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Abstract

We review recent tests of a convergent numerical scheme for space-homogeneous,
nonlinear Boltzmann-like equations for fluids with two, three and four species of
gas particles, respectively, with elastic and reactive binary collisions. The tests
refer both to simpler exactly solvable models with elastic collisions, and to more
complicated examples, involving chemical reactions, which present only exact
expressions for certain low-order moments of the one-particle distribution func-
tions. The results of the numerical tests appear to be in very good agreement
with theoretical predictions.
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1 Introduction

An accurate, computational method has been recently introduced [7], in order to solve
numerically nonlinear Boltzmann-like equations [4], [5], [6] for reacting gas mixtures.
The method represents a generalization of a rigorous numerical scheme proposed in [1],
[2], which combines analytical and stochastic techniques to obtain numerical solutions
of the classical Boltzmann equation.

As compared to the method of [1], [2], the numerical techniques developed in [7]
have to face increased mathematical difficulties, essentially due to the presence of
several species of gas particles and occurrence of reactions.

The usefulness of models with exact solutions for numerical tests is well known.
In this respect, the simplest example is represented by the Krook-Wu model [8], cor-
responding to a system of Boltzmann equations describing nonreactive gas mixtures.

The numerical tests on the Krook-Wu equations have the merit to provide some
insight in the effectiveness of the numerical method in dealing with models with
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nonlinearities, and in handling several unknown distribution functions, corresponding
to several species.

The scheme of [7] was tested in [10] on the exact Krook-Wu solutions of the multi-
component Boltzmann equation [8], in order to study the effectiveness of the method
in applications to gas mixtures.

However, the Krook-Wu equations refer only to non-reacting gases. Consequently,
the results of [10] are of rather limited interest. In fact, they do not provide informa-
tion on the applicability of the scheme of [7] to models with chemical reactions.

More realistic evaluations, based on the confrontation between numerical and an-
alytical results, should require the knowledge of non-trivial, exact solutions of the
non-linear Boltzmann-like equations for reacting flows. So far, analytical solutions
to Boltzmann models with chemical reactions, have been obtained only for linear
equations [12], or equations with collision terms defined by trivial (reaction) collision
laws [3]. Unfortunately, such exact, simple solutions do not serve the purposes of the
aforementioned evaluations.

On the other hand, one could perform useful, indirect tests on certain non-trivial
Boltzmann models for reacting flows. Although the models cannot be solved ana-
lytically, they provide exactly solvable equations for the time evolution of certain
macroscopic variables (e.g. concentration, energy). In that case, the one-particle
distribution functions of the gas species can be obtained, solving numerically the
Boltzmann model, by means of the techniques developed in [7]. Then the aforemen-
tioned macroscopic quantities (at various moments) can be calculated as averages with
respect to the numerical one-particle distribution functions. The resulting values can
be compared with those provided by the analytical solutions of the equations for
macroscopic quantities. Moreover, the computed values of the macroscopic variables
can serve to study the accuracy of the numerical scheme concerning the verification of
the bulk conservation properties [4], [5], [6] of the model. Results of several tests on
Boltzmann-like models with chemical reactions have been recently published in [11].

In this paper we review comparatively some of the results of the above numerical
tests, and also present new results concerning the situation when exothermal reactions
involving three species are included in the models investigated in [11]. Our aim is
to give a first answer to the important question concerning the sensitivity of the
method with respect to the change of the nature of the binary interactions and the
number of components of the model, the main conclusion being that the accuracy of
the numerical seems not to be affected by such changes (in the regime of reactions
involving few particles).

2 Analytical Considerations

In this paper, we are interested in the kinetics of space-homogeneous gas mixtures
consisting of 2 ≤ N ≤ 4 chemical species, of gas particles with binary elastic collisions
and binary reactions. The gas reactions conserve the total mass, momentum and
energy of the reaction partners in the reaction channels [4].

