The Poincare-Cartan form and conservative
numerical methods
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Abstract

The variational route to the Poincare-Cartan form for general variational
problems is proposed in the lines of [8], [14]. Some conservative numerical
schemes for Euler-Lagrange equations are derived.
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1 The Poincare-Cartan form

In the paper [8] the authors ask if the Poincare-Cartan form can be defined from the
lagrangeian as a boundary term. They solved the problem for lagrangeians on J'Y
and in the paper [14] the problem is solved for J2Y.Here is a general solution to this
problem.

Let mx,y : Y = X a differential fibration and J*Y the fibration of k jets of its sec-
tions. Let dim X=n+1, the dimension of the fiber equals N and let (z*,y*)
a system of local coordinates on Y, where (z;);_, ,, are the coordinates on the base
X and (y#) ,_, , the coordinates on the fiber. Let (z;,y#,y4) the derived system
of local coordinates on J*Y, J = (j1, j2..) with ji + j2 + .. < k.As notation, 7x sy
is the canonical projection from J*Y on X, 7. sy is the canonical projection from
J*Y to J*Y for s< k.etc. We shall use the notation D; = 52 + 3 AJ yi,--a-% for the

total derivative on direction z* and Dy = Dj, Dj,...D;,if J = (j1, j2..jx)-Let AxJ*Y
the set of mx juy horizontal forms on J*Y. A lagrange form is a differential form
L €A% J*Y. Locally

i=0..n, A=1..N

L=L(z%y* y7) -dz® Adz' A.. Ad2"

For any sections: X = Y, j*(s)"L=L (z",s“ (z), TJ_"-”"”S“

) -dz® Ada A..Adz™ and
may be integrated over X to get the action S (s) = [, j* (s)" £. Sometimes we have
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to integrate over a submanifold of X. Let U a differentiable manifold of ¢ class,
with smooth boundary and let

(1.1) CF ={elle:U—Y,p of C®class, mxyop:U — X is embeeding

Let px :U =2 X ,px =7nxyopand Ux = px (U) =7x,y (¢ (U)). Let Cy the
closure ofi CgP in a Banach manifold topology. The topology is not very important
here and it is omitted. The tangent space to ¢ € CfP is

(1.2) T,.Cg ={veC®(UTY), myry oV =}

If V is a vector field on Y then for any ¢ € CfP the map V =.V o p belongs to T,Cg.
V so it generates a field of tangent vectors on C§f denoted by V.

Let G the group of projectable diffeomorphisms of Y so we have the commutative
diagramm

¥ Y
(1.3) d7x,y 17xy
X 2 X

The action of G on Cf? is defined by ¢ : G x Cf = CfF, ¢ (ny,p) =ny op. It
follows (ny o p) x = nx o px. For any ¢ € Cf it follows s = p o go}l is a section of
Y restricted to Ux so the action S : C§° -+ R may defined by

(1.4) Sw@=[ *(povs)c

Ux

A stationary point of S is ¢ € Cff such that for any smooth path on G, A = p*
with n° = id the following condition is fulfilled

8 0 ; i A"
3y [x=0S (¢ (1v, %)) = al,\zo/ i* (‘PA"S",\,IX) £ =0

Us.x

where @) = n$ 0, Yax = Tx,y © ¥, Urx = ¢a,x (U). Let V the infinitesimal
generator of ny and j? (V) the extension of V to JPY. Let 64 = dyf — y4.dz’,

w=de® Adz! A...Adz" and w; = 2% s w = (—1)'dz® A .dz¢ A .dz". Let 6 the
form defined on a coordinate syatem of J2*~1Y by

N
J” aL A
(1.5) oc=Y Y Y (-l |DJH@-9J,A%.-+L¢U

A=11<|J|<k J=(J" i ,J")

In the sum (1.5) the multiindexes J,J',J" are increasingly ordered and if J =
(#52...3"), then J' = (j1.571), J" = (j**...4), for i = 1,2,..L.Then we have
the following theorem
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Theorem 1.1. Under the above conditions:
a) the variation of S is (if Ux is included in a system of coordinates)

3]
3y [2=08 (¢)
(1.6) e /U i1 (po ) ((*1V. do)
X
+ / i (powx')” (1% (V)1 6r)
oUx
b) There is the identity

L(G* (povx')) = (1* " (povx')) bc

¢) If R and S are wx ja-1y vertical fields, then Ry S48, = 0 and 0. depends on
each point j2*~1 (s) (z) only on dz*, i=0..n and dy}, with |J| < k — 1.
d) If W is a vector ﬁeld on J?k-1Y, tangent lto the fibers of my jax-1y , then

i* (powx')” (Wadbe) =

e) Any form 6 € A™+1 J2k- 1Y which in a coordinate system has the proprieties a),
b), ¢), d) above, is identical to 6,;

f) There is an unique differential form O, € A"+ J?*~1Y depending on the Lagrange
form L, with the properties a), b), c), d) above and such that the formula (1.6) is true
for any Ux . In local coordinates O is expressed by (1.5)

