)dt$$

where $\tilde{q}_{(0,2k-1)}(t)$ is the unique solution of Euler-Lagrange equations such that $\tilde{q}_{(0,2k-1)}(0) = q_0$, $\tilde{q}_{(0,2k-1)}(h) = q_1,...$ $\tilde{q}_{(0,2k-1)}((2k-1)h) = q_{2k-1}$. This discrete action generates a discrete dynamics F_d^E by discrete Euler-Lagrange equations (2.9). Let F^E : $Q^k \times Q^k \to Q^k \times Q^k$ the diffeomorphism

$$F^{E}(q_{0}, q_{1}, ...q_{k-1}, q_{k}, ...q_{2k-1})$$

$$= (q_{k}, ...q_{2k-1}, \tilde{q}_{(0,2k-1)}(2kh), \tilde{q}_{(0,2k-1)}((2k+1)h), ...\tilde{q}_{(0,2k-1)}((3k-1)h))$$

In other words the points obtained from $(q_0, q_1, ..., q_{k-1}, ..., q_{2k-1})$ by iteration of F^E are situated on the exact solution $\tilde{q}_{(0,2k-1)}(t)$ of the Euler-Lagrange equations. Then is not true that $F_d^E = F^E$ as in [10] for k=1. This has severe impact on the convergence of the approximate solution to the exact solution as $h \to 0$. Numerical experiments show that the formulas (2.11-2.12) keep the shape of the exact solution but is severe translated from it. A new numerical method which uses at each point $q \in Q$ the derivatives up to k-1 gives a better result. The details will be published later.

References

- [1] V. Arnold, Les méthodes mathématiques de la mécanique classique, Mir, Moscou, 1974
- [2] E. Cartan, Lecons sur les invariants intégraux Hermann, Paris, 1922
- [3] L. Dragos, Principiile mecanicii analitice, Editura Tehnică, București, 1975
- [4] L. Dragoş, Mecanica fluidelor I, teoria generală, fluidul ideal incompresibil, Editura Academiei Române, Bucureşti, 1999
- [5] L. Dragoş, Metode matematice în aerodinamică, Editura Academiei Române, Bucureşti,2000
- [6] M. J. Gotay, A multisymplectic framework for classical field theory and the calculus of variations I. Covariant Hamiltonian formalism, in Mechanics, Analysis and Geometry: 200 Years after Lagrange, ed. M. Francaviglia (North Holland, Amsterdam, 1991) pp 203-235
- [7] D. Krupka, On the local structure of Euler-Lagrange mapping of the calculus of variations, Proc. Conf. on Diff. Geom. Appl., Univerzita Karlova, Czeh republic, 1981, pp 181-188
- [8] J.E. Marsden, G.W. Patrick, S. Shkoller, Multisymplectic geometry, variational integrators and nonlinear PDE, arXiv math.DG/9807080
- [9] J. E. Marsden, S. Shkoller, Multisymplectic geometry, covariant hamiltonians and water waves, arXiv, math.DG/9807086
- [10] J. E. Marsden, M. West Discrete mechanics and variational integrators, Acta Numerica (2001), pp 1-158
- [11] Ya Juan Sun, Meng Zhao Qin, Variational Integrators for Higher Order Equations, preprint
- [12] L. Verlet, Computer experiments on classical fluids, Phys. Rev.159, pp. 98-103
- [13] A. Veselov, Integrable discrete-time systems and difference operators, Functional Analysis and its Applications, 25(2), 83-93.
- [14] S. Kouranbaeva, S. Shkoller, A variational approach to second-order multisymplectic field theory, preprint

Viorel Petrehus

Technical University of Civil Engineering,
Department of Mathematics and Informatics
124 Lacul Tei Bd., RO-020396 Bucharest, Romania
e-mail: petrehus@pcnet.ro