We assume that each species Xi is composed of point particles with mass mi,and
one-internal state characterized by internal energy Ei, 1 ≤ i ≤ 4. We consider the
situation when the following kinds of gas interactions are possible:
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(a) nonreactive (elastic) collisions

Xi + Xj → Xi + Xj ,(2.1)

for 1 ≤ i, j ≤ 4 and {i, j} 6= {3, 4};
(b) reactions of the form

X1 + X2 → X3 + X4(2.2)

and the reverse reaction

X3 + X4 → X1 + X2(2.3)

Notice that reactions of the form

X1 + X2 À 2X3

can be considered as particularization of (2.2), (2.3) to the case when X3 = X4.
To be precise, without loss of generality, we suppose reaction (2.2) to be endother-

mal (E1 + E2 ≤ E3 + E4). This means that reaction (2.3) is exothermal.
In this case, the weak form of the Boltzmann-like model introduced in [5], reads

(
φ,

∂fi

∂t

)
= (φ, Pi(f))− (φ, Si(f)), (∀) 1 ≤ i ≤ 4; φ ∈ Cb(R3).(2.4)

for the unknown one-particle distribution functions fi = fi(t,v) (depending on time
t and velocity v ) and associated to the species Xi, 1 ≤ i ≤ 4. Here f := (f1, ..., f4)

(φ, Pi(f)) =
4∑

j,k,l=1

∫

Dkl;ij×S
φ(vij;kl) · rij;kl(v,w,n) · fk(v)fl(w) dvdwdn,(2.5)

and

(φ, Si(f)) =
4∑

j,k,l=1

∫

Dij;kl×S
φ(v) · rkl;ij(v,w,n) · fi(v)fj(w) dvdwdn,(2.6)

where Cb(R3) denotes the space of continuous, bounded, real functions on R3, S :=
{n ∈ R3| |n| = 1} ,

Dij;kl := {(v,w) ∈ R3 × R3| W̄ij;kl(v,w) ≥ 0},(2.7)

with

W̄ij;kl(v,w) :=
mimj

2(mi + mj)
|v −w|2 + Ei + Ej − Ek − El,(2.8)

vij;kl = vij;kl(v,w,n) :=
miv + mjw

mi + mj
+

+
[

2 ·ml

mk(mi + mj)
W̄ij;kl(v,w)

]1/2

· n,

(2.9)
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Finally the collision law rij;kl(v,w,n) characterizes the reaction Xi +Xj → Xk +
Xl. According to the hypotheses of the model, in formulae (2.4), (2.5) and (2.6), only
the collision laws associated to reactions (2.1), (2.2), (2.3) do not vanish identically.

It is known [5], [7] that the Cauchy problem associated to (2.4) has, in some sense,
unique positive global solutions (for details the reader is referred to [5], [6], [7]).

Following [10], [11], we consider collision laws similar to those introduced by Krook
and Wu for nonreactive gaseous mixtures [8].

Assumption:

r12;12(v,w,n) =





const ≥ 0 when W̄12;34(v,w,n) < 0,

0 if W̄12;34(v,w,n) ≥ 0;
(2.10)

the functions r12;34, r34;12 are nonnegative constants (on their domains); similarly
rij;ij is nonnegative and constant if {i, j} 6= {1, 2} or {i, j} 6= {3, 4}.

Under hypothesis (2.10), isotropic initial conditions lead to isotropic solutions,
i.e., fi(v) = fi(v) for 1 ≤ i ≤ 4 (where v := |v| is the modulus of the velocity v).

In that case, one can provide a more explicit form for Eq.(2.4). Indeed, define

Fi(v) := 4πv2fi(v), for 1 ≤ i ≤ 4.(2.11)

Denote the concentration of the species i by

Ii :=
∫ ∞

0

Fi(v)dv, for 1 ≤ i ≤ 4.(2.12)

Let λkl;ij := 4π · rij;kl (1 ≤ i, j, k, l ≤ 4). Using suitable changes of variables in (2.5),
(2.6), one obtains

(φ, Pi(f)) =
4∑

j,k,l=1

λkl;ij · IkIl

∫

Dkl;ij

φ(ṽ) · Fk(v)Fl(w) dv dw dζ dη ,(2.13)

(φ, Si(f)) =
4∑

j,k,l=1

λij;kl · IiIj

∫

Dij;kl

φ(v) · Fi(v)Fj(w) dv dw dζ dη ,(2.14)

where

Dkl;ij := {(v, w, ζ, η) ∈ R2
+ × [0, 1)2| ṽkl;ij ∈ R}(2.15)

The the post collision velocity of the species i, ṽkl;ij is given by

ṽkl;ij = ṽkl;ij(v, w, ζ, η) :=

[
V 2

kl +
gmk

ml
ρ2

kl;ij + 2
(

mk

ml

)1/2

ρkl;ijVkl(2η − 1)

]1/2

,

(2.16)
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where

Vkl = Vkl(v, w, ζ) := (m2
kv2 + m2

l w
2 + 2mkmlvw(2ζ − 1))1/2/(mk + ml),(2.17)

ρkl;ij = ρkl;ij(v, w, ζ) := [mkml(v2 + w2 + 2vw(2ζ − 1))/(mk + ml)2+

+2(Ek + El − Ei − Ej)/(mk + ml)]1/2.
(2.18)

The simple particularization of the above model concerns the non-reactive gas
with two species [10]: N = 2, Ei = 0 and λkl;ij = 0, for k 6= i and l 6= j.

