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Abstract

The paper investigates the structural stability of hepatocyte physiology in
the case of bursting (explosive) behavior, based on the five KCC-invariants of
the second-order canonic extension of the characterizing SODE.
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1 Introduction.

It is well known that the SODE (system of ordinary diferential equations) which
describes the intra-cell calcium variation in time exhibit a very rich and complex
dynamical behavior.

In the present work we investigate the robustness and the fragility of a mathe-
matical biological model which describes the Calcium variations in time in the living
cell, by means of the deviation curvature tensor of the attached SODE (KCC or Ja-
cobi stability). By robustness we mean both the relative insensitivity to alteration of
their internal parameters and the ability to adapt to changes in their environment.
From the mathematical point of view, the differential geometrical theory of varia-
tional equations studying the deviation of nearby trajectories allows us to estimate
the admissible perturbation arround the steady states of the SODE. By admissible
mean perturbations we have in view the ones which do not change the stability ranges
of the system.

The applicative biological aspects of our model represent an important open ques-
tion in the field, and are subject of further research.

The calcium variations in time model is based on the mechanism of calcium in-
duced calcium release (CICR). This model takes into account calcium-stimulated
degradation of inositol 1,4,5- triphosphate (InsP3) by a 3-kinase.

Complex calcium (Ca2+) variations in time have been observed in certain cell
types, particularly in hepatocytes, as a response to stimulation by certain substances.
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Because these cells are not electrically excitable, it is likely that these complex cal-
cium variations rely on the interplay between two intracellular mechanisms capable of
destabilizing the steady state. Two antagonistic effects are indeed at play: an increase
in a substance called inositol is expected to lead to an increase in the frequency of
calcium spikes, but at the same time the inositol induces rise in calcium, will also
leads to increased inositol metabolisis due to the calcium activation of the inositol
3-kinase.

The model for calcium variations used in the present study containes three vari-
ables, namely the concentration of free Ca2+ in the cytosol (Z) and in the internal
pool (Y), and the InsP3 concentration (A). The time evolution of these variables is
governed by the following SODE





dZ

dt
= −k · Z + V0 + β · V1 + kf · Y − VM2 ·

Z2

k2
2 + Z2

+

+VM3 ·
Zm

km
Z + Zm

· Y 2

k2
Y + Y 2

· A4

k4
A + A4

dY

dt
= −kf · Y + VM2 ·

Z2

k2
2 + Z2

− VM3 ·
Zm

km
Z + Zm

· Y 2

k2
Y + Y 2

· A4

k4
A + A4

dA

dt
= β · VM4 − VM5 ·

Ap

kp
5 + Ap

· Zn

kn
d + Zn

− ε ·A,

(1.1)

where

• V0 refers to a constant input of Ca2+ from the extracellular medium;
• V1 is the maximum rate of stimulus-induced influx of Ca2+ from the extracellular

medium;
• β reflects the degree of stimulation of the cell by an agonist and thus only varies

between 0 and 1;
• the rates V2 and V3 refer, respectively, to pumping of cytosolic Ca2+ into the

internal stores and to the release of Ca2+ from these stores into the cytosol
in a process activated by citosolic calcium (CICR); VM2 and VM3 denote the
maximum values of these rates;

• parameters k2, kY , kZ and kA are treshold constants for pumping, release, and
activation of release by Ca2+ and by InsP3;

• kf is a rate constant measuring the passive, linear leak of Y into Z;
• k relates to the assumed linear transport of citosolic calcium into the extracel-

lular medium;
• VM4 is the maximum rate of stimulus-induced synthesis of InsP3;
• VM5 is the rate of phosphorylation of InsP3 by the 3-kinase;
• m, n and p are Hill coefficients related to the cooperative processes;
• ε is the phosphorilation rate of InsP3 by the 5-phosphatase.

We remind that from biological point of view, this SODE is based on the mechanism
of Calcium release induced by Calcium influenced by the inozitol 1,4,5-triphosphate
(IP3) degradation by a 3-kynase. This model may exhibit various types of varia-
tions as: explosion, chaos, quasi-periodicity, depending on the values assigned to the
parameters.
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2 KCC-theory and Jacobi stability

We recall first some basics of KCC-theory ([17], [1], [2]). Let x = (x1, ..., xn),

ẋ =
(

dx

dt

)
=

(
dx1

dt
,
dx2

dt
, . . . ,

dxn

dt

)
(2.1)

and t be the 2n+1 coordinates of an open connected subset Ω ⊂ Rn× Rn× R1. We
consider a second order system of differential equations of the form

d2xi

dt2
+ gi(x, ẋ, t) = 0, i ∈ 1, n,(2.2)

where each function gi(x, ẋ, t) is smooth in a neighborhood of some initial conditions
(x0, ẋ0, t0) ∈ Ω. In order to find the basic differential invariants of the system (2.2)
(see Kosambi [10], E. Cartan [7] and S.S.Chern [8]) under the non-singular coordinate
transformations

xi = f i(x1, . . . , xn), i ∈ 1, n, t̄ = t,(2.3)

we define the KCC-covariant differential of a contravariant vector field ξi(x) on the
open subset Ω via