9) ¢ € CfY is a staticnary iff

(1.7) 77 (powx!)” (Wa dor) =
for any vector field W on J?*—1Y, that is the Euler-Lagrange equations
(1.8) oqzﬂjq( ) (3:; (;; (popx ))) =0, A=1,2,.N
are equivalent to (1.7).
The I?roof cosists in a lengthy computation with differntial forms.
Example 1. n=0,N=1, k> 1, L = L (t,q,4,9'?, ..q(")) dt, then (1.5) becomes

s—1
oL
Z( e 4 & (@) MBS

-1

=0
k—b
o & oL
z_: (=) (_"aq(wb +1)) 6y + Ldt

=0

-
5

b=0 a

where 6 = dq(®) — ¢g(®+1)dt,
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2 Conservative numerical schemes

Consider a variational problem with the lagrange form £ = L (g,4,¢®,..¢%®)) dt on

J*Y where Y = R x Q and assume the matrix (——1%11-;)- is nonde-

9¢*1™ 8¢’ )1 Jj=1..dim(Q)
generate. A point v € J?¥71Y is represented by (t,q(t),q (t),..q*1 (t)) where
q is a curve from R to Q. Two fibers of JXY over t; and over t, are identified
by translation j* (s) (to) — 7% (s’ )(tl) where s'(t) = s(t—t; +t3) . Any such
fiber is called the k tangent space T* Q The solution of the Euler-Lagrange equa-
tions with initial conditions (to,q (to),¢’ (0),...g3*¥~1) (to)) gives at time ¢, the point
(t1,q(t1), ; Hily) , . gt N (tl)) and this correspondence defines a diffeomorphism
Fioty ﬂR Jak=1y (to) = er Jak-1y (t1) or equivalently F; : Tzk—lQ — T2- IQ with
t =t, — to, because L is independent of t. Let

St (q (to) ,q' (0),...g*=1) (to)) = /

[t0|tl]

L (q t),q' (t),..q% (t)) dt

In this way S; is defined on T%*~1Q. We have

Proposition 2.1. IfO, = :_'_:; :;g_ (-1)* 4= g (—q(m) 6y then

F} (©f) -0, =dS;
and
| F; (d®g) =dO,

Proof. In the formula (1.6) Ux is [to,t1] , o ¢ (t) = ¢(t) and V = j2k-1(Vp)
where 1} is the projection of V on Q and V is the field generated by a variation of
initial conditions (g (to),q’ (0),...¢**~") (o)) . One remarks that V = 0% + .. The
first integral is zero thanks to point g) of the above theorem. The second is

0c (V (t,a(t) ¢ (1), 4™V (1))
-0, (V (to,a(to) 1 (0),--a*V (to) ) )
= (F; (00) - 0c) (V (0,4 (t0) 0’ 0),-.g%* Y (to)) )

which is dS; (V' (to,q (o), ¢’ (0),..q%*¥=V) (1)) by (1.6).

QED.

The numerical method tries to emulate the invariance of d® of this proposition.
In the lines of [10] , in a way which differs in some points from [11] here is pro-
posed a scheme for k order variational problems for unidimensional integrals. The
lagrange form is L (g,q',...g'*)) dt. For small positive h, the solution is uniquely de-
fined by 2k points of Q, (g0, 91.-Gk~1qk; k+1, --g2k—1) such that ¢ (0) = go, ¢(h) = a1,
.. ¢((2k = 1) h) = gag—1. We take the discrete analogue of T?*~1Q as Q% = Q* x Q*
where QF = Q x Q % ... x Q ( k times). A point (o, q1.-Qk—1Gk, Qk+1, --G2k—1) € Q%*
is split into two groups (go,q1--gx—1) € Q* and (gk,qk+1,--q2k—1) € QF denoted by
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d(o,k—1) @nd g(a,2k—1)- In what follows, h is a constant time stamp, L (g (t) ,¢' (¢) ,..qg"*) (t))
is approximated on [0,h] by

" — 2 +
Ld(Qo,Q1,--Qk)=L(Qo,ql B S qo,--)

h '’ h?
and analogously on [h, 2h] etc.

The integral foh L(g(t),q (t),..q'® (t)) dt is approximated by hLg4(qo,q:,..qx)
whence fokh L(g(t),q (t),..g™ (t)) dt is approximated by the dicrete action

k-1
Sa (Q(O,k—l):Q(k,wc—l): h) - hz L4 (gi, @iy, --‘Ii-!-k—l)

i=0

The discrete dynamics consists in passing from (g(o,k-1), ¢(k,2k~1)) € @** to (q(x,2k-1), 92k 3k
Q2% in such a way that the discrete action

Sa (Q(g’k_l),Q(k,zk_l),h) + Sq (Q(k,gk_l),Q(gklak_l),h) is minimum for variations with

fixed endpoints. If D, is the derivative by respect of the first group of variables and D,

is the derivative by respect of the second group of variables then minimum condition
reads