Let λij;ij = λij , mik = mi/(mi + mk)

p1 = λ22 − λ21µ(3− 2µ) , p2 = λ11 − λ12µ(3− 2µ) ,(2.19)

with µ = 4m1m2/(m1 + m2)2.
The constants λki satisfy the condition

λ12/I1 = λ21/I2,(2.20)

The Krook-Wu like solutions [8] are determined if either condition on parameters
p1 = p2 or condition 2µ2(λ21/p1 − λ12/p2) = 1 is fulfilled. Then the general solution
has the form:

fi(t, v) = Φ(v;αi(t))[1− 3piR(t) + Qi(t)v2], i = 1, 2,(2.21)

where

Φ(v;α) = (2πα)−3/2 exp(−v2/2α),
Qi(t) = mipiR(t)/ξ(t),
αi(t) = ξ(t)/mi,
R(t) = A/[A · exp(A(t− t0))−B],
ξ(t) = (I1 + I2)/[I1 + I2 + 8π(I1p1 + I2p2) ·R(t)],

(2.22)

with A and B constants defined by:

A = 4π[λ11 + λ21µ(3− 2µp2/p1)]/6, B = 16π2[λ11p1 + λ21µ(3− 2µ)p2]/3.(2.23)

On the other hand, if reactions are present (under condition (2.10)), no nontrivial
analytical solution of the model is known. However, as mentioned in the Introduction,
in some particular cases, indirect tests can be done, because starting from (2.4) one
can solve exactly the equations for chemical concentrations and energies.

Indeed, the internal energy can be expressed exactly in terms of concentrations.

Eint(t) =
4∑

i=1

Ii(t)Ei.(2.24)
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By the global conservation of energy, the total (kinetic + internal) energy of the gas

E(t) =
4∑

i=1

mi

〈
v2

i

〉
(t)

2
+

4∑

i=1

Ii(t)Ei = E(0),(2.25)

From (2.25) the total kinetic energy of the particles can be written

Ecin(t) =
4∑

i=1

mi

〈
v2

i

〉
(t)

2
=

4∑

i=1

mi

〈
v2

i

〉
(0)

2
+

∑

i=1

[I0
i − Ii(t)]Ei.(2.26)

Moreover, if species X1 and X2 interact only by elastic collisions, then




İi = λ · I3I4, i = 1, 2

İi = −λ · I3I4, i = 3, 4
(2.27)

with λ := λ34;12. These equations can be solved immediately.
Let I0

i := Ii(0), 1 ≤ i ≤ 4. If I0
3 6= I0

4 then, the solutions of (2.27) are




Ii(t) = I0
i +

I0
3I0

4 ·
[
exp (I0

4 · λt)− exp (I0
3 · λt)

]

I0
4 · exp (I0

4 · λt)− I0
3 · exp (I0

3 · λt)
, i = 1, 2

Ii(t) =
I0
i (I0

4 − I0
3 ) · exp (I0

i · λt)
I0
4 · exp (I0

4 · λt)− I0
3 · exp (I0

3 · λt)
, i = 3, 4,

(2.28)

and when I0
3 = I0

4 , the solutions of (2.27) are




Ii(t) = I0
i +

(I0
3 )2 · λt

(1 + I0
3 · λt)

, i = 1, 2

Ii(t) =
I0
i

(1 + I0
i · λt)

, i = 3, 4.

(2.29)

3 Numerical Method and Results

One considers some time interval [0, T ] and some given time step 0 < ∆t < T . The
time-discretized version of (2.4) has the following form

(φ, F p+1
i ) = (φ, Qp

ij),(3.30)

where {i, j} = {1, 2} or {i, j} = {3, 4}, p ∈ {0, 1, ..., [[T/∆t]] − 1} ([[x]] denoting the
integer part of the real positive number x) and φ ∈ Cb(R3).