Dξi

dt
=

dξi

dt
+

1
2
gi
;rξ

r,(2.4)

where ”;” indicates partial differentiation with respect to ẋ, and the Einstein summa-
tion convention is used throughout. Using (2.4), the system (2.2) becomes

Dẋi

dt
=

1
2
gi
;rẋ

r − gi = εi,(2.5)

where εi defined here is a contravariant vector field on Ω and is called the first KCC-
invariant, which is interpreted as an external force [1]. The functions gi = gi(x, ẋ, t)
are 2 homogeneous in ẋ if and only if εi = 0. In other words, εi = 0 is a necessary and
sufficient condition for a semispray to be a spray. It is obvious that for the geodesic
spray of a Riemannian or Finsler manifold, the first invariant vanishes.

It can be easily seen that, since the system is of the form ẋ = X(x), the first
invariant has the components εi = 1

2
∂Xi

∂xr ẋr, and hence this vanishes for null velocities,
i.e. on the stationary points of the field X. We shall further use for the SODE (1.1)
the set of parameter values commonly used in the case of ”explosion” (bursting),

β = 0.46, n = 2, m = 4, p = 1, K2 = 0.1µM, k5 = 1µM,

kA = 0.1µM, kd = 0.6µM, kY = 0.2µM,

kZ = 0.3µM, k = 0.1667s−1, kf = 0.0167s−1, ε = 0.0167s−1,

V0 = 0.0333µM · s−1, V1 = 0.0333µM · s−1, VM2 = 0.1µM · s−1,

VM3 = 0.3333µM · s−1, VM4 = 0.0417µM · s−1, VM5 = 0.5µM · s−1.

(2.6)

Using Maple computer techniques, the condition of having the first invariant null
on nonzero sections of the tangent space T R3 is equivalent to the vanishing of the
determinant of the Jacobi matrix of the SODE vector field, i.e.,



198 I. R. Nicola and V. Balan

−1. · (.5167000000 · Z2 + .3340000000e− 1 ·A · Z2 + .6012000000e2 + .1202400000e−1 ·A+

+.6012000000e−2 ·A2 + .1670000000e− 1 ·A2 · Z2) · (.3607921440e−11+

+.3607921440e−7 ·A4 + .1803960720e−9 · Y 2 + .1803960720e−5 · Y 2 ·A4+

+.2254950900e−8 · Y 4 + .2254950900e−4 · Y 4 ·A4 + .4454224000e−9 · Z4+

+.4454224000e−5 · Z4 ·A4 + .2227112000e−7 · Z4 · Y 2 + .2227112000e−3 · Z4Y 2A4+

+.2783890000e−6 · Z4 · Y 4 + .2783890e−2 · Z4 · Y 4 ·A4 + .444488880e−2 · Z4 · Y ·A4)·
·[(.360000 + Z2)(1 + A)2(.100000e−3 + A4)(.4e−1 + Y 2)2(.81000e−2 + 1. · Z4)]−1 = 0.

This strongly nonlinear equation does not depend on velocities, and admits no solu-
tions in the first octant of the position variables. But in the general extended case,
when (Z, Y, A) ∈ R3 there exists a region in T R3 where the first invariant cancels:
this is the total space of a vector subbundle (E, π1, Σ) of rank one of (T R3, π, R3),
having as basis a surface Σ.

On the other hand, it is known that if the trajectories xi(t) of (2.2) are varied into
nearby ones with respect to x as x̄i(t) = xi(t) + ξi(t)η with the parameter η small,
one gets the variational equations

d2ξi

dt2
+ gi

;r

dξr

dt
+ gi

,rξ
r = 0,(2.7)

where ”,” indicates partial differentiation with respect to x. Using now the KCC-
covariant differential (2.4), one obtains (2.7) in the covariant form
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where
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is called the second KCC-invariant of the system (2.2), or deviation curvature tensor.
Its eigenstructure is an alternative to the Floquet Theory, with the eigenvalues of P i

j

replacing the characteristic multipliers (also called Floquet exponents, [15], [3]). In
our case, it has the generic form

P i
j =

∂2Xi

∂xj∂xr
ẋr +

1
4

∂Xi

∂xr

∂Xr

∂xj
.

Note that (2.8) is the Jacobi field equation when the starting system (2.2) are geodesic
equations in either Finsler or Riemannian geometry. This justifies the usage of the
term Jacobi stability for KCC-Theory.