(2.9) D354 (9(0,k~1)» 4(k,2k—1)> B) + D1Sa (q(k,26-1) 92k 3%—-1), h) =0

This is the discrete analogue of Euler-Lagrange equations. The (2.9) is an implicit
equation which gives g(2x 3x—1) as function of (Q(o.k-1),9(k.2k—l)) and h and defines

Fy: Q% — Q% by (q(0,k-1),9(k,2k-1)) = ((k,2k—1)sQ(2k,3k-1)). One defines as in
[10] the differential forms on Q2* by

07, (90,k-1) A(k,2k-1)) = D254 (9(0,k-1)> U(k,2k—1)+ k) * dq(k,26-1)
and
Oz, (9(0,k-1) ak,26-1)) = —D1Sa (q(0,6-1)s d(k,26-1)s 1) - dG(0,k-1)
It follows
dSq = 91" - sz

whence dO} = dO7 and we define 2, = dO} = dO]. Using local coordinates we
get

8%Sa (9(0,k=1)» A(k,2k—1)s k)
2.10 Qp, = - : d -nA —
(2.10) 2, Bt0.82)08icarts 9(0,k-1) A Q(k,2k—1)

The following proposition is the discrete analogue of proposition (2.1)

Proposition 2.2. With the above notations a) F;07, — ©F ,=dSq4+dF;S; and
b) F; (Qr,) =0y,..
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Proof. Using the discrete Euler-Lagrange equations we get (d=exterior derivative)

(dSq + dF;Sa) ((0,k-1), 9k, 2k-1)s h)
= dSa (q0,k-1)>9(k,26—1)s h) + dSa (q(k,2k~1): A2k ,3%1)s h)
D1Sa (9(0,k—1)s G(k,2k—1)> h) dg(o,k—1)
+D1S54 (Q(k 2k-1)> U2k ,3k—1) s B) dq(k 26-1)
= (-0, + F;01,) (90,k-1), Ak 2k-1)) -
The exterior derivative of a) gives b).

QED.
This numerical scheme conseves the form (2.10).

Example 2. Let L(g,¢',9") = 39" Aq" + 3¢"*Bq' — V(q) where A and B are N x N
symmetric matrices, A nosingular and V is a function defined on Q = RN. Then

I

Sa (9(0,1):92,3))

e )A(“‘ﬂi’“H ):B(u) V(Qo)]
(”'—%,?E)A(”—ﬁiﬂh(“ﬁlw( ) = V(@)

The equations (2.9) are D2Sa (g(0,1),9(2,3)) + D154 (9(2,3):9(4,5)) = O which finally
give

. : 4
(211) g4 = 4g3—6g2+4q1 —go+h* A7 B (g3 - 202 + q1) + —2-A"V' (g2)

- ht
(212) g5 = 493 —6gs+4g — a1+’ A7 B (g4 — 295 + @2) + T A7V (gs)

that is Fg: Q* — Q* is given by Fy(go,1,92,93) = (92,93, 94,95) with g4,gs given by
previous formula. By iteration ga2x+4 and gak+5 are given by translation of (2.11 — 2.12)

as functions of gak+3,@2k+2, @2k+1 6nd gax. The form Qp, invariated by Fy4 is (2.10)
1 . . ' . )
O, = 55Ai; (2dgh A de] - 8daf A dg] +2dg} A dg])
2 ;.
"EBi.J' dg} A dq
To control the quality of approximation let
(2.13)

kh
= k
Sf (Q{O,k—-l)e Q(k,2k-1)> h) - /0 L (Q(O.Qk-l) (t) ’ q-EO.Qk—l) (t) ’ -°q-fo,)2k_1) (t)) dt

where §(g 2k—1) (t) is the unique solution of Euler-Lagrange equations such that §g 2x-1) (0) =
Go, Q{O 2k-1) (h) = Q1 Q(o 2k-1) ((2k - 1) h) Q2k—1- This discrete action gener-

ates a discrete dynamics Ff by discrete Euler-Lagrange equations (2.9). Let FF :

Q* x Q% = Q* x Q* the diffeomorphism

FE (901 q1yQk—1,Gk, "QQk—l)
= (gk,--g2k-1,G(0,2¢-1) (2kh) , Gro,20—1) ((2k + 1) h) , ..G(0,2k—1) ((3k — 1) b))
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In other words the points obtained from (go, ¢1,-.Gk—1, --g2k—1) by iteration of FE are
situated on the exact solution §(g 2x—1) () of the Euler-Lagrange equations. Then is
not true that F¥ = FF as in [10] for k=1. This has severe impact on the convergence
of the approximate solution to the exact solution as h = 0. Numerical experiments
show that the formulas (2.11 — 2.12) keep the shape of the exact solution but is
severe translated from it. A new numerical method which uses at each point ¢ € Q
the derivatives up to k-1 gives a better result. The details will be published later.
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