The operators Qp
ij in (3.30) are defined through the following measures. For

{i, j} = {1, 2} and {k, l} = {3, 4} let

dHij(v, w, ζ, η) :=
1

J ij

Fi(v)Fj(w) dv dw dζ dη on Dij;kl,

dHij(v, w, ζ, η) :=
1

J ij

Fi(v)Fj(w) dv dw dζ dη on R2
+ × [0, 1]2 \ Dij;kl.

(3.31)
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where

J ij :=
∫

Dij;kl

Fi(v)Fj(w) dv dw dζ dη ,

J ij :=
∫

R2
+×[0,1]2\Dij;kl

Fi(v)Fj(w) dv dw dζ dη .

(3.32)

For {i, j} = {1, 2}, let

dHij(v, w, ζ, η) :=
1

IiIj
Fi(v)Fj(w) dv dw dζ dη(3.33)

on R2
+ × [0, 1)2.

The operators Qp
ij have the following form.

(φ,Qp
ij) :=

[
4∑

k=1

(
mk

Mp
tot

− λik;ik∆t

)
Ip
k − λii;ii∆t Ip

i

]
Ip
i (φ, F p

i )+

+
[(

mj

Mp
tot

− λij;ij∆t

)
Jp

ij(φ,Hp
ij)+

+
(

mj

Mp
tot

− λij;34∆t

)
J

p

ij(φ, H
p

ij)
]

Ip
j Ip

i +

+

[
λii;ii(φ̃ii;ii,H

p
ii)I

p
i +

4∑

k=1

λik;ik(φ̃ik;ik,Hp
ik)Ip

k

]
∆t Ip

i +

+
[
λij;ijJ

p
ij(φ̃ij;ij ,H

p
ij)I

p
j Ip

i + λ34;ij(φ̃34;ij ,H
p
34)I

p
3 Ip

4

]
∆t;

(3.34)

when {i, j} = {1, 2} and

(φ,Qp
ij) :=

[
4∑

k=1

(
mk

Mp
tot

− λik;ik∆t

)
Ip
k − λii;ii∆t Ip

i

]
Ip
i (φ, F p

i )+

+

[
λii;ii(φ̃ii;ii,H

p
ii) Ip

i +
4∑

k=1

λik;ik(φ̃ik;ik,Hp
ik) Ip

k

]
∆t Ip

i +

+λ12;ijJ
p

12(φ̃12;ij ,H
p

12)∆t Ip
1 Ip

2 .

(3.35)

if {i, j} = {3, 4}.
Note that, in (3.34) and (3.35) the quantities Ip

i , Hp
ij , H

p

ij , Jp
ij , J

p

ij , Hp
ij are

defined as in (2.12), (3.31), (3.32), (3.33), simply replacing Fi and Fj by F p
i and F p

j
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respectively. Moreover,

Mp
tot :=

4∑

i=1

miI
p
i(3.36)

and φ̃ij;kl := φ ◦ ṽij;kl, with ṽij;kl given by (2.16).

We approximate the initial data F 0
i (v)dv by sums of Dirac measures

dµ0
i,N (v) =

1
N

N∑
n=1

δ(v − v0
i,n)dv(3.37)

concentrated on N points v0
i,n, (such that dµ0

i,N (v) converges to F 0
i (v)dv as N →∞

in the weak sense of measures) and we approximate the Lebesgue measure on the
unit square dζdη by sums of Dirac measures concentrated on N points 1

N

∑N
n=1 δ(ζ−

ζn)δ(η − ηn)dζdη.

As one knows [7], the product measures in the r.h.s. of (3.30), yields a power-like
increasing computational effort. The decrease of the computational effort (preserv-
ing the convergence of the scheme) is accomplished by random selections, applying
Theorems 7, 8 of [7].

In all our tests we used the mixed congruential method to generate sequences
{ωn}n∈N of pseudo-random numbers. The elements ωn = zn/b, where zn are given
recursively by zn = λzn−1 +r (modb). In this relation b > 1, λ and r are fixed natural
numbers and λ is relative prime with b. The initialization is made with some integer
0 ≤ z0 < b. Here b = 3 · 1030, r = 1987654321, λ = 19867917. Each test starts with
an arbitrary positive z0 < b.

The approximation of the initial data by sums of Dirac measures was made by
means of the Hamersley-Van der Corput sequences (see [9] for details).

The numerical results correspond to several tests as follows.
In the case of the model with elastic collisions which presents exact solutions, a

typical result can be found in [10]: m1 = 5, m2 = 1, n1 = 2, t0 = ln(3p2 + B/A)/A,
T = 6. (This choice of t0 ensures the positivity of fi given by (2.21) for each t ≥ 0.)