On the other hand, the Jacobi equation (2.8) of the Finsler manifold (M, F ) can
be written in the scalar form

d2v

ds2
+ K · v = 0,(2.10)

where ξi = v(s)ηi is a Jacobi field along γ : xi = xi(s), ηi is the unit normal vector
field along γ; K is the flag curvature of (M, F ) ([4]).

It is also known that the sign of K influences the geodesic rays ([4]). Indeed, if
K > 0, then the geodesic bunch together (are Jacobi stable), and if K < 0, then they
disperse (are Jacobi unstable).
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Hence negative flag curvature is equivalent to positive eigenvalues of P i
j , and posi-

tive flag curvature is equivalent to negative eigenvalues of P i
j . It is known the following

Theorem 1. ([2], [1]) The trajectories of (2.2) are Jacobi stable if and only if the
real parts of the eigenvalues of the deviation tensor P j

i are strict negative everywhere,
and Jacobi unstable, otherwise.

The notion of Jacobi stability presented until here can be extended to the general
case of the SODE (2.2) using the Theorem above as the definition for the Jacobi
stability of the traiectories of a SODE. The third, fourth and fifth invariants of the
system (2.2) are respectively

Ri
jk =

1
3
(P i

j;k − P i
k;j), Bi

jkl = Ri
jk;l, Di

jkl = gi
;j;k;l.(2.11)

A basic result of the KCC-theory which points out the role of the five invariants is
the following:

Theorem 2. ([1]) Two SODE’s of form (2.2) on Ω can be locally transformed, rela-
tive to (2.3), one into another, if and only if their five invariants εi, P i

j , R
i
jk, Bi

jkl, D
i
jkl

are equivalent tensors. In particular, there are local coordinates (x) for which gi(x, ẋ, t) =
0 if and only if all five KCC-tensors vanish.

Based on Maple computations, we can infer straightforward that for our SODE
subject to the requirement of having real (positive) solutions (Z, Y, A), there exists no
coordinate change such that the coefficients of the new second order SODE-semispray
do all vanish, i.e., the trajectories of the second-order extended system (including the
field lines of the initial SODE) can never be lines, whatever coordinate system one
might choose.

3 MAPLE numerical results on Linear and KCC-
stability

Proposition 1. In the ”explosion” subcase, i.e., the parameter values below, the
deviation curvature tensor P i

j has the positive eigenvalue λ1 = 0.001326818690 and the
two complex conjugate eigenvalues with negative real part λ2,3 = −0.01505325754 ±
0.001930995461

√
3I. Hence the field lines of the system are Jacobi unstable.

Considering the parameter kY variable within the interval (0, 1) and the other
parameters taking the values in (2.6), we get the following results regarding linear
stability and Jacobi stability.

Proposition 2. For kY ∈ (0, 1) the system (1.1) admits a ”positive” equilibrium
point (Z0, Y0, A0) and the discriminant of the characteristic polyomial of the Jacobi
matrix attached to (1.1) is positive and depends discontinously on kY . There exists a
set of pairs 0 < ε1 < δ1 < . . . < εn < δn < 1, n ∈N such that the Jacobi matrix has
a real eigenvalue and two complex conjugate eigenvalues for kY ∈ (εi, δi).

Proposition 3. There exist a positive constant ε ∈ (0.11, 0.12) such that for
kY ∈ (ε, 1) the deviation curvature tensor P i

j has a real positive eigenvalue and two
complex conjugate eigenvalues, hence the field lines of (1.1) are Jacobi unstable.
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For kY ∈ (0, ε), the deviation curvature tensor P i
j has three real eigenvalues, of

which one is positive; hence for this case the field lines are Jacobi unstable.

In the following we consider the parameter VM3 varying freely in the interval (0, 1);
the effect on this paths of the SODE (1.1) is described by the following results:

Proposition 4. For VM3 ∈ (0, 1) the system (1.1) admits a ”positive” equilibrium
point (Z0, Y0, A0). There exists a real constant ε ∈ (0.45, 0.46) such that, for VM3 ∈
(0, ε), Y0 continuously depends on VM3. For VM3 ∈ (ε, 1), Y0 exibits singularities.

Proposition 5. There exist three constants ε1 ∈ (0.023, 0.024), ε2 ∈ (0.124, 0.125)
and ε3 ∈ (0.225, 0.226) such that:

a) for VM3 ∈ (ε1, ε2) ∪ (ε3, 1) the Jacobi matrix of the system (1.1) has a real
eigenvalue and two complex conjugate eigenvalues; for VM3 ∈ (ε1, ε2) the equilibrium
point (Z0, Y0, A0) is an attractor.

b) for VM3 ∈ (0, ε1) ∪ (ε2, ε3) the Jacobi matrix of the system (1.1) admits three
real eigenvalues.

Proposition 6. For VM3 ∈ (0, 1) the deviation curvature tensor P i
j has a real

positive eigenvalue and two complex conjugate eigenvalues, and hence the field lines
of the system are Jacobi unstable.
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