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Abstract

Fractals can be used to approximate the result of an iterative random process.
In this paper we study a set of points generated by such a random process.
To this purpose we define a fractal for which one we compute the Hausdorff
dimension and the study is completed with the associated IFS.
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I. Introduction
Chaotic dynamical systems have received a great attention in last years. The

usual definition of chaos is in Devaney’s book [1]. Let (X, d) be a metric space and
let f : X 7→ X be a continuous map. The dynamic system f is said to be chaotic if:
i. f is transitive, i.e. for all nonempty open subsets U and V of X, there is k ∈ N
such that fk(U) ∩ V 6= ∅.
ii. the periodic points of f form a dense subset of X.
iii. f has sensitive dependence on the initial conditions, i.e. there is a real δ > 0 such
that for every point x ∈ X and for every neighborhood W of x there is a point y ∈ W
and n ∈ N such that d (fn(x)− fn(y)) > δ.
The transitivity is an irreducibility condition, while the second condition is an element
of regularity. The sensitivity means that small initial errors lead to large divergences.
There are many notions related to chaotic maps. We present briefly the idea of
Iterated Function System which will be used further. Let (X, d) be a complete metric
space; for every compact set A ⊆ X and ε > 0, we define the ε-collar of A by
Aε = {x ∈ X | ∃y ∈ A such that d(x, y) ≤ ε}. The Hausdorff distance between two
compact sets A and B is

h(A,B) = inf{ε | A ⊂ Bε and B ⊂ Aε}.
The set of compact subsets of X equipped with the Hausdorff distance is a complete
metric space, denoted by (K(X), h). Let w1, w2, ..., wn be contractions on X with
contraction factors c1, c2, ..., cn, respectively. On the metric space K(X) we define the
Hutchinson operator by

W (A) = w1(A) ∪ w2(A) ∪ ... ∪ wn(A), ∀A ∈ K(X).
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The operator W is a contraction on (K(X), h), hence it has a fixed point denoted by
A∞; of course, W (A∞) = A∞. The contraction factor of W is C = sup{c1, c2, ..., cn}.
The iteration of the Hutchinson operator is called the Iterated Function System (IFS)
and the fixed point A∞ is called the attractor of the IFS. The classical fractals (Cantor
set, Sierpinski gasket, Sierpinski carpet, Koch curve, etc) are attractors correspond-
ing to adequate Hutchinson operators. Let us now suppose that the contractions
w1, w2, ..., wn are similarities (scaling, rotation, translation). It results that the at-
tractor A∞ is self similar simply because A∞ = W (A∞) = w1(A∞) ∪ w2(A∞) ∪ ... ∪
wn(A∞). Sometimes it is possible to compute the self similarity dimension of A∞;
for instance, if the mappings w1, w2, ..., wn are all one to one, if they have the same
contraction factor C = c1 = c2 = ... = cn and if wk(A∞) ∩ wm(A∞) = ∅,∀k 6= m,
then the self similarity of A∞ (denoted by d) is the solution of the equation ncd = 1,
i.e. d = log n

log 1
c

. If c1, c2, ..., cn are different, then d satisfies cd
1 + cd

2 + ... + cd
n = 1.

II. A random game
Let us start with the following random game:

We consider a die with four letters: A,B, C,D with equal probabilities and we denote
the four vertices of a square by A,B, C, D. We start with an arbitrary point in the
plane denoted by P0. We throw the die and we get a letter L ∈ {A,B, C,D}. We
generate the new point P1, which is located on the segment [P0L] at one third from
L. We continue to play with P1 instead of P0. In this way we get a sequence of points
P0, P1, P2, .... We present below the first 4 steps of this game:

The next pictures present the set of points {Pn}n after the first 1000, 5000 and
2000000 iterations. We mention that by repeating the experiment with another arbi-
trary P0, after a sufficient large number of steps, we get the same stabilized picture.

III. The attractor
In the plane we consider a square. We divide the square in 9 equal squares by dividing
each edge in 3 equal segments. We eliminate ”the middle third”, i.e., we keep the
four squares from the corners. We continue the process and we denote by Mn the set
obtained after the n-th iteration. We present below the first 4 steps:

We observe that, by repeating the process infinitely many times we get a fractal
which approximates the result of the random game presented in the introduction. We
denote this fractal by M∞.
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Proposition The set Mn consists of 4n squares, each of them of edge Ln =
(

1
3

)n.
Consequently, the perimeter of Mn is Pn = 4

(
4
3

)n and the area Sn =
(

4
9

)n. It
results that the length of the fractal M∞ is P∞ = limn→∞ Pn = ∞ and its area is
S∞ = limn→∞ Sn = 0.

Usually, it is difficult to compute the Hausdorff dimension for an arbitrary fractal.
A very efficient method to approximate it is the Box Counting method, [2], [3], [4].
Let us consider a picture (structure). We cover the structure with a number of square
boxes of size s. We count the number of boxes which contain some part of the
structure and let N(s) be this number. Clearly, if we increase the number of boxes,
or, equivalently, we decrease s to p, we obtain N(p) instead of N(s). Finally, we
obtain the following diagram: on the Ox-axis we measure −log(s) and on the Oy-axis
we measure log(N(s)). In this way, we obtain several points for different values of s.
The Box Counting Dimension of the structure is defined as the slope of the regression
line defined by the points on the diagram. We compute below the Box Counting
Dimension of the fractal M∞.

The Box Counting Dimension of M∞ is D = log(4)

log(3)
. We observe that D = 2log(2)

log(3)
,

i.e., it is the double of the Hausdorff dimension of the Cantor set.



A chaotic game and its associated fractal 221

IV. The iterated function system associated to M∞.
The Iterated Function System (see [2]) which generates the fractal M∞ is given

by the following four contractions:

w1(x, y) =
(

1
3

1
3

1
3

1
3

)
(x, y)T +

(
0
0

)
=

(
x
3
y
3

)
.

w2(x, y) =
(

1
3

1
3

1
3

1
3

)
(x, y)T +

(
2
3
0

)
=

(
x
3 + 2

3
y
3

)
.

w3(x, y) =
(

1
3

1
3

1
3

1
3

)
(x, y)T +

(
0
2
3

)
=

(
x
3

y
3 + 2

3

)
.

w4(x, y) =
(

1
3

1
3

1
3

1
3

)
(x, y)T +

(
2
3
2
3

)
=

(
x
3 + 2

3
y
3 + 2

3

)
.

If A is a subset of the plane, then the IFS is W (A) = w1(A)∪w2(A)∪∪w3(A)∪w4(A).
The fixed point of the operator W is the fractal M∞, i.e., W (M∞) = M∞. We give
below the first five iterations of the operator W on a subset of the plane:

V. Conclusions

The study of the structure generated by the random process was reduced to the
study of a fractal generated by a deterministic process defined by the contraction W .
The properties of this fractal have been studied, including the Hausdorff dimension
and the associated IFS.
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