In a first experiment we have obtained for each i = 1, 2 ten numerical solutions
for N = 1500 approximation points, at T = 6 and J = 16 iteration steps. Denote
Gi(t, v) := 4π

∫ v

0
u2fi(t, u)du, for i = 1, 2. The numerical results are represented in

Figure 1 and Figure 2.
In the case of the model with chemical reactions, our experiments consisted of

three series of tests performed on the model introduced in Section 2, corresponding to
the caricatures of three kinds of chemical reactions (the below quantities are expressed
in conventional, dimensionless units):

Case A: three distinct chemical species without endothermal reactions (only processes
(2.1) and (2.3) with X3 = X4 occur) e.g. gas mixtures consisting of N2, O2 and NO,
at sufficiently low temperature, undergoing binary elastic collisions, as well as reactive
collision inducing the reverse reaction in the process N2 + O2 À 2NO.
Masses : m1 = 46.48 · 10−7, m2 = 53.12 · 10−7, m3 = m4 = 49.80 · 10−7.
Initial concentrations: I0

1 = 0, I0
2 = 0.1, I0

3 = I0
4 = 0.45.
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Figure 1: Exact solution of the
first specie and ten numerical so-
lutions for N = 1500, at T = 6
and J = 16.
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Figure 2: Exact solution of the
second specie and ten numerical
solutions for N = 1500, at T = 6
and J = 16.

Internal energies: E1 = −53.2344, E2 = 19.6528, E3 = E4 = −2.9272.
Values of λ: λ11;11 = 1.2056, λ12;12 = λ33;33 = λ34;12 = λ44;44 = 1.3324, λ12;34 = 0,
λ13;13 = λ14;14 = 1.2690, λ22;22 = 1.4592, λ23;23 = λ24;24 = 1.3958.
Simulation time T = 16.
Initialization function in the time-discretized equations:

F 0
i (v) = 4πv2I0

i

(mi

π

)3/2

exp
(−miv

2
)
, 1 ≤ i ≤ 4(3.38)

Case B: four distinct species, without endothermic reaction (only processes (2.1),
(2.3) occur and X1,...,X4 are different) e.g. gas mixtures consisting of HF , HCl, FCl
and F2, at sufficiently low temperature, undergoing binary elastic collisions, as well as
reactive collision inducing the direct reaction in the process HF +FCl ¿ F2 +HCl.
Masses: m1 = 33.20 · 10−7, m2 = 90.47 · 10−7, m3 = m4 = 63.08 · 10−7.
Initial concentrations: I0

1 = 0.02, I0
2 = 0.08, I0

3 = 0.4, I0
4 = 0.5.

Internal energies: E1 = −42.4750, E2 = 9.3264, E3 = 24.7642, E4 = −20.7251.
Values of λ: λ11;11 = 1.2582, λ12;12 = λ34;12 = 2.1073, λ12;34 = 0, λ13;13 = 1.6091,
λ14;14 = 1.7564, λ22;22 = 2.9564, λ23;23 = 2.4582, λ24;24 = 2.6055, λ33;33 = 1.9600,
λ44;44 = 2.2547.
Simulation time T = 8.5.
Initialization function in the time-discretized equations is the same as in Case A,
(3.38)

Case C: four distinct species (2.1), (2.2), (2.3) occur and X1,...,X4 are different)
e.g. gas mixtures consisting of BrF , FCl, BrCl, F2 with elastic collisions and all
reactions of the form in the process BrF + FCl ¿ F2 + BrCl.
Masses: m1 = 164.34 ·10−7, m2 = 90.47 ·10−7, m3 = 63.08 ·10−7, m4 = 191.73 ·10−7.
Initial concentrations: I0

1 = 0.35, I0
2 = 0.6, I0

3 = 0.05, I0
4 = 0.

Internal energies: E1 = −15.3415, E2 = −15.6736, E3 = −0.2328, E4 = −10.1946.
Values of λ: λ11;11 = 3.6020, λ12;12 = λ34;12 = 3.2792, λ12;34 = 3.2792, λ13;13 =
2.7810, λ14;14 = 4.1002, λ22;22 = 2.9564, λ23;23 = 2.4582, λ24;24 = 3.7774, λ33;33 =
1.9600, λ44;44 = 4.5985.
Simulation time T = 1.75.
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Initialization function in the time-discretized equations:

F 0
i (v) = 4πv2I0

i

( mi

20 · π
)3/2

exp
(
−miv

2

20

)
, 1 ≤ i ≤ 4(3.39)
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Figure 3: The evolution of the
concentrations in Case A for
46000 points and 85 iteration
steps.
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Figure 4: The evolution of the
energies in Case A for 46000
points and 85 iteration steps.
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Figure 5: The evolution of the
concentrations in Case B for
46000 points and 85 iteration
steps.
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Figure 6: The evolution of the
energies in Case B for 46000
points and 85 iteration steps.

The “support” of the initial datum is included in [0, 2000] when F 0
i is given by

(3.38). It is included in [0, 6000] if F 0
i is given by (3.39). For details concerning the

approximation of the initial data (3.38), (3.39), the interested reader is referred to
[9], [10].

The above results present the evolution of concentrations and energies for several
tests. The numerical results are indicated by dots. Each dot corresponds to a number
given as the arithmetic mean of the values obtained as results of six simulations
(corresponding to identical physical conditions). In addition to the numerical results,
the values of the known exact solutions of the equations for the above macroscopic
quantities are represented as lines, in the aforementioned figures.
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Figure 8: The evolution of the
energies in Case C for 46000
points and 55 iteration steps.
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Figure 9: The evolution of the
concentrations in Case A for
46000 points and 92 iteration
steps with non-constant time
step.
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Figure 10: The evolution of the
energies in Case A for 46000
points and 92 iteration steps
with non-constant time step.
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Figure 11: The evolution of the
concentrations in Case B for 4600
points and 41 iteration steps.
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the energies in Case B for 4600
points and 41 iteration steps.
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Moreover, Figures 4, 6, 8, 10 and 12 detail the values of the kinetic energy, cal-
culated by two different methods. Specifically, the first method evaluates the kinetic
energy (kinetic energy 1, represented in our figures by circles) at each iteration step,
as difference between the total energy (at t = 0) and the numerical value of inter-
nal energy (expressed in terms of concentrations as in (2.26)). The second method
yields the kinetic energy (kinetic energy 2, represented in our figures by points) as an
average with respect to the one-particle distribution functions.

Figures 3-6 present the evolution of concentrations and energies (simulated quan-
tities and exact solutions) in Cases A and B for 85 iteration steps and 46000 concen-
tration points. Figures 7–8 correspond to Case C for 46000 concentration points and
55 iteration steps. Figures 9-10 correspond to Case A where we used 46000 concentra-
tion points and a non-constant time step (∆t = 1/11 for the first 48 step, ∆t = 2/11
for the next 24 steps and ∆t = 4/11, for the last 20 steps). Figures 11–12 correspond
to Case B for 4600 concentration points and 41 iteration steps.

A few remarks and critical considerations are in order:

The analysis of the results shows a good agreement between numerical and exact
values.

The results described in Figures 3–8 are a little bit finer than those obtained in
[11].

Figures 9-10 have no correspondent in literature. The time discretized method
used in [7] is a first order Euler method. Our tests with non-constant time-step, Fig-
ures 9-10, suggest that, a high-order method seems to improve the precision, without
increasing the computational effort of the numerical scheme. This could be very useful
for computations in space non-homogeneous cases.

It appears from the analysis of Figures 11-12 that one can still obtain satisfactory
results using less concentration points. However, we recall that, according to Theorem
10 in [7], the convergence of the numerical scheme, presented in this paper, requires
the number of concentration points (of the measures) to be dependent on the length of
time-step of the iteration. Indeed, taking the same number of concentration points, a
very small iteration time-step may provide more inaccurate values of some estimated
quantity (at a given moment) than a greater one. This numerical phenomenon was
confirmed by tests in [10].

The main source of errors in the computation of the one-particle distribution func-
tion comes from the use of repeated random selections. Here it should be remarked
that when the kinetic energy is calculated by means of the numeric values of concen-
trations (“kinetic energy 1”), the probabilistic selection appears only in the evaluation
of the integrals (3.32). Then the estimation of “kinetic energy 1” is expected to be
more accurate than for “kinetic energy 2”. Indeed, Figure 12 shows clearly that
“kinetic energy 1” is closer to the exact solution for energy than “kinetic energy 2”.

Finally, we recall that the numerical method of [7] can be applied to more general
models, with non constant collision kernels. However, in such situations, it is diffi-
cult to find exact solutions. Then the tests should rather be limited to comparing
the data provided by the numerical scheme with those obtained from some relevant
experiments.
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